f xx + f yy = F (x, y)

Size: px
Start display at page:

Download "f xx + f yy = F (x, y)"

Transcription

1 Application of the 2D finite element method to Laplace (Poisson) equation; f xx + f yy = F (x, y) M. R. Hadizadeh Computer Club, Department of Physics and Astronomy, Ohio University 4 Nov. 2013

2 Domain discretization Global solution domain: D(x, y) discretization : Rectangular Triangular... 2D rectangular elements: I nodes for x domain J nodes for y domain total # of elements: (I 1) (J 1) element (i, j) starts at node i, j and ends at node i + 1, j + 1 The grid steps: x and y

3 Interpolating polynomials An approximating solution: interpolation polynomials Exact solution can be approximated by approximate solution f (x, y): a sum of a series of interpolating polynomials f (i,j) (x, y), i = 1, 2,..., I 1; j = 1, 2,..., J 1: f (i,j) (x, y): linear interpolating polynomials f 1, f 2, f 3, f 4 : values of f (x, nodes 1,2,3,4 N 1, N 2, N 3, N 4 : shape nodes 1,2,3,4 node (i, j) is set to (0, 0): labeled 1 3 other neighbor nodes (i + 1, j), (i + 1, j + 1) and (i, j + 1) are labeled 2, 3, 4

4 Shape functions: Ni(x,y) N i (x, y) = a 0 + a 1 x + a 2 ȳ + a 3 xȳ x = x/ x, ȳ = y/ y 1 for node i N i (x, y) = 0 for other three nodes j i Example:

5 Shape functions Solution of a system of linear equations for N 1, N 2, N 3, N 4 : Interpolating polynomial for a rectangular element:

6 The Galerkin weighted residual approach Substituting approximate solution f (x, y), given by interpolating polynomials, in Laplace (Poisson) equation gives the residual R(x, y): The residual R(x, y) is multiplied by a set of weighting functions W k (x, y), k = 1, 2,..., and integrated over the global solution domain D(x, y) to obtain the weighted residual integral I (f (x, y)), which is equated to zero. For a general weighting function W (x, y): Integration by parts for first two terms:

7 The Galerkin weighted residual approach The first two terms can be transformed by Stokes theorem: B: outer boundary of the global solution domain D(x, y) n x and n y : components of the unit normal vector to the outer boundary n By considering the definition of flux of f (x, y) crossing the outer boundary B: leads to:

8 The Galerkin weighted residual approach By considering the discretized global solution domain, the weighted residual integral I (f (x, y)) can be written as: where W (x, y): weight function; it is yet unspecified f (x, y): approximate solution given by interpolating polynomial

9 The Galerkin weighted residual approach In the Galerkin weighted residual approach, the weighting factors W k (x, y), k = 1, 2, 3, 4, are chosen to be the shape functions N i (x, y), i = 1, 2, 3, 4. Example: W 1 (x, y)

10 The Galerkin weighted residual approach The weighted residual integral I (f (x, y)) for W 1 (x, y): x = x/ x dx = x d x ȳ = y/ y dy = y dȳ In the following we evaluate the inner and outer integrals.

11 The Galerkin weighted residual approach Evaluation of inner integral and then integrating on x:

12 The Galerkin weighted residual approach Final form of inner integral: Substitution in the weighted residual integral I (f (x, y)):

13 The Galerkin weighted residual approach By following similar steps for outer integral on ȳ: leads to:

14 The Galerkin weighted residual approach Similar derivation for W 2 = N 2, W 3 = N 3 and W 4 = N 4 : So, we have 4 equations for weighted residual integral I (f (x, y)) = 0, corresponding to weight factors W 1 (x, y), W 2 (x, y), W 3 (x, y), W 4 (x, y) equal to shape functions N 1 (x, y), N 2 (x, y), N 3 (x, y) and N 4 (x, y), related to position of each node (i, j) which was labeled by 1 and its three neighbors labeled by 2, 3 and 4.

15 The Galerkin weighted residual approach Summary: 1 W 1 (x, y) = N 1 (x, y) I 1 (f (x, y)) = 0 2 W Rect. element (i, j) = 2 (x, y) = N 2 (x, y) I 2 (f (x, y)) = 0 3 W 3 (x, y) = N 3 (x, y) I 3 (f (x, y)) = 0 4 W 4 (x, y) = N 4 (x, y) I 4 (f (x, y)) = 0 Challenge; The node (i, j) which is set to (0, 0) in rectangular element, is in general situation common between 3 other neighbor rectangular elements!

