CSCE GPU PROJECT PRESENTATION SCALABLE PARALLEL RANDOM NUMBER GENERATION

Size: px
Start display at page:

Download "CSCE GPU PROJECT PRESENTATION SCALABLE PARALLEL RANDOM NUMBER GENERATION"

Transcription

1 CSCE GPU PROJECT PRESENTATION SCALABLE PARALLEL RANDOM NUMBER GENERATION Farhad Parsan 10/25/2010

2 OUTLINE Introduction Design Performance Live Demonstration Conclusion 2

3 INTRODUCTION Scalable Parallel Random Number Generation (SPRNG) application Monte Carlo Simulation studying physical systems with a large degrees of freedom modeling phenomena with significant uncertainty in inputs 3

4 INTRODUCTION SPRNG library methods[1] 48 bit Linear Congruential 64 bit Linear Congruential Additive Lagged Fibonacci Multiplicative Lagged Fibonacci Combined Multiple Recursive Prime Modulus Linear Congruential 4

5 INTRODUCTION 64 bit Linear Congruential Generator (LCG) X(n) = A * X(n - 1) + C (Mod 2^64) Additive Lagged Fibonacci Generator (LFG) X(n) = X(n - k) + X(n - l) (Mod 2^64) 5

6 INTRODUCTION 64 bit Linear Congruential Generator (LCG) X(n) = A * X(n - 1) + C (Mod 2^64) A = C = Additive Lagged Fibonacci Generator (LFG) X(n) = X(n - k) + X(n - l) (Mod 2^64) k = 1279 l = 861 6

7 INTRODUCTION How to parallelize? There are 4 main techniques[2]: Leapfrog Sequence Splitting Independent Sequences Parameterization of the Generator 7

8 INTRODUCTION Leapfrog X P, X P+N, X P+2N, Sequence Splitting X PL, X PL+1, X PL+2, Independent Sequences using different seeds Parameterization of the Generator using different parameters 8

9 DESIGN LFG Seed initialization[3] 9

10 DESIGN LFG Seed initialization m = 64, k = 1279, l = 861 b 0,233 = 1 10

11 DESIGN LFG Seed initialization 11

12 DESIGN LCG Leapfrog method X 1 = ax 0 + c X 2 = a(ax 0 + c) + c = a 2 X 0 + c(a+1) X 3 = a(a 2 X 0 + c(a+1)) + c = a 3 X 0 + c(a 2 +a+1).. X N = a N X 0 + c(a N-1 + +a 2 +a+1) 12

13 DESIGN LCG Leapfrog method X 1 = ax 0 + c X 2 = a(ax 0 + c) + c = a 2 X 0 + c(a+1) X 3 = a(a 2 X 0 + c(a+1)) + c = a 3 X 0 + c(a 2 +a+1).. X N = a N X 0 + c(a N-1 + +a 2 +a+1) X(n) = A * X(n - 1) + C (Mod 2^64) A = a N, C = c(a N-1 + +a 2 +a+1) 13

14 DESIGN LCG Leapfrog method X 0 X 1 X 2 X N-2 X N-1 14

15 DESIGN LCG Leapfrog method X 0 X 1 X 2 X N-2 X N-1 X N X N+1 X N+2 X 2N-2 X 2N-1 15

16 DESIGN LCG Leapfrog method X 0 X 1 X 2 X N-2 X N-1 X N X N+1 X N+2 X 2N-2 X 2N-1 X 3N X 3N+1 X 3N+2 X 4N-2 X 4N-1 16

17 DESIGN LCG initialization Generating initial seeds Calculating new A, C X 0 X 1 X 2 X N-2 X N-1 X N X N+1 X N+2 X 2N-2 X 2N-1 X 3N X 3N+1 X 3N+2 X 4N-2 X 4N-1 17

18 DESIGN LCG initialization Generating initial seeds Calculating new A, C A = a N, C = c(a N-1 + +a 2 +a+1) pow() cannot be used because a is unsigned long a and N both are large numbers thus a N exeeds unsigned long range! 18

19 DESIGN LCG initialization Generating initial seeds Calculating new A, C A = a N, C = c(a N-1 + +a 2 +a+1) X(n) = A * X(n - 1) + C (Mod 2^64) If a 1 = b 1 (mod m) and a 2 = b 2 (mod m) and a 1, b 1, a 2, b 2 and m are all integers then: a 1 *a 2 = b 1 *b 2 (mod m) 19

