More Realistic Adversarial Settings. Virginia Tech CS5804 Introduction to Artificial Intelligence Spring 2015

Size: px
Start display at page:

Download "More Realistic Adversarial Settings. Virginia Tech CS5804 Introduction to Artificial Intelligence Spring 2015"

Transcription

1 More Realistic Adversarial Settings Virginia Tech CS5804 Introduction to Artificial Intelligence Spring 2015

2 Review Minimax search How to adjust for more than two agents, for non-zero-sum Analysis very similar to DFS Alpha-beta pruning Analysis?

3 Outline Move ordering Stochastic games (Partially-observable games)

4

5 Max

6 Max Min

7 Max Min

8 Max Min

9 MINIMAX(s) = if TERMINAL-TEST(s) then UTILITY(s) if PLAYER(s) = MAX then max of MINIMAX(RESULT(s,a)) for a in ACTIONS(s) if PLAYER(s) = MIN then min of MINIMAX(RESULT(s,a)) for a in ACTIONS(s)

10 function MINIMAX-DECISION(state) returns an action return arg max a ACTIONS(s) MIN-VALUE(RESULT(state, a)) function MAX-VALUE(state) returns autilityvalue if TERMINAL-TEST(state) then return UTILITY(state) v for each a in ACTIONS(state) do v MAX(v, MIN-VALUE(RESULT(s, a))) return v function MIN-VALUE(state) returns autilityvalue if TERMINAL-TEST(state) then return UTILITY(state) v for each a in ACTIONS(state) do v MIN(v, MAX-VALUE(RESULT(s, a))) return v

11 function ALPHA-BETA-SEARCH(state) returns an action v MAX-VALUE(state,, + ) return the action in ACTIONS(state)withvaluev function MAX-VALUE(state, α, β) returns autilityvalue if TERMINAL-TEST(state) then return UTILITY(state) v for each a in ACTIONS(state) do v MAX(v, MIN-VALUE(RESULT(s,a), α, β)) if v β then return v α MAX(α, v) return v function MIN-VALUE(state, α, β) returns autilityvalue if TERMINAL-TEST(state) then return UTILITY(state) v + for each a in ACTIONS(state) do v MIN(v, MAX-VALUE(RESULT(s,a),α, β)) if v α then return v β MIN(β, v) return v

12

13 Expectimax New player type: Chance Expectinimimax(s) = 8 Utility(s) >< max a Expectiminimax(Result(s, a)) min >: a Expectiminimax(Result(s, a)) P Pr(r)Expectiminimax(Result(s, r)) r if Terminal-Test(s) if Player(s) =Max if Player(s) =Min if Player(s) =Chance

14 MAX CHANCE MIN B 1/36 1,1 1/18 1, /18 1/36 6,5 6,6 CHANCE C... MAX 1/36 1,1 1/18 1,2 1/18 1/36 6,5 6,6... TERMINAL

15 MAX CHANCE MIN B 1/36 1,1 1/18 1, /18 1/36 6,5 6,6 CHANCE C... MAX 1/36 1,1 1/18 1,2 1/18 1/36 6,5 6,6... TERMINAL Expectinimimax(s) = 8 Utility(s) >< max a Expectiminimax(Result(s, a)) min >: a Expectiminimax(Result(s, a)) P Pr(r)Expectiminimax(Result(s, r)) r if Terminal-Test(s) if Player(s) =Max if Player(s) =Min if Player(s) =Chance

16 MAX CHANCE MIN B 1/36 1,1 1/18 1, /18 1/36 6,5 6,6 CHANCE C... MAX 1/36 1,1 1/18 1,2 1/18 1/36 6,5 6,6... TERMINAL Expectinimimax(s) = 8 Utility(s) >< max a Expectiminimax(Result(s, a)) min >: a Expectiminimax(Result(s, a)) P Pr(r)Expectiminimax(Result(s, r)) r if Terminal-Test(s) if Player(s) =Max if Player(s) =Min if Player(s) =Chance

17 Pruning Chance Nodes Bounds on true utility function -> bounds on expectation -10 <= Utility <= 10 uniform probability die:??????

18 Pruning Chance Nodes Bounds on true utility function -> bounds on expectation -10 <= Utility <= 10 uniform probability die: 10?????

19 Pruning Chance Nodes Bounds on true utility function -> bounds on expectation -10 <= Utility <= 10 uniform probability die: 10????? Best case expectation 10

20 Pruning Chance Nodes Bounds on true utility function -> bounds on expectation -10 <= Utility <= 10 uniform probability die: 10????? Best case expectation 10 Worst case expectation -6.67

21 Pruning Chance Nodes Bounds on true utility function -> bounds on expectation -10 <= Utility <= 10 uniform probability die: 10 10????

22 Pruning Chance Nodes Bounds on true utility function -> bounds on expectation -10 <= Utility <= 10 uniform probability die: 10 10???? Best case expectation 10

23 Pruning Chance Nodes Bounds on true utility function -> bounds on expectation -10 <= Utility <= 10 uniform probability die: 10 10???? Best case expectation 10 Worst case expectation -3.33

24 Pruning Chance Nodes Bounds on true utility function -> bounds on expectation -10 <= Utility <= 10 uniform probability die: ???