16 The Galerkin weighted residual approach Next step: assembled nodal equation for node i, j, labeled 0, by combining all of the element equations I i (x, y), i = 1, 2, 3, 4 for surrounded elements (1), (2), (3) and (4), respectively, which correspond to shape functions associated with node 0. Figure 12.16a illustrates the basic element used to derive I i (x, y). (1) I 3 (x, y) x, y = 0 (2) I 4 (x, y) x+, y = 0 (3) I 1 (x, y) x+, y + = 0 (4) I 2 (x, y) x, y = 0 + node 0 in element (1) corresponds to node 3 in basic element node 0 in element (2) corresponds to node 4 in basic element node 0 in element (3) corresponds to node 1 in basic element node 0 in element (4) corresponds to node 2 in basic element

17 The Galerkin weighted residual approach

18 The Galerkin weighted residual approach Summing all 4 terms nodal equation for node 0:

19 The Galerkin weighted residual approach Nine-point finite element approximation: (Nodal equation for node 0) x = x + = x ; y = y + = y x = y = L; F = constant

20 Application to Laplace (Poisson) Equation

21 Example: heat transfer problem A thin conductor plate width: w = 10 cm height: h = 15 cm thickness: t = 1 cm 100 sin( πx w ) y = h T (x, y) = 0 other edges A copper alloy conductor width: w = 1 cm height: h = 1.5 cm internal energy generation: T (x, y) = 0 ; four sides Q k = 1000 C cm 2

22 Example: heat transfer problem; exact solution

23 Example: heat transfer problem; exact solution

24 Solution by Finite Difference Solution

25 Example: heat transfer problem; finite difference solution Taylor series: β = x y β = 1

26 Example: heat transfer problem; finite difference solution Discretization and using 5-point approximation: A system of linear equations: AT = B

27 Example: heat transfer problem; finite difference solution Number of linear equations: (N x 2) (N y 2)

28 Example: heat transfer problem; finite difference solution Comparison between FD results and exact solutions:

29 Solution by Iterative Methods; The Gauss-Seidel Method

30 Gauss-Seidel Method Five-point finite difference approximation: The Gauss-Seidel method applied to finite difference approximation of the Laplace equation by adding and subtracting the term f ij to above 5 point approximation and rearranging as follows: Subscript k(0, 1, 2,...); iteration number f k+1 ij : residual in the relation method choices for starting the iteration: k = 0 1 f i,j = 0 for all interior points 2 approximate f i,j by some weighted average of the boundary values 3 construct a solution on a coarser grid, then interpolate for starting values on a finer grid.

31 Gauss-Seidel Method Various convergence criteria: ɛ is convergence tolerance For each iteration we need to solve a system of linear equations: k = 0 : initial guess F (0) A F (1) = B A F (2) = B...

32 Example: Gauss-Seidel method for heat diffusion problem Convergence with tolerance is reached after 40 iterations.

33 Solution by Iterative Methods; The Successive-Over-Relaxation (SOR) Method

34 The Successive-Over-Relaxation (SOR) Method The Convergence rate of the Gauss-Seidel relaxation method can be greatly increased by using over-relaxation factor ω as following: The optimum value of over-relation factor ω opt for a rectangular region with Dirichlet boundary condition: I = i max 1, J = j max 1

35 Example: SOR method for heat diffusion problem Convergence with tolerance is reached after 20 iterations.

36 Solution by Finite Element Method; and by using SOR Method

37 Example: FEM and SOR for heat diffusion problem Nine-point finite element approximation for heat diffusion problem: Application of SOR:

38 Example: FEM and SOR for heat diffusion problem; Laplace equation Larger error in comparison to FD method with 5-point approximation!

39 Example: FEM and SOR for heat diffusion problem; Poisson equation Larger error in comparison to FD method with 5-point approximation!