20 DESIGN LCG initialization Creating initial seeds Calculating new A, C 20

21 DESIGN Design specifications The generated random numbers are consumed immediately In LCG method all random numbers are stored in shared memory to eliminate global memory access In LFG method there is not enough space to store random numbers in shared memory so they are stored in global memory 21

22 DESIGN LFG Kernel 22

23 DESIGN LCG Kernel 23

24 PERFORMANCE Reported reference performance Platform Number of Blocks Number of Generators Number of RNs Rate (MPS) LFG LCG e Fermi e CPU - 1 1e e Fermi e CPU - 1 1e9 331 LFG speedup : 28X LCG speedup : 98X 24

25 PERFORMANCE Achieved performance Platform Number of Blocks Number of Generators Number of RNs Rate (MPS) LFG LCG e Fermi e CPU - 1 1e e Fermi e CPU - 1 1e9 325 LFG speedup : 15X? 32X LCG speedup : 125X 25

26 PERFORMANCE CONSIDERATIONS LFG seed memory location pattern X 0,0 X 0,1 X 0,2 X 1,0 X 1,1 X 1,2 X 0,0 X 1,0 X 2,0 X 0,1 X 1,1 X 2,1 Proper register usage to decrease global memory access and redundant operations 26

27 PERFORMANCE CONSIDERATIONS LFG seed generation loop change (1.7X speedup) LCG shared memory usage (2.2X speedup) 27

28 LIVE DEMONSTRATION 28

29 CONCLUSION Two methods of parallel random number generation were discussed: Lagged Fibonacci Generator (LFG) Linear Congruential Generator (LCG) To parallelize the two methods using GPU some parallelization techniques were introduced: Leapfrog to parallelize LCG Independent Sequences to parallelize LFG By correct usage of GPU memory and computation resources it is possible to get 15x speedup over CPU in LFG method and 125x speedup in LCG method The achieved performance surpasses the performance reported in [4] Sufficient amount of shared memory could increase performance in LFG method remarkably by eliminating global memory access. 29

30 REFERENCES [1] Scalable Parallel Pseudo Random Number Generators Library, [2] P.D. Coddington, and A.J. Newell, JAPARA - A Java Parallel Random Number Generator Library for High-Performance Computing, Proc. of Java in Parallel and Distributed Processing Symposium (IPDPS'04), Santa Fe, April 2004 [3] Pryor, D. V., Cuccaro, S. A., Mascagni, M., and Robinson, M. L., Implementation of a portable and reproducible parallel pseudorandom number generator, In Proceedings of the 1994 Conference on Supercomputing,Washington, D.C., 1994 [4] S. Gao and G. D. Peterson, GPU accelerated scalable parallel random number generators, in Proc Symposium on Application Accelerators in High Performance Computing (SAAHPC 10), Jul

PSEUDORANDOM numbers are very important in practice

PSEUDORANDOM numbers are very important in practice Proceedings of the 2013 Federated Conference on Computer Science and Information Systems pp. 515 519 Template Library for Multi- Pseudorandom Number Recursion-based Generars Dominik Szałkowski Institute

More information

A PARALLEL RANDOM NUMBER GENERATOR FOR SHARED MEMORY ARCHITECTURE MACHINE USING OPENMP

A PARALLEL RANDOM NUMBER GENERATOR FOR SHARED MEMORY ARCHITECTURE MACHINE USING OPENMP A PARALLEL RANDOM NUMBER GENERATOR FOR SHARED MEMORY ARCHITECTURE MACHINE USING OPENMP Sayed Ahmed Department of Computer Science University of Manitoba, Canada email:sayed@cs.umanitoba.ca Rasit Eskicioglu

More information

The rsprng Package. July 24, 2006

The rsprng Package. July 24, 2006 The rsprng Package July 24, 2006 Version 0.3-3 Date $Date: 2006-07-14 13:47:47-0500 (Fri, 14 Jul 2006) $ Title R interface to SPRNG (Scalable Parallel Random Number Generators) Author Na (Michael) Li