25 Pruning Chance Nodes Bounds on true utility function -> bounds on expectation -10 <= Utility <= 10 uniform probability die: ??? Best case expectation 6.67

26 Pruning Chance Nodes Bounds on true utility function -> bounds on expectation -10 <= Utility <= 10 uniform probability die: ??? Best case expectation 6.67 Worst case expectation -3.33

27 Monte Carlo Often too expensive to consider all Chance outcomes Randomly sample result on Chance turns

28 Partial Observations One approach: simulate perfect information with Chance nodes

29 Partial Observations One approach: simulate perfect information with Chance nodes

30 Partial Observations One approach: simulate perfect information with Chance nodes

31 Partial Observations One approach: simulate perfect information with Chance nodes 52!

32 Partial Observations One approach: simulate perfect information with Chance nodes 52! ! 3x10 35

33 Partial Observations One approach: simulate perfect information with Chance nodes 52! ! 3x ! 4x10 26

34 Summary Minimax logic works for any move ordering Expectiminimax adds Chance player and uses expected value Monte Carlo simulates chance nodes Strategy for handling partial information

Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.3)

Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.3) Games and Adversarial Search II Alpha-Beta Pruning (AIMA 5.) Some slides adapted from Richard Lathrop, USC/ISI, CS 7 Review: The Minimax Rule Idea: Make the best move for MAX assuming that MIN always replies

More information

Two-player Games ZUI 2016/2017

Two-player Games ZUI 2016/2017 Two-player Games ZUI 2016/2017 Branislav Bošanský bosansky@fel.cvut.cz Two Player Games Important test environment for AI algorithms Benchmark of AI Chinook (1994/96) world champion in checkers Deep Blue

More information

Multiple Agents. Why can t we all just get along? (Rodney King) CS 3793/5233 Artificial Intelligence Multiple Agents 1

Multiple Agents. Why can t we all just get along? (Rodney King) CS 3793/5233 Artificial Intelligence Multiple Agents 1 Multiple Agents Why can t we all just get along? (Rodney King) CS 3793/5233 Artificial Intelligence Multiple Agents 1 Assumptions Assumptions Definitions Partially bservable Each agent can act autonomously.

More information

Introduction. 2D1380 Constraint Satisfaction Problems. Outline. Outline. Earlier lectures have considered search The goal is a final state

Introduction. 2D1380 Constraint Satisfaction Problems. Outline. Outline. Earlier lectures have considered search The goal is a final state CS definition 2D1380 Constraint Satisfaction roblems CS definition Earlier lectures have considered search The goal is a final state CSs CSs There was no internal structure to the problem or states States

More information

Two-player Games ZUI 2012/2013

Two-player Games ZUI 2012/2013 Two-player Games ZUI 2012/2013 Game-tree Search / Adversarial Search until now only the searching player acts in the environment there could be others: Nature stochastic environment (MDP, POMDP, ) other

More information

Review Adversarial (Game) Search ( ) Review Constraint Satisfaction ( ) Please review your quizzes and old CS-271 tests

Review Adversarial (Game) Search ( ) Review Constraint Satisfaction ( ) Please review your quizzes and old CS-271 tests Review Agents (2.1-2.3) Mid-term Review Chapters 2-6 Review State Space Search Problem Formulation (3.1, 3.3) Blind (Uninformed) Search (3.4) Heuristic Search (3.5) Local Search (4.1, 4.2) Review Adversarial

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 6 February, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 6 February, 2018 DIT411/TIN175, Artificial Intelligence Chapters 5, 7: Search part IV, and CSP, part II CHAPTERS 5, 7: SEARCH PART IV, AND CSP, PART II DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 6 February,

More information

CS 188: Artificial Intelligence. Recap Search I

CS 188: Artificial Intelligence. Recap Search I CS 188: Artificial Intelligence Review of Search, CSPs, Games DISCLAIMER: It is insufficient to simply study these slides, they are merely meant as a quick refresher of the high-level ideas covered. You

More information

Artificial Intelligence CS 6364

Artificial Intelligence CS 6364 Artificial Intelligence CS 6364 Professor Dan Moldovan Section 4 Informed Search and Adversarial Search Outline Best-first search Greedy best-first search A* search Heuristics revisited Minimax search

More information

3.6.2 Generating admissible heuristics from relaxed problems

3.6.2 Generating admissible heuristics from relaxed problems 3.6.2 Generating admissible heuristics from relaxed problems To come up with heuristic functions one can study relaxed problems from which some restrictions of the original problem have been removed The

More information

Introduction to Artificial Intelligence Midterm 1. CS 188 Spring You have approximately 2 hours.