40 Summary Different methods are used to solve Laplace (Poisson) equation 1 Finite Element (FE): 9-point approximation 2 Finite Difference (FD): 5-point approximation FE method with 9-point approximation has about 10% larger error than FD method with 5-point approximation! Iterative techniques are used to improve the accuracy 1 Gauss-Seidel (GS): convergence with tolerance 10 8 after 40 iterations 2 Successive-Over-Relaxation (SOR): convergence with tolerance after 20 iterations SOR leads to much more faster convergence with smaller tolerance. By half iterations than GS, SOR reach even better convergence.

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2

Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2 Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2 Jingwei Zhu March 19, 2014 Instructor: Surya Pratap Vanka 1 Project Description The purpose of this

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001)

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001) An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (000/001) Summary The objectives of this project were as follows: 1) Investigate iterative

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Numerical Algorithms

Numerical Algorithms Chapter 10 Slide 464 Numerical Algorithms Slide 465 Numerical Algorithms In textbook do: Matrix multiplication Solving a system of linear equations Slide 466 Matrices A Review An n m matrix Column a 0,0

More information

Set No. 1 IV B.Tech. I Semester Regular Examinations, November 2010 FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

2 T. x + 2 T. , T( x, y = 0) = T 1

2 T. x + 2 T. , T( x, y = 0) = T 1 LAB 2: Conduction with Finite Difference Method Objective: The objective of this laboratory is to introduce the basic steps needed to numerically solve a steady state two-dimensional conduction problem

More information

PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Ioana Chiorean

PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Ioana Chiorean 5 Kragujevac J. Math. 25 (2003) 5 18. PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS Ioana Chiorean Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania (Received May 28,

More information

Numerical Modelling in Fortran: day 6. Paul Tackley, 2017

Numerical Modelling in Fortran: day 6. Paul Tackley, 2017 Numerical Modelling in Fortran: day 6 Paul Tackley, 2017 Today s Goals 1. Learn about pointers, generic procedures and operators 2. Learn about iterative solvers for boundary value problems, including

More information

1 Exercise: Heat equation in 2-D with FE

1 Exercise: Heat equation in 2-D with FE 1 Exercise: Heat equation in 2-D with FE Reading Hughes (2000, sec. 2.3-2.6 Dabrowski et al. (2008, sec. 1-3, 4.1.1, 4.1.3, 4.2.1 This FE exercise and most of the following ones are based on the MILAMIN

More information

A numerical grid and grid less (Mesh less) techniques for the solution of 2D Laplace equation

A numerical grid and grid less (Mesh less) techniques for the solution of 2D Laplace equation Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2014, 5(1):150-155 ISSN: 0976-8610 CODEN (USA): AASRFC A numerical grid and grid less (Mesh less) techniques for

More information

Recent developments for the multigrid scheme of the DLR TAU-Code

Recent developments for the multigrid scheme of the DLR TAU-Code www.dlr.de Chart 1 > 21st NIA CFD Seminar > Axel Schwöppe Recent development s for the multigrid scheme of the DLR TAU-Code > Apr 11, 2013 Recent developments for the multigrid scheme of the DLR TAU-Code

More information

1 Exercise: 1-D heat conduction with finite elements

1 Exercise: 1-D heat conduction with finite elements 1 Exercise: 1-D heat conduction with finite elements Reading This finite element example is based on Hughes (2000, sec. 1.1-1.15. 1.1 Implementation of the 1-D heat equation example In the previous two

More information

Foundations of Analytical and Numerical Field Computation

Foundations of Analytical and Numerical Field Computation Foundations of Analytical and Numerical Field Computation Stephan Russenschuck, CERN-AT-MEL Stephan Russenschuck CERN, TE-MCS, 1211 Geneva, Switzerland 1 Permanent Magnet Circuits 2 Rogowski profiles Pole

More information

Iterative Methods for Linear Systems

Iterative Methods for Linear Systems Iterative Methods for Linear Systems 1 the method of Jacobi derivation of the formulas cost and convergence of the algorithm a Julia function 2 Gauss-Seidel Relaxation an iterative method for solving linear

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

Chapter 13. Boundary Value Problems for Partial Differential Equations* Linz 2002/ page

Chapter 13. Boundary Value Problems for Partial Differential Equations* Linz 2002/ page Chapter 13 Boundary Value Problems for Partial Differential Equations* E lliptic equations constitute the third category of partial differential equations. As a prototype, we take the Poisson equation

More information

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear.

