Stopping Criteria for Iterative Solution to Linear Systems of Equations

Size: px
Start display at page:

Download "Stopping Criteria for Iterative Solution to Linear Systems of Equations"

Transcription

1 Stopping Criteria for Iterative Solution to Linear Systems of Equations Gerald Recktenwald Portland State University Mechanical Engineering Department

2 Iterative Methods: High-level view Solve Ax = b by an iterative method that obtains a sequence of approximations to the solution x k k = 0, 1, 2,... such that (b Ax k ) 0 as k. The residual at iteration k is r k = b Ax k k = 0, 1, 2,... (1) If an iterative methods converges, then r k 0 as k. ME 448/548: Stopping criteria for iterative solvers page 1

3 Convergence analysis Let x designate the exact solution. x is obtained only after an infinite number of iterations of an iterative method. Substitute Ax for b into Equation (1) r k = Ax Ax k = A(x x k ) = x x k = A 1 r k. x k x is the error at iteration k ME 448/548: Stopping criteria for iterative solvers page 2

4 Convergence analysis The magnitude of the error at the k th iteration is x x k = A 1 r k. From the definition of matrix norms, (see, e.g., [1, p. 42]) A 1 r k A 1 r k so x x k A 1 r k. Dividing through by the scalar, x, gives x x k x A 1 rk x. (2) ME 448/548: Stopping criteria for iterative solvers page 3

5 Convergence analysis We need a replacement for 1 x on the right hand side of Equation (2). Consider b = Ax A x = 1 x A b (3) Substituting the right hand side of Equation (3) into Equation (2) gives x x k x A 1 r k A b = A 1 A rk b (4) ME 448/548: Stopping criteria for iterative solvers page 4

6 Convergence analysis Introduce the condition number of A into Equation (4) to get κ(a) A A 1 x x k x κ(a) is large if A is ill-conditioned. Therefore κ(a) rk b (5) r k / b is an estimate of the relative error at iteration k For large κ(a) r k / b is not a reliable indicator of convergence ME 448/548: Stopping criteria for iterative solvers page 5

7 Implementation The preceding analysis suggests that iterations should continue until r k b < ɛ (6) where ɛ is a small value, but much larger than machine precision. Typically > ɛ > , but the value of ɛ will depend on the problem being solved and the cost of the iterations. ME 448/548: Stopping criteria for iterative solvers page 6

8 Implementation A =... % A and b are defined by the problem to be solved b =... x =... % initial guess tol =... % Convergence tolerance, e.g. tol = 5.0e-4 normb = norm(b); % compute b only once itermax =... % Limit on the number of iterations while i<itermax r = b - A*x; % Compute residual with previous x normr = norm(r) % Save for printing if normr/normb < tol, break; end % Test before solving; exit loop if true x = itersolver(a,b,x); % Update the solution i = i + 1; fprintf( %4d %12.3e\n,i,normr); end ME 448/548: Stopping criteria for iterative solvers page 7

9 Implementation in CFD Codes In CFD codes a typical stopping criterion is r k r 0 < ɛ (7) where r 0 = b Ax 0 is the residual based on the initial guess, x 0. If x 0 = 0, i.e., if the initial guess is a vector of zeros, then r 0 = b. However, for any other x 0, the value of r 0 may be large and unrelated to the true solution. If r 0 is artificially large then the iterations may be stopped prematurely. ME 448/548: Stopping criteria for iterative solvers page 8

10 Non-linear Systems of Equations Now consider where A = A(x) and b = b(x). Ax = b, (8) Solution methods for nonlinear systems are generalizations of root-finding methods for scalar equations f(x) = 0 Rearrange Equation (8) where f(x) is a vector valued function of x. f(x) = Ax b = 0, (9) Note that r = b Ax = f(x). (10) ME 448/548: Stopping criteria for iterative solvers page 9

11 Non-linear Systems of Equations An iterative method to solve Equation (8) can be written as x k+1 = x k + x k, k = 1, 2,..., (11) x k is obtained from the linearized coefficient matrix and right-hand-side vector A k = A(x k ), b k = b(x k ). Before the update to x k is computed, the vector f k = f(x k ) = r k, or f k = A k x k b k, (12) will not be zero unless x k is the solution to the nonlinear problem. ME 448/548: Stopping criteria for iterative solvers page 10