Introduction to Artificial Intelligence Midterm 1. CS 188 Spring You have approximately 2 hours. CS 88 Spring 0 Introduction to Artificial Intelligence Midterm You have approximately hours. The exam is closed book, closed notes except your one-page crib sheet. Please use non-programmable calculators

More information

CS347 FS2003 Final Exam Model Answers

CS347 FS2003 Final Exam Model Answers CS347 FS003 Final Exam Model Answers This is a closed-book test. The only item not supplied that you are allowed (and required) to use, is a pen or pencil. Mark all paper you use with your name, the date,

More information

Uninformed Search Methods. Informed Search Methods. Midterm Exam 3/13/18. Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall

Uninformed Search Methods. Informed Search Methods. Midterm Exam 3/13/18. Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall Midterm Exam Thursday, March 15, 7:30 9:30 p.m. room 125 Ag Hall Covers topics through Decision Trees and Random Forests (does not include constraint satisfaction) Closed book 8.5 x 11 sheet with notes

More information

CSE 473: Ar+ficial Intelligence Uncertainty and Expec+max Tree Search

CSE 473: Ar+ficial Intelligence Uncertainty and Expec+max Tree Search CSE 473: Ar+ficial Intelligence Uncertainty and Expec+max Tree Search Instructors: Luke ZeDlemoyer Univeristy of Washington [These slides were adapted from Dan Klein and Pieter Abbeel for CS188 Intro to

More information

Review Agents ( ) Review State Space Search

Review Agents ( ) Review State Space Search Review Agents (2.1-2.3) Review State Space Search Mid-term Review Chapters 2-7 Problem Formulation (3.1, 3.3) Blind (Uninformed) Search (3.4) Heuristic Search (3.5) Local Search (4.1, 4.2) Review Adversarial

More information

Review Adversarial (Game) Search ( ) Review Constraint Satisfaction ( ) Please review your quizzes and old CS-171 tests

Review Adversarial (Game) Search ( ) Review Constraint Satisfaction ( ) Please review your quizzes and old CS-171 tests Review Agents (2.1-2.3) Review State Space Search Mid-term Review Chapters 2-6 Problem Formulation (3.1, 3.3) Blind (Uninformed) Search (3.4) Heuristic Search (3.5) Local Search (4.1, 4.2) Review Adversarial

More information

Artificial Intelligence. Game trees. Two-player zero-sum game. Goals for the lecture. Blai Bonet

Artificial Intelligence. Game trees. Two-player zero-sum game. Goals for the lecture. Blai Bonet Artificial Intelligence Blai Bonet Game trees Universidad Simón Boĺıvar, Caracas, Venezuela Goals for the lecture Two-player zero-sum game Two-player game with deterministic actions, complete information

More information

CS 416, Artificial Intelligence Midterm Examination Fall 2004

CS 416, Artificial Intelligence Midterm Examination Fall 2004 CS 416, Artificial Intelligence Midterm Examination Fall 2004 Name: This is a closed book, closed note exam. All questions and subquestions are equally weighted. Introductory Material 1) True or False:

More information

44.1 Introduction Introduction. Foundations of Artificial Intelligence Monte-Carlo Methods Sparse Sampling 44.4 MCTS. 44.

44.1 Introduction Introduction. Foundations of Artificial Intelligence Monte-Carlo Methods Sparse Sampling 44.4 MCTS. 44. Foundations of Artificial ntelligence May 27, 206 44. : ntroduction Foundations of Artificial ntelligence 44. : ntroduction Thomas Keller Universität Basel May 27, 206 44. ntroduction 44.2 Monte-Carlo

More information

Algorithms for Computing Strategies in Two-Player Simultaneous Move Games

Algorithms for Computing Strategies in Two-Player Simultaneous Move Games Algorithms for Computing Strategies in Two-Player Simultaneous Move Games Branislav Bošanský 1a, Viliam Lisý a, Marc Lanctot 2b, Jiří Čermáka, Mark H.M. Winands b a Agent Technology Center, Department

More information

Markov Decision Processes and Reinforcement Learning

Markov Decision Processes and Reinforcement Learning Lecture 14 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Slides by Stuart Russell and Peter Norvig Course Overview Introduction Artificial Intelligence

More information

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 9 February, 2018

DIT411/TIN175, Artificial Intelligence. Peter Ljunglöf. 9 February, 2018 DIT411/TIN175, Artificial Intelligence Chapters 3, 4, 5, 7: Repetition CHAPTERS 3, 4, 5, 7: REPETITION DIT411/TIN175, Artificial Intelligence Peter Ljunglöf 9 February, 2018 1 TABLE OF CONTENTS Search

More information

Strategies to Fast Evaluation of Tree Networks

Strategies to Fast Evaluation of Tree Networks Acta Polytechnica Hungarica Vol. 12, No. 6, 2015 Strategies to Fast Evaluation of Tree Networks Raed Basbous Eastern Mediterranean University, Faculty of Arts and Sciences, Department Mathematics, Famagusta,

More information

Bounded Suboptimal Game Tree Search

Bounded Suboptimal Game Tree Search Bounded Suboptimal Game Tree Search Dor Atzmon 1, Abdallah Saffidine 2, and Roni Stern 1 1 Ben Gurion University of the Negev, Be er Sheva, Israel 2 Australian National University, Canberra, Australia

More information

Midterm Examination CS 540-2: Introduction to Artificial Intelligence

Midterm Examination CS 540-2: Introduction to Artificial Intelligence Midterm Examination CS 54-2: Introduction to Artificial Intelligence March 9, 217 LAST NAME: FIRST NAME: Problem Score Max Score 1 15 2 17 3 12 4 6 5 12 6 14 7 15 8 9 Total 1 1 of 1 Question 1. [15] State

More information

Artificial Intelligence. Chapters Reviews. Readings: Chapters 3-8 of Russell & Norvig.