More information

Chapter 4: (0,1) Random Number Generation

Chapter 4: (0,1) Random Number Generation Chapter 4: (0,1) Random Number Generation Refer to Text Book: Simulation Modeling and ARENA, Manuel Rossetti, Ch. 2 Operations Research: Applications and Algorithms By Wayne L. Winston,Ch. 21 Operations

More information

PRNGCL: OpenCL Library of Pseudo-Random Number Generators for Monte Carlo Simulations

PRNGCL: OpenCL Library of Pseudo-Random Number Generators for Monte Carlo Simulations PRNGCL: OpenCL Library of Pseudo-Random Number Generators for Monte Carlo Simulations Vadim Demchik vadimdi@yahoo.com http://hgpu.org/ Dnipropetrovsk National University Dnipropetrovsk, Ukraine GTC 14

More information

Random Number Generators for Parallel Computers

Random Number Generators for Parallel Computers Random Number Generators for Parallel Computers Paul D. Coddington Northeast Parallel Architectures Center, 111 College Place, Syracuse University, Syracuse, NY 13244-4100, U.S.A. paulc@npac.syr.edu Version

More information

Reproducibility in Stochastic Simulation

Reproducibility in Stochastic Simulation Reproducibility in Stochastic Simulation Prof. Michael Mascagni Department of Computer Science Department of Mathematics Department of Scientific Computing Graduate Program in Molecular Biophysics Florida

More information

Monte Carlo Methods; Combinatorial Search

Monte Carlo Methods; Combinatorial Search Monte Carlo Methods; Combinatorial Search Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 22, 2012 CPD (DEI / IST) Parallel and

More information

Monte Carlo Method on Parallel Computing. Jongsoon Kim

Monte Carlo Method on Parallel Computing. Jongsoon Kim Monte Carlo Method on Parallel Computing Jongsoon Kim Introduction Monte Carlo methods Utilize random numbers to perform a statistical simulation of a physical problem Extremely time-consuming Inherently

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Outline Random number generation Properties of random numbers Linear Congruential

More information

Hardware Accelerated Scalable Parallel Random Number Generation

Hardware Accelerated Scalable Parallel Random Number Generation University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2007 Hardware Accelerated Scalable Parallel Random Number Generation Junkyu Lee University

More information

Combinatorial Search; Monte Carlo Methods

Combinatorial Search; Monte Carlo Methods Combinatorial Search; Monte Carlo Methods Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico May 02, 2016 CPD (DEI / IST) Parallel and Distributed

More information

SOME NOTES ON MULTIPLICATIVE CONGRUENTIAL RANDOM NUMBER GENERATORS WITH MERSENNE PRIME MODULUS Dr. James Harris*

SOME NOTES ON MULTIPLICATIVE CONGRUENTIAL RANDOM NUMBER GENERATORS WITH MERSENNE PRIME MODULUS Dr. James Harris* JournaCof the South Carolina JLcademy of Science l(l):28-32 Fall 2003 SOME NOTES ON MULTIPLICATIVE CONGRUENTIAL RANDOM NUMBER GENERATORS WITH MERSENNE PRIME MODULUS 2 61-1 Dr. James Harris* *Department

More information

IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY FPGA

IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY FPGA IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY FPGA Implementations of Tiny Mersenne Twister Guoping Wang Department of Engineering, Indiana University Purdue University Fort

More information

George Landon Chao Shen Chengdong Li

George Landon Chao Shen Chengdong Li George Landon Chao Shen Chengdong Li An Introduction George Landon Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin. John Von Neumann (1951) Introduction

More information

November , Universität Leipzig, CompPhys12

November , Universität Leipzig, CompPhys12 Parallel streams of pseudorandom numbers for Monte Carlo simulations: Using most reliable algorithms and applying parallelism of modern CPUs and GPUs L.Yu. Barash Landau Institute for Theoretical Physics

More information

Random Number Generation A Practitioner s Overview

Random Number Generation A Practitioner s Overview Random Number Generation A Practitioner s Overview Prof. Michael Mascagni Department of Computer Science Department of Mathematics Department of Scientific Computing Graduate Program in Molecular Biophysics

More information

A Reconfigurable Supercomputing Library for Accelerated Parallel Lagged-Fibonacci Pseudorandom Number Generation

A Reconfigurable Supercomputing Library for Accelerated Parallel Lagged-Fibonacci Pseudorandom Number Generation University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2006 A Reconfigurable Supercomputing Library for Accelerated Parallel Lagged-Fibonacci