12 Non-linear Systems of Equations Two very important observations: 1. The non-linear system must use iterations to approach the solution. There is no direct method to solve Ax = b when A = A(x) and/or b = b(x). 2. The update step, x k+1 requires work equivalent to solving Ax = b. Each step of the iterative solver requires solution of a linear(ized) system of equations. ME 448/548: Stopping criteria for iterative solvers page 11

13 Inner and Outer Iterations Outer Iterations: Each step of the updating the non-linear system of equations A k x k+1 = b k is called an outer iteration. The SIMPLE algorithm is the recipe for the outer iterations when the segregated solver is used. Inner Iterations: Each step of the iterative solver applied to the frozen coefficients A k and b k for finding x k+1 is called an inner iteration. ME 448/548: Stopping criteria for iterative solvers page 12

14 Inner and Outer Iterations We only really care about the residual of the outer iterations. Don t spend too much effort on the inner iterations because A k and b k need to be updated. Don t spend too little effort on the inner iterations because we want x k+1 moves the non-linear solution in the right direction. ME 448/548: Stopping criteria for iterative solvers page 13

15 Summary Direct methods for solving Ax = b become prohibitive for very large numbers of unknowns. Iterative methods evolved in the 1980 s and 1990 s to become both robust and efficient for very large systems. Non-linear systems require iterations anyway. A k and b k are updated for outer iterations Ill-conditioned systems cause trouble Uncertainty in the solution Poor convergence of iterative methods References [1] G. Golub and J. M. Ortega. Scientific Computing: An Introduction with Parallel Computing. Academic Press, Inc., Boston, ME 448/548: Stopping criteria for iterative solvers page 14

Iterative Methods for Linear Systems

Iterative Methods for Linear Systems Iterative Methods for Linear Systems 1 the method of Jacobi derivation of the formulas cost and convergence of the algorithm a Julia function 2 Gauss-Seidel Relaxation an iterative method for solving linear

More information

Introduction to Matrix Operations in Matlab

Introduction to Matrix Operations in Matlab Introduction to Matrix Operations in Matlab Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@pdx.edu ME 350: Introduction to Matrix Operations in Matlab Overview

More information

Free Convection Cookbook for StarCCM+

Free Convection Cookbook for StarCCM+ ME 448/548 February 28, 2012 Free Convection Cookbook for StarCCM+ Gerald Recktenwald gerry@me.pdx.edu 1 Overview Figure 1 depicts a two-dimensional fluid domain bounded by a cylinder of diameter D. Inside

More information

f xx + f yy = F (x, y)

f xx + f yy = F (x, y) Application of the 2D finite element method to Laplace (Poisson) equation; f xx + f yy = F (x, y) M. R. Hadizadeh Computer Club, Department of Physics and Astronomy, Ohio University 4 Nov. 2013 Domain

More information

Unavoidable Errors in Computing

Unavoidable Errors in Computing Unavoidable Errors in Computing Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab:

More information

Assignment in Optimization 2016

Assignment in Optimization 2016 Assignment in Optimization 2016 You can choose one of the following two alternatives Alternative 1 Nonlinear least-square fitting using the Gauss-Newton method The task is to solve an optimization problem

More information

Linear Equation Systems Iterative Methods

Linear Equation Systems Iterative Methods Linear Equation Systems Iterative Methods Content Iterative Methods Jacobi Iterative Method Gauss Seidel Iterative Method Iterative Methods Iterative methods are those that produce a sequence of successive

More information

Efficient Use of Iterative Solvers in Nested Topology Optimization

Efficient Use of Iterative Solvers in Nested Topology Optimization Efficient Use of Iterative Solvers in Nested Topology Optimization Oded Amir, Mathias Stolpe and Ole Sigmund Technical University of Denmark Department of Mathematics Department of Mechanical Engineering

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

Practice Reading if Constructs

Practice Reading if Constructs ME 350 Lab Exercise 4 Fall 2017 if constructs, while loops Practice Reading if Constructs What is the output of the following command sequences? Some of the sequences may print messages that are not correct

More information

Description Syntax Remarks and examples Conformability Diagnostics References Also see