Artificial Intelligence. Chapters Reviews. Readings: Chapters 3-8 of Russell & Norvig. Artificial Intelligence Chapters Reviews Readings: Chapters 3-8 of Russell & Norvig. Topics covered in the midterm Solving problems by searching (Chap. 3) How to formulate a search problem? How to measure

More information

CS885 Reinforcement Learning Lecture 9: May 30, Model-based RL [SutBar] Chap 8

CS885 Reinforcement Learning Lecture 9: May 30, Model-based RL [SutBar] Chap 8 CS885 Reinforcement Learning Lecture 9: May 30, 2018 Model-based RL [SutBar] Chap 8 CS885 Spring 2018 Pascal Poupart 1 Outline Model-based RL Dyna Monte-Carlo Tree Search CS885 Spring 2018 Pascal Poupart

More information

CS 4700: Artificial Intelligence

CS 4700: Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Fall 2017 Instructor: Prof. Haym Hirsh Lecture 8 Today Informed Search (R&N Ch 3,4) Adversarial search (R&N Ch 5) Adversarial Search (R&N Ch 5) Homework

More information

Potential Midterm Exam Questions

Potential Midterm Exam Questions Potential Midterm Exam Questions 1. What are the four ways in which AI is usually viewed? Which of the four is the preferred view of the authors of our textbook? 2. What does each of the lettered items

More information

Exam Topics. Search in Discrete State Spaces. What is intelligence? Adversarial Search. Which Algorithm? 6/1/2012

Exam Topics. Search in Discrete State Spaces. What is intelligence? Adversarial Search. Which Algorithm? 6/1/2012 Exam Topics Artificial Intelligence Recap & Expectation Maximization CSE 473 Dan Weld BFS, DFS, UCS, A* (tree and graph) Completeness and Optimality Heuristics: admissibility and consistency CSPs Constraint

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 45. AlphaGo and Outlook Malte Helmert and Gabriele Röger University of Basel May 22, 2017 Board Games: Overview chapter overview: 40. Introduction and State of the

More information

CSC384: Intro to Artificial Intelligence Game Tree Search II. Midterm: Everything covered so far plus this lecture slides.

CSC384: Intro to Artificial Intelligence Game Tree Search II. Midterm: Everything covered so far plus this lecture slides. CSC384: Intro to Artificial Intelligence Game Tree Search II Midterm: Everything covered so far plus this lecture slides. 1 Depth-first Implementation of MinMax utility(n,u) :- terminal(n), utility(n,u).

More information

Downloaded from ioenotes.edu.np

Downloaded from ioenotes.edu.np Chapter- 3: Searching - Searching the process finding the required states or nodes. - Searching is to be performed through the state space. - Search process is carried out by constructing a search tree.

More information

Probabilistic Belief. Adversarial Search. Heuristic Search. Planning. Probabilistic Reasoning. CSPs. Learning CS121

Probabilistic Belief. Adversarial Search. Heuristic Search. Planning. Probabilistic Reasoning. CSPs. Learning CS121 CS121 Heuristic Search Planning CSPs Adversarial Search Probabilistic Reasoning Probabilistic Belief Learning Heuristic Search First, you need to formulate your situation as a Search Problem What is a

More information

CSE 203A: Randomized Algorithms

CSE 203A: Randomized Algorithms CSE 203A: Randomized Algorithms (00:30) The Minimax Principle (Ch 2) Lecture on 10/18/2017 by Daniel Kane Notes by Peter Greer-Berezovsky Game Tree Evaluation (2.1) - n round deterministic 2-player game

More information

Gradient Descent. 1) S! initial state 2) Repeat: Similar to: - hill climbing with h - gradient descent over continuous space

Gradient Descent. 1) S! initial state 2) Repeat: Similar to: - hill climbing with h - gradient descent over continuous space Local Search 1 Local Search Light-memory search method No search tree; only the current state is represented! Only applicable to problems where the path is irrelevant (e.g., 8-queen), unless the path is

More information

Monotonicity. Admissible Search: That finds the shortest path to the Goal. Monotonicity: local admissibility is called MONOTONICITY

Monotonicity. Admissible Search: That finds the shortest path to the Goal. Monotonicity: local admissibility is called MONOTONICITY Monotonicity Admissible Search: That finds the shortest path to the Goal Monotonicity: local admissibility is called MONOTONICITY This property ensures consistently minimal path to each state they encounter

More information

CS 188: Artificial Intelligence Spring Recap Search I

CS 188: Artificial Intelligence Spring Recap Search I CS 188: Artificial Intelligence Spring 2011 Midterm Review 3/14/2011 Pieter Abbeel UC Berkeley Recap Search I Agents that plan ahead à formalization: Search Search problem: States (configurations of the

More information

Recap Search I. CS 188: Artificial Intelligence Spring Recap Search II. Example State Space Graph. Search Problems.