More information

Testing parallel random number generators

Testing parallel random number generators Parallel Computing 29 (2003) 69 94 www.elsevier.com/locate/parco Testing parallel random number generators Ashok Srinivasan a, Michael Mascagni b, *, David Ceperley c a Department of Computer Science,

More information

REPRODUCIBILITY BEGINNER s

REPRODUCIBILITY BEGINNER s Simulation Parallèles Stochastiques Reproductibles? Hill David (Credit : Pierre Schweitzer - Dao Van Toan ) Université Blaise Pascal ISIMA/LIMOS UMR CNRS 6158 REPRODUCIBILITY BEGINNER s 1 Reproducibility?

More information

A Survey and Empirical Comparison of Modern Pseudo-Random Number Generators for Distributed Stochastic Simulations

A Survey and Empirical Comparison of Modern Pseudo-Random Number Generators for Distributed Stochastic Simulations A Survey and Empirical Comparison of Modern Pseudo-Random Number Generators for Distributed Stochastic Simulations Marcus Schoo Krzysztof Pawlikowski Department of Computer Science and Software Engineering

More information

Proposed Pseudorandom Number Generator

Proposed Pseudorandom Number Generator IJSRD National Conference on Technological Advancement and Automatization in Engineering January 2016 ISSN:2321-0613 Mahesh S Naik Research Scholar Shri Jagdishprasad Jhabarmal Tibrewala University, Rajasthan

More information

Raj Boppana, Ph.D. Professor and Interim Chair. University of Texas at San Antonio

Raj Boppana, Ph.D. Professor and Interim Chair. University of Texas at San Antonio Raj Boppana, Ph.D. Professor and Interim Chair Computer Science Department University of Texas at San Antonio Terminology RN: pseudorandom number RN stream: a sequence of RNs Cycle: the maximum number

More information

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation Unit 5 SIMULATION THEORY Lesson 39 Learning objective: To learn random number generation. Methods of simulation. Monte Carlo method of simulation You ve already read basics of simulation now I will be

More information

UNIT 9A Randomness in Computation: Random Number Generators Principles of Computing, Carnegie Mellon University - CORTINA

UNIT 9A Randomness in Computation: Random Number Generators Principles of Computing, Carnegie Mellon University - CORTINA UNIT 9A Randomness in Computation: Random Number Generators 1 Course Announcements We are in the process of setting up the tutoring help system. PS7 is due Wednesday 3/20 in class Midterm 2 (written) is

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 13 Random Numbers and Stochastic Simulation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright

More information

b) Describe a procedure visitors should follow to find a free parking space, when the space they are assigned is occupied.

b) Describe a procedure visitors should follow to find a free parking space, when the space they are assigned is occupied. Exercises Exercises 1. Which memory locations are assigned by the hashing function h(k) = k mod 97 to the records of insurance company customers with these Social Security numbers? a) 034567981 b) 183211232

More information

Monte Carlo Integration COS 323

Monte Carlo Integration COS 323 Monte Carlo Integration COS 323 Integration in d Dimensions? One option: nested 1-D integration f(x,y) g(y) y f ( x, y) dx dy ( ) = g y dy x Evaluate the latter numerically, but each sample of g(y) is

More information

Forrest B. Brown, Yasunobu Nagaya. American Nuclear Society 2002 Winter Meeting November 17-21, 2002 Washington, DC

Forrest B. Brown, Yasunobu Nagaya. American Nuclear Society 2002 Winter Meeting November 17-21, 2002 Washington, DC LA-UR-02-3782 Approved for public release; distribution is unlimited. Title: THE MCNP5 RANDOM NUMBER GENERATOR Author(s): Forrest B. Brown, Yasunobu Nagaya Submitted to: American Nuclear Society 2002 Winter

More information

BENCHMARK OF THE UNROLLING OF PSEUDORANDOM NUMBERS GENERATORS

BENCHMARK OF THE UNROLLING OF PSEUDORANDOM NUMBERS GENERATORS BENCHMARK OF THE UNROLLING OF PSEUDORANDOM NUMBERS GENERATORS David R.C. Hill Alexandre Roche LIMOS UMR CNRS 6158 Blaise Pascal University ISIMA, Campus des Cézeaux BP 10125 63177 Aubière Cedex FRANCE

More information

Random Number Generator of STMC and simple Monte Carlo Integration

Random Number Generator of STMC and simple Monte Carlo Integration Random Number Generator of STMC and simple Monte Carlo Integration Bernd Berg FSU MCMC Course, August 26, September 2, 2008 Random Numbers and Fortran Code According to Marsaglia and collaborators a list

More information

Lab 6 Using PicoBlaze. Fast Sorting.