Description Syntax Remarks and examples Conformability Diagnostics References Also see Title stata.com solvenl( ) Solve systems of nonlinear equations Description Syntax Remarks and examples Conformability Diagnostics References Also see Description The solvenl() suite of functions finds

More information

Isotropic Porous Media Tutorial

Isotropic Porous Media Tutorial STAR-CCM+ User Guide 3927 Isotropic Porous Media Tutorial This tutorial models flow through the catalyst geometry described in the introductory section. In the porous region, the theoretical pressure drop

More information

Research Report AI A Numerical Equation Solver in Prolog Michael A. Covington Artificial Intelligence Programs The University of Georgia

Research Report AI A Numerical Equation Solver in Prolog Michael A. Covington Artificial Intelligence Programs The University of Georgia Research Report AI 1989 02 A Numerical Equation Solver in Prolog Michael A. Covington Artificial Intelligence Programs The University of Georgia Athens, Georgia 30602 U.S.A. A Numerical Equation Solver

More information

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING KELLER VANDEBOGERT AND CHARLES LANNING 1. Introduction Interior point methods are, put simply, a technique of optimization where, given a problem

More information

AMSC/CMSC 460 Final Exam, Fall 2007

AMSC/CMSC 460 Final Exam, Fall 2007 AMSC/CMSC 460 Final Exam, Fall 2007 Show all work. You may leave arithmetic expressions in any form that a calculator could evaluate. By putting your name on this paper, you agree to abide by the university

More information

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms By:- Nitin Kamra Indian Institute of Technology, Delhi Advisor:- Prof. Ulrich Reude 1. Introduction to Linear

More information

2 T. x + 2 T. , T( x, y = 0) = T 1

2 T. x + 2 T. , T( x, y = 0) = T 1 LAB 2: Conduction with Finite Difference Method Objective: The objective of this laboratory is to introduce the basic steps needed to numerically solve a steady state two-dimensional conduction problem

More information

Example C++ Program Demonstrating Usage of a Pointer to a Function in the Call to Another Function

Example C++ Program Demonstrating Usage of a Pointer to a Function in the Call to Another Function ME 5241 Computer Aided Engineering Tom Chase Fall 2000 Example C++ Program Demonstrating Usage of a Pointer to a Function in the Call to Another Function The sample code below implements the Newton s Method

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

A parallel direct/iterative solver based on a Schur complement approach

A parallel direct/iterative solver based on a Schur complement approach A parallel direct/iterative solver based on a Schur complement approach Gene around the world at CERFACS Jérémie Gaidamour LaBRI and INRIA Bordeaux - Sud-Ouest (ScAlApplix project) February 29th, 2008

More information

Accelerating Double Precision FEM Simulations with GPUs

Accelerating Double Precision FEM Simulations with GPUs Accelerating Double Precision FEM Simulations with GPUs Dominik Göddeke 1 3 Robert Strzodka 2 Stefan Turek 1 dominik.goeddeke@math.uni-dortmund.de 1 Mathematics III: Applied Mathematics and Numerics, University

More information

Parallel resolution of sparse linear systems by mixing direct and iterative methods

Parallel resolution of sparse linear systems by mixing direct and iterative methods Parallel resolution of sparse linear systems by mixing direct and iterative methods Phyleas Meeting, Bordeaux J. Gaidamour, P. Hénon, J. Roman, Y. Saad LaBRI and INRIA Bordeaux - Sud-Ouest (ScAlApplix

More information

MS213: Numerical Methods Computing Assignments with Matlab

MS213: Numerical Methods Computing Assignments with Matlab MS213: Numerical Methods Computing Assignments with Matlab SUBMISSION GUIDELINES & ASSIGNMENT ADVICE 1 Assignment Questions & Supplied Codes 1.1 The MS213 Numerical Methods assignments require students

More information

THE DEVELOPMENT OF THE POTENTIAL AND ACADMIC PROGRAMMES OF WROCLAW UNIVERISTY OF TECH- NOLOGY ITERATIVE LINEAR SOLVERS

THE DEVELOPMENT OF THE POTENTIAL AND ACADMIC PROGRAMMES OF WROCLAW UNIVERISTY OF TECH- NOLOGY ITERATIVE LINEAR SOLVERS ITERATIVE LIEAR SOLVERS. Objectives The goals of the laboratory workshop are as follows: to learn basic properties of iterative methods for solving linear least squares problems, to study the properties