Recap Search I. CS 188: Artificial Intelligence Spring Recap Search II. Example State Space Graph. Search Problems. CS 188: Artificial Intelligence Spring 011 Midterm Review 3/14/011 Pieter Abbeel UC Berkeley Recap Search I Agents that plan ahead à formalization: Search Search problem: States (configurations of the

More information

Review Agents ( ) Review State Space Search

Review Agents ( ) Review State Space Search Review Agents (2.1-2.3) Review State Space Search Mid-term Review Chapters 2-7 Problem Formulation (3.1, 3.3) Blind (Uninformed) Search (3.4) Heuristic Search (3.5) Local Search (4.1, 4.2) Review Adversarial

More information

Searching: Where it all begins...

Searching: Where it all begins... Searching: Where it all begins... CPSC 433 Christian Jacob Dept. of Computer Science Dept. of Biochemistry & Molecular Biology University of Calgary Problem Solving by Searching 1. Introductory Concepts

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Bandits, MCTS, & Games Marc Toussaint University of Stuttgart Winter 2018/19 Motivation: The first lecture was about tree search (a form of sequential decision making), the second

More information

Artificial Intelligence, CS, Nanjing University Spring, 2016, Yang Yu. Lecture 5: Search 4.

Artificial Intelligence, CS, Nanjing University Spring, 2016, Yang Yu. Lecture 5: Search 4. Artificial Intelligence, CS, Nanjing University Spring, 2016, Yang Yu Lecture 5: Search 4 http://cs.nju.edu.cn/yuy/course_ai16.ashx Previously... Path-based search Uninformed search Depth-first, breadth

More information

Final Exam. Introduction to Artificial Intelligence. CS 188 Spring 2010 INSTRUCTIONS. You have 3 hours.

Final Exam. Introduction to Artificial Intelligence. CS 188 Spring 2010 INSTRUCTIONS. You have 3 hours. CS 188 Spring 2010 Introduction to Artificial Intelligence Final Exam INSTRUCTIONS You have 3 hours. The exam is closed book, closed notes except a two-page crib sheet. Please use non-programmable calculators

More information

CS-171, Intro to A.I. Mid-term Exam Winter Quarter, 2016

CS-171, Intro to A.I. Mid-term Exam Winter Quarter, 2016 CS-171, Intro to A.I. Mid-term Exam Winter Quarter, 016 YOUR NAME: YOUR ID: ID TO RIGHT: ROW: SEAT: The exam will begin on the next page. Please, do not turn the page until told. When you are told to begin

More information

Introduction to Fall 2008 Artificial Intelligence Midterm Exam

Introduction to Fall 2008 Artificial Intelligence Midterm Exam CS 188 Introduction to Fall 2008 Artificial Intelligence Midterm Exam INSTRUCTIONS You have 80 minutes. 70 points total. Don t panic! The exam is closed book, closed notes except a one-page crib sheet,

More information

Midterm Examination CS540-2: Introduction to Artificial Intelligence

Midterm Examination CS540-2: Introduction to Artificial Intelligence Midterm Examination CS540-2: Introduction to Artificial Intelligence March 15, 2018 LAST NAME: FIRST NAME: Problem Score Max Score 1 12 2 13 3 9 4 11 5 8 6 13 7 9 8 16 9 9 Total 100 Question 1. [12] Search

More information

Finding optimal configurations Adversarial search

Finding optimal configurations Adversarial search CS 171 Introduction to AI Lecture 10 Finding optimal configurations Adversarial search Milos Hauskrecht milos@cs.pitt.edu 39 Sennott Square Announcements Homework assignment is out Due on Thursday next

More information

Algorithms for Hard Problems

Algorithms for Hard Problems Algorithms for Hard Problems Monte Carlo and Markov Chain Monte Carlo methods, backtracking, branch & bound and alpha-beta pruning. Why parallel algorithms? Monte Carlo and Markov chain Monte Carlo methods

More information

Algorithm Design Techniques (III)

Algorithm Design Techniques (III) Algorithm Design Techniques (III) Minimax. Alpha-Beta Pruning. Search Tree Strategies (backtracking revisited, branch and bound). Local Search. DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 1 Tic-Tac-Toe

More information

Monte Carlo Tree Search

Monte Carlo Tree Search Monte Carlo Tree Search 2-15-16 Reading Quiz What is the relationship between Monte Carlo tree search and upper confidence bound applied to trees? a) MCTS is a type of UCB b) UCB is a type of MCTS c) both

More information

(Due to rounding, values below may be only approximate estimates.) We will supply these numbers as they become available.