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear. AMSC 600/CMSC 760 Fall 2007 Solution of Sparse Linear Systems Multigrid, Part 1 Dianne P. O Leary c 2006, 2007 What is Multigrid? Originally, multigrid algorithms were proposed as an iterative method to

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

Accelerating Double Precision FEM Simulations with GPUs

Accelerating Double Precision FEM Simulations with GPUs Accelerating Double Precision FEM Simulations with GPUs Dominik Göddeke 1 3 Robert Strzodka 2 Stefan Turek 1 dominik.goeddeke@math.uni-dortmund.de 1 Mathematics III: Applied Mathematics and Numerics, University

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet Contents 2 F10: Parallel Sparse Matrix Computations Figures mainly from Kumar et. al. Introduction to Parallel Computing, 1st ed Chap. 11 Bo Kågström et al (RG, EE, MR) 2011-05-10 Sparse matrices and storage

More information

AMath 483/583 Lecture 24. Notes: Notes: Steady state diffusion. Notes: Finite difference method. Outline:

AMath 483/583 Lecture 24. Notes: Notes: Steady state diffusion. Notes: Finite difference method. Outline: AMath 483/583 Lecture 24 Outline: Heat equation and discretization OpenMP and MPI for iterative methods Jacobi, Gauss-Seidel, SOR Notes and Sample codes: Class notes: Linear algebra software $UWHPSC/codes/openmp/jacobi1d_omp1.f90

More information

AMath 483/583 Lecture 24

AMath 483/583 Lecture 24 AMath 483/583 Lecture 24 Outline: Heat equation and discretization OpenMP and MPI for iterative methods Jacobi, Gauss-Seidel, SOR Notes and Sample codes: Class notes: Linear algebra software $UWHPSC/codes/openmp/jacobi1d_omp1.f90

More information

Math 113 Exam 1 Practice

Math 113 Exam 1 Practice Math Exam Practice January 6, 00 Exam will cover sections 6.-6.5 and 7.-7.5 This sheet has three sections. The first section will remind you about techniques and formulas that you should know. The second

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 36 In last class, we have derived element equations for two d elasticity problems

More information

The Finite Element Method

The Finite Element Method The Finite Element Method A Practical Course G. R. Liu and S. S. Quek Chapter 1: Computational modeling An overview 1 CONTENTS INTRODUCTION PHYSICAL PROBLEMS IN ENGINEERING COMPUTATIONAL MODELLING USING

More information

Semester Final Report

Semester Final Report CSUMS SemesterFinalReport InLaTex AnnKimball 5/20/2009 ThisreportisageneralsummaryoftheaccumulationofknowledgethatIhavegatheredthroughoutthis semester. I was able to get a birds eye view of many different

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

APPROXIMATING PDE s IN L 1

APPROXIMATING PDE s IN L 1 APPROXIMATING PDE s IN L 1 Veselin Dobrev Jean-Luc Guermond Bojan Popov Department of Mathematics Texas A&M University NONLINEAR APPROXIMATION TECHNIQUES USING L 1 Texas A&M May 16-18, 2008 Outline 1 Outline

More information

lecture 8 Groundwater Modelling -1

lecture 8 Groundwater Modelling -1 The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Water Resources Msc. Groundwater Hydrology- ENGC 6301 lecture 8 Groundwater Modelling -1 Instructor: Dr. Yunes Mogheir

More information

Both equations are solved using a finite differences (iterative relaxation) method, which takes some time to converge.

Both equations are solved using a finite differences (iterative relaxation) method, which takes some time to converge. WEIGHTFIELD 2D Silicon Strip Detector Simulation V0.04 14 November 2011 markus.friedl@oeaw.ac.at Abstract WEIGHTFIELD is a program that allows simulating a silicon strip detector in two dimensions (crosssection).