Lab 6 Using PicoBlaze. Fast Sorting. Lab 6 Using PicoBlaze. Fast Sorting. Design, implement, and verify experimentally a circuit shown in the block diagram below, composed of the following major components: PicoBlaze-6 microcontroller with

More information

Computational Methods. Randomness and Monte Carlo Methods

Computational Methods. Randomness and Monte Carlo Methods Computational Methods Randomness and Monte Carlo Methods Manfred Huber 2010 1 Randomness and Monte Carlo Methods Introducing randomness in an algorithm can lead to improved efficiencies Random sampling

More information

Efficient pseudo-random number generation for monte-carlo simulations using graphic processors

Efficient pseudo-random number generation for monte-carlo simulations using graphic processors Journal of Physics: Conference Series Efficient pseudo-random number generation for monte-carlo simulations using graphic processors To cite this article: Siddhant Mohanty et al 2012 J. Phys.: Conf. Ser.

More information

Random Numbers for Parallel Computers: Requirements and Methods, With Emphasis on GPUs

Random Numbers for Parallel Computers: Requirements and Methods, With Emphasis on GPUs Random Numbers for Parallel Computers: Requirements and Methods, With Emphasis on GPUs Pierre L Ecuyer a,b, David Munger a, Boris Oreshkin a, Richard Simard a a DIRO, Pavillon Aisenstadt, Université de

More information

Monte Carlo Simulation With The GATE Software Using Grid Computing

Monte Carlo Simulation With The GATE Software Using Grid Computing Monte Carlo Simulation With The GATE Software Using Grid Computing Romain Reuillon, David Hill, Christophe Gouinaud, Z. El Bitar, Vincent Breton, I. Buvat To cite this version: Romain Reuillon, David Hill,

More information

UNIT 9A Randomness in Computation: Random Number Generators

UNIT 9A Randomness in Computation: Random Number Generators UNIT 9A Randomness in Computation: Random Number Generators 1 Last Unit Computer organization: what s under the hood 3 This Unit Random number generation Using pseudorandom numbers 4 Overview The concept

More information

Parallel Computing 35 (2009) Contents lists available at ScienceDirect. Parallel Computing. journal homepage:

Parallel Computing 35 (2009) Contents lists available at ScienceDirect. Parallel Computing. journal homepage: Parallel Computing 35 (2009) 29 37 Contents lists available at ScienceDirect Parallel Computing journal homepage: www.elsevier.com/locate/parco Scalable parallel multiple recursive generators of large

More information

Random-Number Generation

Random-Number Generation Random-Number Generation Overview Desired properties of a good generator Linear-congruential generators Tausworthe generators Survey of random number generators Seed selection Myths about random number

More information

RANDOM NUMBERS GENERATION

RANDOM NUMBERS GENERATION Chapter 4 RANDOM NUMBERS GENERATION M. Ragheb 9//2013 4.1. INTRODUCTION The use and generation of random numbers uniformly distributed over the unit interval: [0, 1] is a unique feature of the Monte Carlo

More information

Monte Carlo Integration and Random Numbers

Monte Carlo Integration and Random Numbers Monte Carlo Integration and Random Numbers Higher dimensional integration u Simpson rule with M evaluations in u one dimension the error is order M -4! u d dimensions the error is order M -4/d u In general

More information

Random Numbers Random Walk

Random Numbers Random Walk Random Numbers Random Walk Computational Physics Random Numbers Random Walk Outline Random Systems Random Numbers Monte Carlo Integration Example Random Walk Exercise 7 Introduction Random Systems Deterministic

More information

RNG: definition. Simulating spin models on GPU Lecture 3: Random number generators. The story of R250. The story of R250

RNG: definition. Simulating spin models on GPU Lecture 3: Random number generators. The story of R250. The story of R250 Simulating spin models on GPU Lecture 3: Random number generators Martin Weigel Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom and Institut für Physik, Johannes Gutenberg-Universität