(Due to rounding, values below may be only approximate estimates.) We will supply these numbers as they become available. Below, for each problem on this Midterm Exam, Perfect is the percentage of students who received full credit, Partial is the percentage who received partial credit, and Zero is the percentage who received

More information

CSCI-630 Foundations of Intelligent Systems Fall 2015, Prof. Zanibbi

CSCI-630 Foundations of Intelligent Systems Fall 2015, Prof. Zanibbi CSCI-630 Foundations of Intelligent Systems Fall 2015, Prof. Zanibbi Midterm Examination Name: October 16, 2015. Duration: 50 minutes, Out of 50 points Instructions If you have a question, please remain

More information

Adversarial Policy Switching with Application to RTS Games

Adversarial Policy Switching with Application to RTS Games Adversarial Policy Switching with Application to RTS Games Brian King 1 and Alan Fern 2 and Jesse Hostetler 2 Department of Electrical Engineering and Computer Science Oregon State University 1 kingbria@lifetime.oregonstate.edu

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination

University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination University of Waterloo Department of Electrical and Computer Engineering ECE 457A: Cooperative and Adaptive Algorithms Midterm Examination Exam Date/Time: Tuesday, June 13, 2017, 8:30-9:50 pm Exam Hall:

More information

Search. AI Slides (5e) c Lin

Search. AI Slides (5e) c Lin Search 3 AI Slides (5e) c Lin Zuoquan@PKU 2003-2019 3 1 3 Search 3.1 Problem-solving agents 3.2 Basic search algorithms 3.3 Heuristic search Greedy search A search 3.4 Local search Hill-climbing Simulated

More information

Homework #6 (Constraint Satisfaction, Non-Deterministic Uncertainty and Adversarial Search) Out: 2/21/11 Due: 2/29/11 (at noon)

Homework #6 (Constraint Satisfaction, Non-Deterministic Uncertainty and Adversarial Search) Out: 2/21/11 Due: 2/29/11 (at noon) CS121 Introduction to Artificial Intelligence Winter 2011 Homework #6 (Constraint Satisfaction, Non-Deterministic Uncertainty and Adversarial Search) Out: 2/21/11 Due: 2/29/11 (at noon) How to complete

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Machine Learning: Perceptron Ali Farhadi Many slides over the course adapted from Luke Zettlemoyer and Dan Klein. 1 Generative vs. Discriminative Generative classifiers:

More information

Section Marks Pre-Midterm / 32. Logic / 29. Total / 100

Section Marks Pre-Midterm / 32. Logic / 29. Total / 100 Name: CS 331 Final Exam Spring 2011 You have 110 minutes to complete this final exam. You are only allowed to use your textbook, your notes, your assignments and solutions to those assignments during this

More information

Search and Game Playing

Search and Game Playing Search and Game Playing CSCE 315 Programming Studio Material drawn from Gordon Novak s AI course, Yoonsuck Choe s AI course, and Russell and Norvig s Artificial Intelligence, A Modern Approach, 2nd edition.

More information

CSC D84 Assignment 2 Game Trees and Mini-Max

CSC D84 Assignment 2 Game Trees and Mini-Max 0 The Cats Strike Back Due date: Wednesday, Feb. 21, 9am (electronic submission on Mathlab) This assignment can be completed individually, or by a team of 2 students This assignment is worth 10 units toward

More information

Introduction to Spring 2007 Artificial Intelligence Midterm Solutions

Introduction to Spring 2007 Artificial Intelligence Midterm Solutions NAME: SID#: Login: Sec: CS 88 Introduction to Spring 2007 Artificial Intelligence Midterm Solutions You have 80 minutes. There are five questions with equal points. Look at all the five questions and answer

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2015 Introduction to Artificial Intelligence Practice Midterm You have approximately 80 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

More information

CPSC 436D Video Game Programming

CPSC 436D Video Game Programming CPSC 436D Video Game Programming Strategy & Adversarial Strategy Strategy Given current state, determine BEST next move Short term: best among immediate options Long term: what brings something closest

More information

Algorithm Design Techniques. Hwansoo Han

Algorithm Design Techniques. Hwansoo Han Algorithm Design Techniques Hwansoo Han Algorithm Design General techniques to yield effective algorithms Divide-and-Conquer Dynamic programming Greedy techniques Backtracking Local search 2 Divide-and-Conquer

More information

Chapter 2 Classical algorithms in Search and Relaxation

Chapter 2 Classical algorithms in Search and Relaxation Chapter 2 Classical algorithms in Search and Relaxation Chapter 2 overviews topics on the typical problems, data structures, and algorithms for inference in hierarchical and flat representations. Part

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Session 26. April 29, 2009 Instructor: Bert Huang http://www.cs.columbia.edu/~bert/courses/3137 Announcements Homework 6 due before last class: May 4th Final Review May 4th

More information

Introduction to Fall 2014 Artificial Intelligence Midterm Solutions

Introduction to Fall 2014 Artificial Intelligence Midterm Solutions CS Introduction to Fall Artificial Intelligence Midterm Solutions INSTRUCTIONS You have minutes. The exam is closed book, closed notes except a one-page crib sheet. Please use non-programmable calculators

More information

Search and Game Playing

Search and Game Playing Search and Game Playing Overview Search problems: definition Example: 8-puzzle General search Evaluation of search strategies Strategies: breadth-first, uniform-cost, depth-first More uninformed search:

More information

Artificial Intelligence (part 4d)