More information

Uppsala University Department of Information technology. Hands-on 1: Ill-conditioning = x 2

Uppsala University Department of Information technology. Hands-on 1: Ill-conditioning = x 2 Uppsala University Department of Information technology Hands-on : Ill-conditioning Exercise (Ill-conditioned linear systems) Definition A system of linear equations is said to be ill-conditioned when

More information

Assignment #2: False Position Method

Assignment #2: False Position Method University of Puerto Rico Mayaguez Campus Department of Electrical & Computer Engineering Assignment #2: False Position Method Osvaldo M. Cardona 841-08-0990 Diana Rivera Negrón 802-08-6908 Ricardo I.

More information

WK # Given: f(x) = ax2 + bx + c

WK # Given: f(x) = ax2 + bx + c Alg2H Chapter 5 Review 1. Given: f(x) = ax2 + bx + c Date or y = ax2 + bx + c Related Formulas: y-intercept: ( 0, ) Equation of Axis of Symmetry: x = Vertex: (x,y) = (, ) Discriminant = x-intercepts: When

More information

Math 230 Final Exam December 22, 2015

Math 230 Final Exam December 22, 2015 Math 230 Final Exam December 22, 2015 General Directions. This is an open- book, open- notes, open- computer test. However, you may not communicate with any person, except me, during the test. You have

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

C3 Numerical methods

C3 Numerical methods Verulam School C3 Numerical methods 138 min 108 marks 1. (a) The diagram shows the curve y =. The region R, shaded in the diagram, is bounded by the curve and by the lines x = 1, x = 5 and y = 0. The region

More information

A Curve-Fitting Cookbook for use with the NMM Toolbox

A Curve-Fitting Cookbook for use with the NMM Toolbox A Curve-Fitting Cookbook for use with the NMM Toolbox Gerald Recktenwald October 17, 2000 Abstract Computational steps for obtaining curve fits with Matlab are described. The steps include reading data

More information

Math Homework 3

Math Homework 3 Math 0 - Homework 3 Due: Friday Feb. in class. Write on your paper the lab section you have registered for.. Staple the sheets together.. Solve exercise 8. of the textbook : Consider the following data:

More information

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING 26 CHAPTER 1. SCIENTIFIC COMPUTING amples. The IEEE floating-point standard can be found in [131]. A useful tutorial on floating-point arithmetic and the IEEE standard is [97]. Although it is no substitute

More information

µ = Pa s m 3 The Reynolds number based on hydraulic diameter, D h = 2W h/(w + h) = 3.2 mm for the main inlet duct is = 359

µ = Pa s m 3 The Reynolds number based on hydraulic diameter, D h = 2W h/(w + h) = 3.2 mm for the main inlet duct is = 359 Laminar Mixer Tutorial for STAR-CCM+ ME 448/548 March 30, 2014 Gerald Recktenwald gerry@pdx.edu 1 Overview Imagine that you are part of a team developing a medical diagnostic device. The device has a millimeter

More information

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn Today s class Roots of equation Finish up incremental search Open methods 1 False Position Method Although the interval [a,b] where the root becomes iteratively closer with the false position method, unlike

More information

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line:

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line: 9.1 Linear Inequalities in Two Variables Date: Key Ideas: Example Solve the inequality by graphing 3y 2x 6. steps 1. Rearrange the inequality so it s in mx ± b form. Don t forget to flip the inequality

More information

Gurobi Guidelines for Numerical Issues February 2017

Gurobi Guidelines for Numerical Issues February 2017 Gurobi Guidelines for Numerical Issues February 2017 Background Models with numerical issues can lead to undesirable results: slow performance, wrong answers or inconsistent behavior. When solving a model

More information

9.1: GRAPHING QUADRATICS ALGEBRA 1

9.1: GRAPHING QUADRATICS ALGEBRA 1 9.1: GRAPHING QUADRATICS ALGEBRA 1 OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form What does the graph of a quadratic look like? https://www.desmos.com/calculator

More information

2.1.1 Fixed-Point (or Integer) Arithmetic

2.1.1 Fixed-Point (or Integer) Arithmetic x = approximation to true value x error = x x, relative error = x x. x 2.1.1 Fixed-Point (or Integer) Arithmetic A base 2 (base 10) fixed-point number has a fixed number of binary (decimal) places. 1.