More information

PRNG. Generating random numbers Version: Date: 12 March Otmar Lendl Josef Leydold

PRNG. Generating random numbers Version: Date: 12 March Otmar Lendl Josef Leydold PRNG Generating random numbers Version: 3.0.2 Date: 12 March 2001 Otmar Lendl Josef Leydold Copyright 2001 Otmar Lendl (lendl@cosy.sbg.ac.at) Permission is granted to make and distribute verbatim copies

More information

Blum-Blum-Shub cryptosystem and generator. Blum-Blum-Shub cryptosystem and generator

Blum-Blum-Shub cryptosystem and generator. Blum-Blum-Shub cryptosystem and generator BBS encryption scheme A prime p is called a Blum prime if p mod 4 = 3. ALGORITHM Alice, the recipient, makes her BBS key as follows: BBS encryption scheme A prime p is called a Blum prime if p mod 4 =

More information

Monte Carlo Integration COS 323

Monte Carlo Integration COS 323 Monte Carlo Integration COS 323 Last time Interpolatory Quadrature Review formulation; error analysis Newton-Cotes Quadrature Midpoint, Trapezoid, Simpson s Rule Error analysis for trapezoid, midpoint

More information

CS 179: GPU Computing. Lecture 16: Simulations and Randomness

CS 179: GPU Computing. Lecture 16: Simulations and Randomness CS 179: GPU Computing Lecture 16: Simulations and Randomness Simulations South Bay Simulations, http://www.panix.com/~brosen/graphics/iacc.400.jpg Exa Corporation, http://www.exa.com/images/f16.png Flysurfer

More information

DESIGN AND IMPLEMENTATION OF PSEUDO RANDOM NUMBER GENERATOR USED IN AES ALGORITHM

DESIGN AND IMPLEMENTATION OF PSEUDO RANDOM NUMBER GENERATOR USED IN AES ALGORITHM DESIGN AND IMPLEMENTATION OF PSEUDO RANDOM NUMBER GENERATOR USED IN AES ALGORITHM M.SUNITHA (1), P.S.SUREKHA (2) M.TECH Scholor, VLSI Design, Jyothismathi College of Engineering and Technology (1) ASST.Professor,

More information

RANDOM NUMBERS GENERATION

RANDOM NUMBERS GENERATION Chapter 4 RANDOM NUMBERS GENERATION M. Ragheb 10/2/2015 4.1. INTRODUCTION The use and generation of random numbers uniformly distributed over the unit interval: [0, 1] is a unique feature of the Monte

More information

T Cryptography and Data Security

T Cryptography and Data Security T-79.159 Cryptography and Data Security Lecture 10: 10.1 Random number generation 10.2 Key management - Distribution of symmetric keys - Management of public keys Kaufman et al: Ch 11.6; 9.7-9; Stallings:

More information

Analysis of Cryptography and Pseudorandom Numbers

Analysis of Cryptography and Pseudorandom Numbers ISSN: 2454-2377 Volume 2, Issue 2, June 2016 Analysis of Cryptography and Pseudorandom Numbers Richa Agarwal Student, M. Tech., Computer Science, Invertis University, Bareilly, India Abstract: With the

More information

Faster Simulations of the National Airspace System

Faster Simulations of the National Airspace System Faster Simulations of the National Airspace System PK Menon Monish Tandale Sandy Wiraatmadja Optimal Synthesis Inc. Joseph Rios NASA Ames Research Center NVIDIA GPU Technology Conference 2010, San Jose,

More information

I. INTRODUCTION II. EXISTING SYSTEM

I. INTRODUCTION II. EXISTING SYSTEM Design and Implementation of Pseudo Random Number Generator Used in AES Algorithm N.Madhavi 1, R.Viswanadham 2 M. Tech Student, Department of ECE, Shri Vishnu Engg College for women Asst. Professor, Department

More information

Investigation and Design of the Efficient Hardwarebased RNG for Cryptographic Applications

Investigation and Design of the Efficient Hardwarebased RNG for Cryptographic Applications Investigation and Design of the Efficient Hardwarebased RNG for Cryptographic Applications Ahmad Firdaus Mohamad Razy, Siti Zarina Md Naziri, Rizalafande Che Ismail and Norina Idris School of Microelectronic