More information

From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids

From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids Preprint accepted in Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2018.06.019 From Hyperbolic Diffusion Scheme to Gradient Method: Implicit Green-Gauss Gradients for Unstructured Grids

More information

A GPU Parallel Finite Volume Method for a 3D Poisson Equation on Arbitrary Geometries

A GPU Parallel Finite Volume Method for a 3D Poisson Equation on Arbitrary Geometries International Journal of Combinatorial Optimization Problems and Informatics, Vol. 9, No. 1, Jan-April 2018, pp. 3-11. ISSN: 2007-1558. A GPU Parallel Finite Volume Method for a 3D Poisson Equation on

More information

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Finite Element Method. Chapter 7. Practical considerations in FEM modeling Finite Element Method Chapter 7 Practical considerations in FEM modeling Finite Element Modeling General Consideration The following are some of the difficult tasks (or decisions) that face the engineer

More information

Adaptivity For Meshfree Point Collocation Methods In Linear Elastic Solid Mechanics

Adaptivity For Meshfree Point Collocation Methods In Linear Elastic Solid Mechanics University of South Carolina Scholar Commons Theses and Dissertations 2015 Adaptivity For Meshfree Point Collocation Methods In Linear Elastic Solid Mechanics Joshua Wayne Derrick University of South Carolina

More information

Computational Fluid Dynamics (CFD) using Graphics Processing Units

Computational Fluid Dynamics (CFD) using Graphics Processing Units Computational Fluid Dynamics (CFD) using Graphics Processing Units Aaron F. Shinn Mechanical Science and Engineering Dept., UIUC Accelerators for Science and Engineering Applications: GPUs and Multicores

More information

Lab - Introduction to Finite Element Methods and MATLAB s PDEtoolbox

Lab - Introduction to Finite Element Methods and MATLAB s PDEtoolbox Scientific Computing III 1 (15) Institutionen för informationsteknologi Beräkningsvetenskap Besöksadress: ITC hus 2, Polacksbacken Lägerhyddsvägen 2 Postadress: Box 337 751 05 Uppsala Telefon: 018 471

More information

Cubic B-spline Solution of Two-point Boundary Value Problem Using HSKSOR Iteration

Cubic B-spline Solution of Two-point Boundary Value Problem Using HSKSOR Iteration Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 11 (2017), pp. 7921-7934 Research India Publications http://www.ripublication.com Cubic B-spline Solution of Two-point Boundary

More information

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms By:- Nitin Kamra Indian Institute of Technology, Delhi Advisor:- Prof. Ulrich Reude 1. Introduction to Linear

More information

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling CIVL 7/8117 1/43 Chapter 7 Learning Objectives To present concepts that should be considered when modeling for a situation by the finite element method, such as aspect ratio, symmetry, natural subdivisions,

More information

arxiv: v1 [math.na] 20 Sep 2016

arxiv: v1 [math.na] 20 Sep 2016 arxiv:1609.06236v1 [math.na] 20 Sep 2016 A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization P. Gangl 1,2 and U. Langer 3 1 Doctoral Program Comp.

More information

MODELING MIXED BOUNDARY PROBLEMS WITH THE COMPLEX VARIABLE BOUNDARY ELEMENT METHOD (CVBEM) USING MATLAB AND MATHEMATICA

MODELING MIXED BOUNDARY PROBLEMS WITH THE COMPLEX VARIABLE BOUNDARY ELEMENT METHOD (CVBEM) USING MATLAB AND MATHEMATICA A. N. Johnson et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 3, No. 3 (2015) 269 278 MODELING MIXED BOUNDARY PROBLEMS WITH THE COMPLEX VARIABLE BOUNDARY ELEMENT METHOD (CVBEM) USING MATLAB AND MATHEMATICA

More information

Barycentric Finite Element Methods

Barycentric Finite Element Methods University of California, Davis Barycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing November 8, 2007 Collaborators and Acknowledgements

More information

Path Planning for Indoor Mobile Robot using Half-Sweep SOR via Nine-Point Laplacian (HSSOR9L)

Path Planning for Indoor Mobile Robot using Half-Sweep SOR via Nine-Point Laplacian (HSSOR9L) IOSR Journal of Mathematics (IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 2 (Sep-Oct. 2012), PP 01-07 Path Planning for Indoor Mobile Robot using Half-Sweep SOR via Nine-Point Laplacian (HSSOR9L) Azali Saudi

More information

AMath 483/583 Lecture 21 May 13, 2011

AMath 483/583 Lecture 21 May 13, 2011 AMath 483/583 Lecture 21 May 13, 2011 Today: OpenMP and MPI versions of Jacobi iteration Gauss-Seidel and SOR iterative methods Next week: More MPI Debugging and totalview GPU computing Read: Class notes