More information

Replacing f(x) with k f(x) and. Adapted from Walch Education

Replacing f(x) with k f(x) and. Adapted from Walch Education Replacing f(x) with k f(x) and f(k x) Adapted from Walch Education Graphing and Points of Interest In the graph of a function, there are key points of interest that define the graph and represent the characteristics

More information

Lecture 18: March 23

Lecture 18: March 23 0-725/36-725: Convex Optimization Spring 205 Lecturer: Ryan Tibshirani Lecture 8: March 23 Scribes: James Duyck Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10 MATH 573 LECTURE NOTES 77 13.8. Predictor-corrector methods. We consider the Adams methods, obtained from the formula xn+1 xn+1 y(x n+1 y(x n ) = y (x)dx = f(x,y(x))dx x n x n by replacing f by an interpolating

More information

Performance Evaluation of Multiple and Mixed Precision Iterative Refinement Method and its Application to High-Order Implicit Runge-Kutta Method

Performance Evaluation of Multiple and Mixed Precision Iterative Refinement Method and its Application to High-Order Implicit Runge-Kutta Method Performance Evaluation of Multiple and Mixed Precision Iterative Refinement Method and its Application to High-Order Implicit Runge-Kutta Method Tomonori Kouya Shizuoa Institute of Science and Technology,

More information

LECTURE 0: Introduction and Background

LECTURE 0: Introduction and Background 1 LECTURE 0: Introduction and Background September 10, 2012 1 Computational science The role of computational science has become increasingly significant during the last few decades. It has become the

More information

Repetition Structures Chapter 9

Repetition Structures Chapter 9 Sum of the terms Repetition Structures Chapter 9 1 Value of the Alternating Harmonic Series 0.9 0.8 0.7 0.6 0.5 10 0 10 1 10 2 10 3 Number of terms Objectives After studying this chapter you should be

More information

MATH2070: LAB 3: Roots of Equations

MATH2070: LAB 3: Roots of Equations MATH2070: LAB 3: Roots of Equations 1 Introduction Introduction Exercise 1 A Sample Problem Exercise 2 The Bisection Idea Exercise 3 Programming Bisection Exercise 4 Variable Function Names Exercise 5

More information

Module 17: Loops Lecture 34: Symbolic Analysis. The Lecture Contains: Symbolic Analysis. Example: Triangular Lower Limits. Multiple Loop Limits

Module 17: Loops Lecture 34: Symbolic Analysis. The Lecture Contains: Symbolic Analysis. Example: Triangular Lower Limits. Multiple Loop Limits The Lecture Contains: Symbolic Analysis Example: Triangular Lower Limits Multiple Loop Limits Exit in The Middle of a Loop Dependence System Solvers Single Equation Simple Test GCD Test Extreme Value Test

More information

Lecture VIII. Global Approximation Methods: I

Lecture VIII. Global Approximation Methods: I Lecture VIII Global Approximation Methods: I Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Global Methods p. 1 /29 Global function approximation Global methods: function

More information

Comparison of parallel preconditioners for a Newton-Krylov flow solver

Comparison of parallel preconditioners for a Newton-Krylov flow solver Comparison of parallel preconditioners for a Newton-Krylov flow solver Jason E. Hicken, Michal Osusky, and David W. Zingg 1Introduction Analysis of the results from the AIAA Drag Prediction workshops (Mavriplis

More information

A Lagrange method based L-curve for image restoration

A Lagrange method based L-curve for image restoration Journal of Physics: Conference Series OPEN ACCESS A Lagrange method based L-curve for image restoration To cite this article: G Landi 2013 J. Phys.: Conf. Ser. 464 012011 View the article online for updates

More information

Mathematical Methods and Computational Algorithms for Complex Networks. Benard Abola

Mathematical Methods and Computational Algorithms for Complex Networks. Benard Abola Mathematical Methods and Computational Algorithms for Complex Networks Benard Abola Division of Applied Mathematics, Mälardalen University Department of Mathematics, Makerere University Second Network

More information

Solution of 2D Euler Equations and Application to Airfoil Design

Solution of 2D Euler Equations and Application to Airfoil Design WDS'6 Proceedings of Contributed Papers, Part I, 47 52, 26. ISBN 8-86732-84-3 MATFYZPRESS Solution of 2D Euler Equations and Application to Airfoil Design J. Šimák Charles University, Faculty of Mathematics