Artificial Intelligence (part 4d) Artificial Intelligence (part 4d) BEHAVIOR OF HEURISTICS EVALUATIONS (USING HEURISTICS IN GAMES) HEURISTICS EVALUATIONS: (Admissibility,Monotonicity and Informedness) Admissibility Measures A search is

More information

CS 540-1: Introduction to Artificial Intelligence

CS 540-1: Introduction to Artificial Intelligence CS 540-1: Introduction to Artificial Intelligence Exam 1: 7:15-9:15pm, October 11, 1995 CLOSED BOOK (one page of notes allowed) Write your answers on these pages and show your work. If you feel that a

More information

Search and Optimization

Search and Optimization Search and Optimization Search, Optimization and Game-Playing The goal is to find one or more optimal or sub-optimal solutions in a given search space. We can either be interested in finding any one solution

More information

6.034 Quiz 1, Spring 2004 Solutions

6.034 Quiz 1, Spring 2004 Solutions 6.034 Quiz 1, Spring 2004 Solutions Open Book, Open Notes 1 Tree Search (12 points) Consider the tree shown below. The numbers on the arcs are the arc lengths. Assume that the nodes are expanded in alphabetical

More information

7 Temporal Models (20 points)

7 Temporal Models (20 points) 7 Temporal Models (20 points) 1. For the Rain-Umbrella HMM model (from class and Figure 15.2 in AIMA) with 2 time periods, show how variable elimination operates to answer the following query P (R 1 U

More information

Introduction to Fall 2010 Artificial Intelligence Midterm Exam

Introduction to Fall 2010 Artificial Intelligence Midterm Exam CS 188 Introduction to Fall 2010 Artificial Intelligence Midterm Exam INSTRUCTIONS You have 3 hours. The exam is closed book, closed notes except a one-page crib sheet. Please use non-programmable calculators

More information

Artificial Intelligence (part 4d)

Artificial Intelligence (part 4d) Artificial Intelligence (part 4d) BEHAVIOR OF HEURISTICS EVALUATIONS (USING HEURISTICS IN GAMES) Course Contents Again..Selected topics for our course. Covering all of AI is impossible! Key topics include:

More information

Alpha-Beta Pruning in Mini-Max Algorithm An Optimized Approach for a Connect-4 Game

Alpha-Beta Pruning in Mini-Max Algorithm An Optimized Approach for a Connect-4 Game Alpha-Beta Pruning in Mini-Max Algorithm An Optimized Approach for a Connect-4 Game Rijul Nasa 1, Rishabh Didwania 2, Shubhranil Maji 3, Vipul Kumar 4 1,2,3,4 Dept. of Computer Science & Engineering, The

More information

A Series of Lectures on Approximate Dynamic Programming

A Series of Lectures on Approximate Dynamic Programming A Series of Lectures on Approximate Dynamic Programming Dimitri P. Bertsekas Laboratory for Information and Decision Systems Massachusetts Institute of Technology Lucca, Italy June 2017 Bertsekas (M.I.T.)

More information

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A

SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY REPRESENTATION OF KNOWLEDGE PART A UNIT II REPRESENTATION OF KNOWLEDGE PART A 1. What is informed search? One that uses problem specific knowledge beyond the definition of the problem itself and it can find solutions more efficiently than

More information

Principles of Computer Game Design and Implementation. Revision Lecture

Principles of Computer Game Design and Implementation. Revision Lecture Principles of Computer Game Design and Implementation Revision Lecture Introduction Brief history; game genres Game structure A series of interesting choices Series of convexities Variable difficulty increase

More information

Algorithmic Game Theory - Introduction, Complexity, Nash

Algorithmic Game Theory - Introduction, Complexity, Nash Algorithmic Game Theory - Introduction, Complexity, Nash Branislav Bošanský Czech Technical University in Prague branislav.bosansky@agents.fel.cvut.cz February 25, 2018 About This Course main topics of

More information

CS-171, Intro to A.I. Mid-term Exam Fall Quarter, 2013

CS-171, Intro to A.I. Mid-term Exam Fall Quarter, 2013 CS-171, Intro to A.I. Mid-term Exam Fall Quarter, 2013 YOUR NAME AND ID NUMBER: YOUR ID: ID TO RIGHT: ROW: NO. FROM RIGHT: The exam will begin on the next page. Please, do not turn the page until told.