More information

Introduction to Finite Element Analysis using ANSYS

Introduction to Finite Element Analysis using ANSYS Introduction to Finite Element Analysis using ANSYS Sasi Kumar Tippabhotla PhD Candidate Xtreme Photovoltaics (XPV) Lab EPD, SUTD Disclaimer: The material and simulations (using Ansys student version)

More information

Numerical Methods to Solve 2-D and 3-D Elliptic Partial Differential Equations Using Matlab on the Cluster maya

Numerical Methods to Solve 2-D and 3-D Elliptic Partial Differential Equations Using Matlab on the Cluster maya Numerical Methods to Solve 2-D and 3-D Elliptic Partial Differential Equations Using Matlab on the Cluster maya David Stonko, Samuel Khuvis, and Matthias K. Gobbert (gobbert@umbc.edu) Department of Mathematics

More information

Section 17.7: Surface Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 4 Lecture. 4.1 Riemann definition

Section 17.7: Surface Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 4 Lecture. 4.1 Riemann definition ection 17.7: urface Integrals 1 Objectives 1. Compute surface integrals of function of three variables. Assignments 1. Read ection 17.7. Problems: 5,7,11,1 3. Challenge: 17,3 4. Read ection 17.4 3 Maple

More information

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities Ben Grier Clemson University Richard Figliola, Larry

More information

Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models. David M. Trujillo 1. December 2005

Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models. David M. Trujillo 1. December 2005 Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models by David M. Trujillo 1 December 2005 1 Consultant, TRUCOMP, Fountain Valley, California trucomp@earthlink.net Abstract

More information

MODELLING-Representing space and time in a numerical model

MODELLING-Representing space and time in a numerical model MODELLING-Representing space and time in a numerical model Simulation parameters When setting up any simulation, whether computer-based or to be computed manually, it is important to identify the parameters

More information

Lesson 21: Surface Area

Lesson 21: Surface Area Lesson 21: Surface Area Classwork Opening Exercise: Surface Area of a Right Rectangular Prism On the provided grid, draw a net representing the surfaces of the right rectangular prism (assume each grid

More information

Literature Report. Daniël Pols. 23 May 2018

Literature Report. Daniël Pols. 23 May 2018 Literature Report Daniël Pols 23 May 2018 Applications Two-phase flow model The evolution of the momentum field in a two phase flow problem is given by the Navier-Stokes equations: u t + u u = 1 ρ p +

More information

Finite Element Methods for the Poisson Equation and its Applications

Finite Element Methods for the Poisson Equation and its Applications Finite Element Methods for the Poisson Equation and its Applications Charles Crook July 30, 2013 Abstract The finite element method is a fast computational method that also has a solid mathematical theory

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 20: Sparse Linear Systems; Direct Methods vs. Iterative Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 26

More information

Stopping Criteria for Iterative Solution to Linear Systems of Equations

Stopping Criteria for Iterative Solution to Linear Systems of Equations Stopping Criteria for Iterative Solution to Linear Systems of Equations Gerald Recktenwald Portland State University Mechanical Engineering Department gerry@me.pdx.edu Iterative Methods: High-level view

More information

Galerkin Projections Between Finite Element Spaces

Galerkin Projections Between Finite Element Spaces Galerkin Projections Between Finite Element Spaces Ross A. Thompson Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

A node-based agglomeration AMG solver for linear elasticity in thin bodies

A node-based agglomeration AMG solver for linear elasticity in thin bodies COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2000; 00:1 6 [Version: 2002/09/18 v1.02] A node-based agglomeration AMG solver for linear elasticity in thin bodies Prasad

More information

10.7 Triple Integrals. The Divergence Theorem of Gauss

10.7 Triple Integrals. The Divergence Theorem of Gauss 10.7 riple Integrals. he Divergence heorem of Gauss We begin by recalling the definition of the triple integral f (x, y, z) dv, (1) where is a bounded, solid region in R 3 (for example the solid ball {(x,

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

Section 7.2 Volume: The Disk Method

Section 7.2 Volume: The Disk Method Section 7. Volume: The Disk Method White Board Challenge Find the volume of the following cylinder: No Calculator 6 ft 1 ft V 3 1 108 339.9 ft 3 White Board Challenge Calculate the volume V of the solid