More information

Lecture 7 Tao Wang 1

Lecture 7 Tao Wang 1 Lecture 7 Tao Wang 1 Objectives In this chapter, you will learn about: Interactive loop break and continue do-while for loop Common programming errors Scientists, Third Edition 2 while Loops while statement

More information

Variogram Inversion and Uncertainty Using Dynamic Data. Simultaneouos Inversion with Variogram Updating

Variogram Inversion and Uncertainty Using Dynamic Data. Simultaneouos Inversion with Variogram Updating Variogram Inversion and Uncertainty Using Dynamic Data Z. A. Reza (zreza@ualberta.ca) and C. V. Deutsch (cdeutsch@civil.ualberta.ca) Department of Civil & Environmental Engineering, University of Alberta

More information

Numerical Methods in Scientific Computation

Numerical Methods in Scientific Computation Numerical Methods in Scientific Computation Programming and Software Introduction to error analysis 1 Packages vs. Programming Packages MATLAB Excel Mathematica Maple Packages do the work for you Most

More information

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss Robot Mapping TORO Gradient Descent for SLAM Cyrill Stachniss 1 Stochastic Gradient Descent Minimize the error individually for each constraint (decomposition of the problem into sub-problems) Solve one

More information

2.1 Quadraticsnts.notebook. September 10, 2018

2.1 Quadraticsnts.notebook. September 10, 2018 1 A quadratic function is a polynomial function of second degree. The graph of a quadratic function is called a parabola. 2 Standard Form: Intercept Form: Vertex Form: f(x) = a(x h) 2 + k vertex: (h, k)

More information

NAG Fortran Library Routine Document C05PBF.1

NAG Fortran Library Routine Document C05PBF.1 C05 Roots of One or More Transcendental Equations NAG Fortran Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of

More information

Introduction to Programming for Engineers Spring Final Examination. May 10, Questions, 170 minutes

Introduction to Programming for Engineers Spring Final Examination. May 10, Questions, 170 minutes Final Examination May 10, 2011 75 Questions, 170 minutes Notes: 1. Before you begin, please check that your exam has 28 pages (including this one). 2. Write your name and student ID number clearly on your

More information

HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS

HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS NABEEL AL-MILLI Financial and Business Administration and Computer Science Department Zarqa University College Al-Balqa'

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

The WENO Method in the Context of Earlier Methods To approximate, in a physically correct way, [3] the solution to a conservation law of the form u t

The WENO Method in the Context of Earlier Methods To approximate, in a physically correct way, [3] the solution to a conservation law of the form u t An implicit WENO scheme for steady-state computation of scalar hyperbolic equations Sigal Gottlieb Mathematics Department University of Massachusetts at Dartmouth 85 Old Westport Road North Dartmouth,

More information

Diffuse Optical Tomography, Inverse Problems, and Optimization. Mary Katherine Huffman. Undergraduate Research Fall 2011 Spring 2012

Diffuse Optical Tomography, Inverse Problems, and Optimization. Mary Katherine Huffman. Undergraduate Research Fall 2011 Spring 2012 Diffuse Optical Tomography, Inverse Problems, and Optimization Mary Katherine Huffman Undergraduate Research Fall 11 Spring 12 1. Introduction. This paper discusses research conducted in order to investigate

More information

Super Matrix Solver-P-ICCG:

Super Matrix Solver-P-ICCG: Super Matrix Solver-P-ICCG: February 2011 VINAS Co., Ltd. Project Development Dept. URL: http://www.vinas.com All trademarks and trade names in this document are properties of their respective owners.