More information

CSC384 Midterm Sample Questions

CSC384 Midterm Sample Questions CSC384 Midterm Sample Questions Fall 2016 1 Search Short Answer 1. It would seem that iterative deepening search should have a higher asymptotic time complexity than breadth-first search because every

More information

Searching with Partial Information

Searching with Partial Information Searching with Partial Information Above we (unrealistically) assumed that the environment is fully observable and deterministic Moreover, we assumed that the agent knows what the effects of each action

More information

The Wi-Fi Roaming Game

The Wi-Fi Roaming Game The Wi-Fi Roaming Game October 26, 2007 David R. Cheriton School of computer Science, Ontario, Canada Punch Line Users sensitivity to bandwidth (and possibly delay) affects their Internet bills. The right

More information

APHID: Asynchronous Parallel Game-Tree Search

APHID: Asynchronous Parallel Game-Tree Search APHID: Asynchronous Parallel Game-Tree Search Mark G. Brockington and Jonathan Schaeffer Department of Computing Science University of Alberta Edmonton, Alberta T6G 2H1 Canada February 12, 1999 1 Running

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr. Malek Mouhoub Department of Computer Science University of Regina Fall 2005 Malek Mouhoub, CS820 Fall 2005 1 3. State-Space Search 3. State-Space Search Graph Theory Uninformed

More information

Stochastic Algorithms

Stochastic Algorithms Stochastic Algorithms Some of the fastest known algorithms for certain tasks rely on chance Stochastic/Randomized Algorithms Two common variations Monte Carlo Las Vegas We have already encountered some

More information

Chapters 3-5 Problem Solving using Search

Chapters 3-5 Problem Solving using Search CSEP 573 Chapters 3-5 Problem Solving using Search First, they do an on-line search CSE AI Faculty Example: The 8-puzzle Example: The 8-puzzle 1 2 3 8 4 7 6 5 1 2 3 4 5 6 7 8 2 Example: Route Planning

More information

Moving On. 10. Single-agent Search. Applications. Why Alpha-Beta First?

Moving On. 10. Single-agent Search. Applications. Why Alpha-Beta First? Moving On 10. Single-agent Search Jonathan Schaeffer jonathan@cs.ualberta.ca www.cs.ualberta.ca/~jonathan Two-player adversary search is nice, but not all interesting problems can be mapped to games Large

More information

2WB05 Simulation Lecture 1: Introduction and Monte Carlo simulation

2WB05 Simulation Lecture 1: Introduction and Monte Carlo simulation 2WB05 Simulation Lecture 1: Introduction and Monte Carlo simulation Marko Boon http://www.win.tue.nl/courses/2wb05 November 12, 2012 Organisation 2/39 studeerwijzer available (with notes, slides, programs,

More information

Error Simulation and Multi-Sensor Data Fusion

Error Simulation and Multi-Sensor Data Fusion Error Simulation and Multi-Sensor Data Fusion AERO4701 Space Engineering 3 Week 6 Last Week Looked at the problem of attitude determination for satellites Examined several common methods such as inertial

More information

CS221 Final Project: AI Agent for Snake feat. Mice Vincent Chen {vschen}, John Kamalu {jkamalu}, Scott Kazmierowicz {scottkaz}

CS221 Final Project: AI Agent for Snake feat. Mice Vincent Chen {vschen}, John Kamalu {jkamalu}, Scott Kazmierowicz {scottkaz} 1 Introduction CS221 Final Project: AI Agent for Snake feat. Mice Vincent Chen {vschen}, John Kamalu {jkamalu}, Scott Kazmierowicz {scottkaz} In the original Snake game, a snake attempts to consume stationary

More information

Parallel Programming. Parallel algorithms Combinatorial Search

Parallel Programming. Parallel algorithms Combinatorial Search Parallel Programming Parallel algorithms Combinatorial Search Some Combinatorial Search Methods Divide and conquer Backtrack search Branch and bound Game tree search (minimax, alpha-beta) 2010@FEUP Parallel

More information

Downloded from: CSITauthority.blogspot.com

Downloded from: CSITauthority.blogspot.com [Unit : Searching] (CSC 355) Central Department of Computer Science & Information Technology Tribhuvan University 1 Searching search problem Figure below contains a representation of a map. The nodes represent

More information

Discovering Search Algorithms with Program Transformation

Discovering Search Algorithms with Program Transformation Discovering Search Algorithms with Program Transformation Tristan Cazenave 1 Abstract. Minimax is the basic algorithm used in two-persons player complete information computer games. It is also used in

More information

You need to be able to define the following terms and answer basic questions about them:

You need to be able to define the following terms and answer basic questions about them: CS440/ECE448 Fall 2016 Midterm Review Yu need t be able t define the fllwing terms and answer basic questins abut them: Intr t AI, agents and envirnments Pssible definitins f AI, prs and cns f each Turing

More information

MIPS Assembly Recursion: Fibonacci, Binary Search, Mergesort

MIPS Assembly Recursion: Fibonacci, Binary Search, Mergesort MIPS Assembly Recursion: Fibonacci, Binary Search, Mergesort CptS 260 Intro to Computer Architecture Week 7.2 Wed 2013/10/02 A Computer Scientist s Perspective of Recursion Don t worry about what a function

More information

State Space Search. Many problems can be represented as a set of states and a set of rules of how one state is transformed to another.

State Space Search. Many problems can be represented as a set of states and a set of rules of how one state is transformed to another. State Space Search Many problems can be represented as a set of states and a set of rules of how one state is transformed to another. The problem is how to reach a particular goal state, starting from

More information

Last time: search strategies

Last time: search strategies Last time: search strategies Uninfrmed: Use nly infrmatin available in the prblem frmulatin Breadth-first Unifrm-cst Depth-first Depth-limited Iterative deepening Infrmed: Use heuristics t guide the search

More information