More information

Comparative Analysis of SLA-LFSR with Traditional Pseudo Random Number Generators

Comparative Analysis of SLA-LFSR with Traditional Pseudo Random Number Generators International Journal of Computational Intelligence Research ISSN 0973-1873 Volume 13, Number 6 (2017), pp. 1461-1470 Research India Publications http://www.ripublication.com Comparative Analysis of SLA-LFSR

More information

Random Number Generators

Random Number Generators 1/17 Random Number Generators Professor Karl Sigman Columbia University Department of IEOR New York City USA 2/17 Introduction Your computer generates" numbers U 1, U 2, U 3,... that are considered independent

More information

Midterm Exam 2B Answer key

Midterm Exam 2B Answer key Midterm Exam 2B Answer key 15110 Principles of Computing Fall 2015 April 6, 2015 Name: Andrew ID: Lab section: Instructions Answer each question neatly in the space provided. There are 6 questions totaling

More information

Random Number Generators. Summer Internship Project Report submitted to Institute for Development and. Research in Banking Technology (IDRBT)

Random Number Generators. Summer Internship Project Report submitted to Institute for Development and. Research in Banking Technology (IDRBT) Random Number Generators Summer Internship Project Report submitted to Institute for Development and Research in Banking Technology (IDRBT) Submitted by: Vipin Kumar Singhal Bachelor in Technology, 3 rd

More information

is bad when combined with a LCG with a small multiplier. In section 2 this observation is examined. Section 3 gives portable implementations for LCGs

is bad when combined with a LCG with a small multiplier. In section 2 this observation is examined. Section 3 gives portable implementations for LCGs Version: 25.11.92 (To appear in ACM TOMS) A Portable Uniform Random Number Generator Well Suited for the Rejection Method W. Hormann and G. Deringer University of Economics and Business Administration

More information

GENERATING RANDOM NUMBERS IN APL

GENERATING RANDOM NUMBERS IN APL GENERATING RANDOM NUMBERS IN APL by Thomas N. Herzog Loyola College of Baltimore 99 . ~.....-:- 100 APL is a vector-matrix based computer programming language which is a powerful tool for solving actuarial

More information

Introduction to HPC. Introduction to HPC, Random number generation and OpenMP. Jérôme Lelong, Christophe Picard, Laurence Viry

Introduction to HPC. Introduction to HPC, Random number generation and OpenMP. Jérôme Lelong, Christophe Picard, Laurence Viry Introduction to HPC, Random number generation and OpenMP Jérôme Lelong, Christophe Picard, Laurence Viry Université Grenoble Alpes CEMRACS 2017 Agenda 1 Introduction to HPC Motivation Hardware Software

More information

Outline: Embarrassingly Parallel Problems. Example#1: Computation of the Mandelbrot Set. Embarrassingly Parallel Problems. The Mandelbrot Set

Outline: Embarrassingly Parallel Problems. Example#1: Computation of the Mandelbrot Set. Embarrassingly Parallel Problems. The Mandelbrot Set Outline: Embarrassingly Parallel Problems Example#1: Computation of the Mandelbrot Set what they are Mandelbrot Set computation cost considerations static parallelization dynamic parallelizations and its

More information

Variants of Mersenne Twister Suitable for Graphic Processors

Variants of Mersenne Twister Suitable for Graphic Processors Variants of Mersenne Twister Suitable for Graphic Processors Mutsuo Saito 1, Makoto Matsumoto 2 1 Hiroshima University, 2 University of Tokyo August 16, 2010 This study is granted in part by JSPS Grant-In-Aid

More information

10.2 Applications of Monte Carlo Methods

10.2 Applications of Monte Carlo Methods Chapter 10 Monte Carlo Methods There is no such thing as a perfectly random number. teacher - Harold Bailey, my 8 th grade math Preface When I was a youngster, I was the captain of my junior high school

More information

Lecture 2: Introduction to Numerical Simulation

Lecture 2: Introduction to Numerical Simulation Lecture 2: Introduction to Numerical Simulation Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris Outline of The Talk 1 Simulation of Random variables Outline 1 Simulation of Random variables Random