More information

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss ICRA 2016 Tutorial on SLAM Graph-Based SLAM and Sparsity Cyrill Stachniss 1 Graph-Based SLAM?? 2 Graph-Based SLAM?? SLAM = simultaneous localization and mapping 3 Graph-Based SLAM?? SLAM = simultaneous

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Numerical Methods Lecture 7 - Optimization

Numerical Methods Lecture 7 - Optimization Numerical Methods Lecture 7 - Optimization Topics: numerical optimization - Newton again - Random search - Golden Section Search READING : text pgs. 331-349 Optimization - motivation What? Locating where

More information

Appendix C Mathcad Tutorial

Appendix C Mathcad Tutorial Appendix C Mathcad Tutorial The following tutorial was extracted from Mathcad ver. 11. (with permission). The areas covered include fundamental math operations (Figs. C.1-C.16), plotting (Figs. C.17-C.18),

More information

3D pyramid interpolation

3D pyramid interpolation 3D pyramid interpolation Xukai Shen ABSTRACT Seismic data geometries are not always as nice and regular as we want due to various acquisition constraints. In such cases, data interpolation becomes necessary.

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 1: Interpreting Structure in Expressions Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 1: Interpreting Structure in Expressions Instruction Prerequisite Skills This lesson requires the use of the following skills: translating verbal expressions to algebraic expressions evaluating expressions following the order of operations adding and subtracting

More information

3 Nonlinear Regression

3 Nonlinear Regression CSC 4 / CSC D / CSC C 3 Sometimes linear models are not sufficient to capture the real-world phenomena, and thus nonlinear models are necessary. In regression, all such models will have the same basic

More information

INTRODUCTION TO C++ PROGRAM CONTROL. Dept. of Electronic Engineering, NCHU. Original slides are from

INTRODUCTION TO C++ PROGRAM CONTROL. Dept. of Electronic Engineering, NCHU. Original slides are from INTRODUCTION TO C++ PROGRAM CONTROL Original slides are from http://sites.google.com/site/progntut/ Dept. of Electronic Engineering, NCHU Outline 2 Repetition Statement for while do.. while break and continue

More information

STCE. An (more) effective Discrete Adjoint Model for OpenFOAM

STCE. An (more) effective Discrete Adjoint Model for OpenFOAM An (more) effective Discrete Adjoint Model for OpenFOAM Markus Towara, Uwe Naumann Software and Tools for Computational Engineering Science RWTH Aachen University EuroAD 2013, Oxford, 10. December 2013

More information

Module 5.5: nag sym bnd lin sys Symmetric Banded Systems of Linear Equations. Contents

Module 5.5: nag sym bnd lin sys Symmetric Banded Systems of Linear Equations. Contents Module Contents Module 5.5: nag sym bnd lin sys Symmetric Banded Systems of nag sym bnd lin sys provides a procedure for solving real symmetric or complex Hermitian banded systems of linear equations with

More information

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND Student Submission for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany: SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND TESSA UROIĆ Faculty of Mechanical Engineering and Naval Architecture, Ivana

More information

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check Thinkwell s Placement Test 5 Answer Key If you answered 7 or more Test 5 questions correctly, we recommend Thinkwell's Algebra. If you answered fewer than 7 Test 5 questions correctly, we recommend Thinkwell's

More information

2-1 Power and Radical Functions

2-1 Power and Radical Functions Graph and analyze each function. Describe the domain, range, intercepts, end behavior, continuity, and where the function is increasing or decreasing. 35. Evaluate the function for several x-values in

More information

Accelerating Double Precision FEM Simulations with GPUs

Accelerating Double Precision FEM Simulations with GPUs In Proceedings of ASIM 2005-18th Symposium on Simulation Technique, Sept. 2005. Accelerating Double Precision FEM Simulations with GPUs Dominik Göddeke dominik.goeddeke@math.uni-dortmund.de Universität

More information

ME 121 Gerald Recktenwald Portland State University

ME 121 Gerald Recktenwald Portland State University Arduino Programming Part 7: Flow charts and Top-down design ME 121 Gerald Recktenwald Portland State University gerry@me.pdx.edu Goals Introduce flow charts A tool for developing algorithms A tool for

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 17: The Simplex Method Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 10, 2010 Frazzoli (MIT)

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

13. Learning Ballistic Movementsof a Robot Arm 212

13. Learning Ballistic Movementsof a Robot Arm 212 13. Learning Ballistic Movementsof a Robot Arm 212 13. LEARNING BALLISTIC MOVEMENTS OF A ROBOT ARM 13.1 Problem and Model Approach After a sufficiently long training phase, the network described in the

More information

EGR 111 Loops. This lab is an introduction to loops, which allow MATLAB to repeat commands a certain number of times.