More information

Parallel Implementations of Gaussian Elimination

Parallel Implementations of Gaussian Elimination s of Western Michigan University vasilije.perovic@wmich.edu January 27, 2012 CS 6260: in Parallel Linear systems of equations General form of a linear system of equations is given by a 11 x 1 + + a 1n

More information

Commutative filters for LES on unstructured meshes

Commutative filters for LES on unstructured meshes Center for Turbulence Research Annual Research Briefs 1999 389 Commutative filters for LES on unstructured meshes By Alison L. Marsden AND Oleg V. Vasilyev 1 Motivation and objectives Application of large

More information

Adaptive numerical methods

Adaptive numerical methods METRO MEtallurgical TRaining On-line Adaptive numerical methods Arkadiusz Nagórka CzUT Education and Culture Introduction Common steps of finite element computations consists of preprocessing - definition

More information

High Performance Computing: Tools and Applications

High Performance Computing: Tools and Applications High Performance Computing: Tools and Applications Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology Lecture 15 Numerically solve a 2D boundary value problem Example:

More information

Finite element solution of multi-scale transport problems using the least squares based bubble function enrichment

Finite element solution of multi-scale transport problems using the least squares based bubble function enrichment Finite element solution of multi-scale transport problems using the least squares based bubble function enrichment A. Yazdani a, V. Nassehi b1 a Cranfield University, School of Applied Sciences, Cranfield,

More information

Efficiency of adaptive mesh algorithms

Efficiency of adaptive mesh algorithms Efficiency of adaptive mesh algorithms 23.11.2012 Jörn Behrens KlimaCampus, Universität Hamburg http://www.katrina.noaa.gov/satellite/images/katrina-08-28-2005-1545z.jpg Model for adaptive efficiency 10

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends Imagine stream processor; Bill Dally, Stanford Connection Machine CM; Thinking Machines Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid Jeffrey Bolz Eitan Grinspun Caltech Ian Farmer

More information

A node-based agglomeration AMG solver for linear elasticity in thin bodies

A node-based agglomeration AMG solver for linear elasticity in thin bodies COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2009; 25:219 236 Published online 3 April 2008 in Wiley InterScience (www.interscience.wiley.com)..1116 A node-based agglomeration

More information

An Upwind Multigrid Method for Solving Viscous Flows on Unstructured Triangular Meshes

An Upwind Multigrid Method for Solving Viscous Flows on Unstructured Triangular Meshes An Upwind Multigrid Method for Solving Viscous Flows on Unstructured Triangular Meshes by Daryl Lawrence Bonhaus B.S. June 1990, University of Cincinnati A Thesis submitted to The Faculty of The School

More information

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17 Bibliography [1] J. Adams, P. Swarztrauber, and R. Sweet. Fishpack: Efficient Fortran subprograms for the solution of separable elliptic partial differential equations. http://www.netlib.org/fishpack/.

More information

Barycentric Finite Element Methods

Barycentric Finite Element Methods University of California, Davis Barycentric Finite Element Methods N. Sukumar UC Davis Workshop on Generalized Barycentric Coordinates, Columbia University July 26, 2012 Collaborators and Acknowledgements

More information

Performance Comparison between Blocking and Non-Blocking Communications for a Three-Dimensional Poisson Problem

Performance Comparison between Blocking and Non-Blocking Communications for a Three-Dimensional Poisson Problem Performance Comparison between Blocking and Non-Blocking Communications for a Three-Dimensional Poisson Problem Guan Wang and Matthias K. Gobbert Department of Mathematics and Statistics, University of

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

Performance Studies for the Two-Dimensional Poisson Problem Discretized by Finite Differences

Performance Studies for the Two-Dimensional Poisson Problem Discretized by Finite Differences Performance Studies for the Two-Dimensional Poisson Problem Discretized by Finite Differences Jonas Schäfer Fachbereich für Mathematik und Naturwissenschaften, Universität Kassel Abstract In many areas,

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

FINITE ELEMENT SOLUTION OF NAVIER-STOKES EQUATIONS USING KRYLOV SUBSPACE METHODS

FINITE ELEMENT SOLUTION OF NAVIER-STOKES EQUATIONS USING KRYLOV SUBSPACE METHODS HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 2014 Orlando, Florida FINITE ELEMENT SOLUTION OF NAVIER-STOKES EQUATIONS USING KRYLOV SUBSPACE METHODS

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume, 2, pp. 92. Copyright 2,. ISSN 68-963. ETNA BEHAVIOR OF PLANE RELAXATION METHODS AS MULTIGRID SMOOTHERS IGNACIO M. LLORENTE AND N. DUANE MELSON Abstract.