EGR 111 Loops. This lab is an introduction to loops, which allow MATLAB to repeat commands a certain number of times. EGR 111 Loops This lab is an introduction to loops, which allow MATLAB to repeat commands a certain number of times. New MATLAB commands: for, while,, length 1. The For Loop Suppose we want print a statement

More information

Chemical Engineering 541

Chemical Engineering 541 Chemical Engineering 541 Computer Aided Design Methods Direct Solution of Linear Systems 1 Outline 2 Gauss Elimination Pivoting Scaling Cost LU Decomposition Thomas Algorithm (Iterative Improvement) Overview

More information

MATLAB for MAPH 3071 Lab 2

MATLAB for MAPH 3071 Lab 2 MATLAB for MAPH 3071 Lab 2 1. Iteration Method - Continued We have looked at for loops as a control structure. We will now introduce more ways to control iterations. While Loops: MATLAB provides another

More information

Chapter 14: Matrix Iterative Methods

Chapter 14: Matrix Iterative Methods Chapter 14: Matrix Iterative Methods 14.1INTRODUCTION AND OBJECTIVES This chapter discusses how to solve linear systems of equations using iterative methods and it may be skipped on a first reading of

More information

Numerical Computing: An Introduction

Numerical Computing: An Introduction Numerical Computing: An Introduction Gyula Horváth Horvath@inf.u-szeged.hu Tom Verhoeff T.Verhoeff@TUE.NL University of Szeged Hungary Eindhoven University of Technology The Netherlands Numerical Computing

More information

Lab 2: Support vector machines

Lab 2: Support vector machines Artificial neural networks, advanced course, 2D1433 Lab 2: Support vector machines Martin Rehn For the course given in 2006 All files referenced below may be found in the following directory: /info/annfk06/labs/lab2

More information

Adaptive-Mesh-Refinement Pattern

Adaptive-Mesh-Refinement Pattern Adaptive-Mesh-Refinement Pattern I. Problem Data-parallelism is exposed on a geometric mesh structure (either irregular or regular), where each point iteratively communicates with nearby neighboring points

More information

Organizing and Debugging Matlab Programs

Organizing and Debugging Matlab Programs Organizing and Debugging Matlab Programs Gerald Recktenwald Portland State University Department of Mechanical Engineering These slides are a supplement to the book Numerical Methods with Matlab: Implementations

More information

Global Minimization via Piecewise-Linear Underestimation

Global Minimization via Piecewise-Linear Underestimation Journal of Global Optimization,, 1 9 (2004) c 2004 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Global Minimization via Piecewise-Linear Underestimation O. L. MANGASARIAN olvi@cs.wisc.edu

More information

3 Nonlinear Regression

3 Nonlinear Regression 3 Linear models are often insufficient to capture the real-world phenomena. That is, the relation between the inputs and the outputs we want to be able to predict are not linear. As a consequence, nonlinear

More information

Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope

Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope https://www.youtube.com/watch?v=avs6c6_kvxm Direct Variation

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 1 Scientific Computing Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Application of Genetic Algorithms to CFD. Cameron McCartney

Application of Genetic Algorithms to CFD. Cameron McCartney Application of Genetic Algorithms to CFD Cameron McCartney Introduction define and describe genetic algorithms (GAs) and genetic programming (GP) propose possible applications of GA/GP to CFD Application

More information

MATHEMATICAL ANALYSIS, MODELING AND OPTIMIZATION OF COMPLEX HEAT TRANSFER PROCESSES

MATHEMATICAL ANALYSIS, MODELING AND OPTIMIZATION OF COMPLEX HEAT TRANSFER PROCESSES MATHEMATICAL ANALYSIS, MODELING AND OPTIMIZATION OF COMPLEX HEAT TRANSFER PROCESSES Goals of research Dr. Uldis Raitums, Dr. Kārlis Birģelis To develop and investigate mathematical properties of algorithms

More information

Introduction to Matlab

Introduction to Matlab Introduction to Matlab Andreas C. Kapourani (Credit: Steve Renals & Iain Murray) 9 January 08 Introduction MATLAB is a programming language that grew out of the need to process matrices. It is used extensively

More information

3 Interior Point Method

3 Interior Point Method 3 Interior Point Method Linear programming (LP) is one of the most useful mathematical techniques. Recent advances in computer technology and algorithms have improved computational speed by several orders

More information