More information

Parallel Computing. Parallel Algorithm Design

Parallel Computing. Parallel Algorithm Design Parallel Computing Parallel Algorithm Design Task/Channel Model Parallel computation = set of tasks Task Program Local memory Collection of I/O ports Tasks interact by sending messages through channels

More information

A higher-order finite volume method with collocated grid arrangement for incompressible flows

A higher-order finite volume method with collocated grid arrangement for incompressible flows Computational Methods and Experimental Measurements XVII 109 A higher-order finite volume method with collocated grid arrangement for incompressible flows L. Ramirez 1, X. Nogueira 1, S. Khelladi 2, J.

More information

The Level Set Method applied to Structural Topology Optimization

The Level Set Method applied to Structural Topology Optimization The Level Set Method applied to Structural Topology Optimization Dr Peter Dunning 22-Jan-2013 Structural Optimization Sizing Optimization Shape Optimization Increasing: No. design variables Opportunity

More information

Distributed NVAMG. Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs

Distributed NVAMG. Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs Distributed NVAMG Design and Implementation of a Scalable Algebraic Multigrid Framework for a Cluster of GPUs Istvan Reguly (istvan.reguly at oerc.ox.ac.uk) Oxford e-research Centre NVIDIA Summer Internship

More information

ENGINEERING TRIPOS PART IIA FINITE ELEMENT METHOD

ENGINEERING TRIPOS PART IIA FINITE ELEMENT METHOD ENGINEERING TRIPOS PART IIA LOCATION: DPO EXPERIMENT 3D7 FINITE ELEMENT METHOD Those who have performed the 3C7 experiment should bring the write-up along to this laboratory Objectives Show that the accuracy

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

Nodal Integration Technique in Meshless Method

Nodal Integration Technique in Meshless Method IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 1 Ver. IV (Feb. 2014), PP 18-26 Nodal Integration Technique in Meshless Method Ahmed MJIDILA

More information

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing Noemi Petra and Matthias K. Gobbert Department of Mathematics and Statistics, University of Maryland, Baltimore

More information

Filters. Advanced and Special Topics: Filters. Filters

Filters. Advanced and Special Topics: Filters. Filters Filters Advanced and Special Topics: Filters Dr. Edmund Lam Department of Electrical and Electronic Engineering The University of Hong Kong ELEC4245: Digital Image Processing (Second Semester, 2016 17)

More information

Volumes of Solids of Revolution

Volumes of Solids of Revolution Volumes of Solids of Revolution Farid Aliniaeifard York University http://math.yorku.ca/ faridanf April 27, 2016 Overview What is a solid of revolution? Method of Rings or Method of Disks Method of Cylindrical

More information

Chapter 6. Petrov-Galerkin Formulations for Advection Diffusion Equation

Chapter 6. Petrov-Galerkin Formulations for Advection Diffusion Equation Chapter 6 Petrov-Galerkin Formulations for Advection Diffusion Equation In this chapter we ll demonstrate the difficulties that arise when GFEM is used for advection (convection) dominated problems. Several

More information

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou Study and implementation of computational methods for Differential Equations in heterogeneous systems Asimina Vouronikoy - Eleni Zisiou Outline Introduction Review of related work Cyclic Reduction Algorithm

More information

Exploring unstructured Poisson solvers for FDS

Exploring unstructured Poisson solvers for FDS Exploring unstructured Poisson solvers for FDS Dr. Susanne Kilian hhpberlin - Ingenieure für Brandschutz 10245 Berlin - Germany Agenda 1 Discretization of Poisson- Löser 2 Solvers for 3 Numerical Tests

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

HPC Fall 2007 Project 3 2D Steady-State Heat Distribution Problem with MPI

HPC Fall 2007 Project 3 2D Steady-State Heat Distribution Problem with MPI HPC Fall 2007 Project 3 2D Steady-State Heat Distribution Problem with MPI Robert van Engelen Due date: December 14, 2007 1 Introduction 1.1 Account and Login Information For this assignment you need an

More information