More information

Statistical Computing with R

Statistical Computing with R Statistical Computing with R Eric Slud, Math. Dept., UMCP August 30, 2009 Overview of Course This course was originally developed jointly with Benjamin Kedem and Paul Smith. It consists of modules as indicated

More information

arxiv: v1 [cs.dc] 2 Aug 2011

arxiv: v1 [cs.dc] 2 Aug 2011 High-Performance Pseudo-Random Number Generation on Graphics Processing Units Nimalan Nandapalan 1, Richard P. Brent 1,2, Lawrence M. Murray 3, and Alistair Rendell 1 1 Research School of Computer Science,

More information

Outline: Embarrassingly Parallel Problems

Outline: Embarrassingly Parallel Problems Outline: Embarrassingly Parallel Problems what they are Mandelbrot Set computation cost considerations static parallelization dynamic parallelizations and its analysis Monte Carlo Methods parallel random

More information

SIMULATION SYSTEMS PART 1: RANDOM NUMBER GENERATION. Prof. Yasser Mostafa Kadah

SIMULATION SYSTEMS PART 1: RANDOM NUMBER GENERATION. Prof. Yasser Mostafa Kadah 1 SIMULATION SYSTEMS PART 1: RANDOM NUMBER GENERATION Prof. Yasser Mostafa Kadah Introduction to Simulation 2 Simulating the process can be useful as a validation of a model or a comparison of two different

More information

Manual_implementation_of_the_Mersenne_twister_PseudoRandom_N

Manual_implementation_of_the_Mersenne_twister_PseudoRandom_N Manual_implementation_of_the_Mersenne_twister_PseudoRandom_N May 4, 2017 1 Table of Contents 1 Manual implementation of the Mersenne twister PseudoRandom Number Generator (PRNG) 1.1 Common API for the

More information

Statistical Computing

Statistical Computing SERIES I ARTICLE Statistical Computing 1. Understanding Randomness and Random Numbers Sudhakar Kunte Elements of statistical computing are discussed in this series. We begin with the notion of random numbers

More information

Accelerated Simulation of Communication Waveforms Using The MathWorks Parallel Computing Toolbox

Accelerated Simulation of Communication Waveforms Using The MathWorks Parallel Computing Toolbox Accelerated Simulation of Communication Waveforms Using The MathWorks Parallel Computing Toolbox Brendan Garvey (General Dynamics C4 Systems, Scottsdale, AZ, USA) brendan.garvey@gdc4s.com Updated 3-5-2008

More information

Random Number Generation. Biostatistics 615/815 Lecture 16

Random Number Generation. Biostatistics 615/815 Lecture 16 Random Number Generation Biostatistics 615/815 Lecture 16 Some Uses of Random Numbers Simulating data Evaluate statistical procedures Evaluate study designs Evaluate program implementations Controlling

More information

LECTURE 8: Random numbers

LECTURE 8: Random numbers LECTURE 8: Random numbers November 2, 22 Introduction. Background What is a random number? Is 58935 "more random" than 2345?.8.6.4.2.2.4.6.8.5.5 Figure : Randomly distributed points. Randomness (uncorrelatedness)

More information

Random Number Generation and Monte Carlo Methods

Random Number Generation and Monte Carlo Methods James E. Gentle Random Number Generation and Monte Carlo Methods With 30 Illustrations Springer Contents Preface vii 1 Simulating Random Numbers from a Uniform Distribution 1 1.1 Linear Congruential Generators

More information

- 0 - CryptoLib: Cryptography in Software John B. Lacy 1 Donald P. Mitchell 2 William M. Schell 3 AT&T Bell Laboratories ABSTRACT

- 0 - CryptoLib: Cryptography in Software John B. Lacy 1 Donald P. Mitchell 2 William M. Schell 3 AT&T Bell Laboratories ABSTRACT - 0 - CryptoLib: Cryptography in Software John B. Lacy 1 Donald P. Mitchell 2 William M. Schell 3 AT&T Bell Laboratories ABSTRACT With the capacity of communications channels increasing at the current

More information

Midterm Exam 2A Principles of Computing Fall November 10, 2014

Midterm Exam 2A Principles of Computing Fall November 10, 2014 Midterm Exam 2A 15110 Principles of Computing Fall 2014 November 10, 2014 Name: Andrew ID: Lab section: Instructions Answer each question neatly in the space provided. There are 6 questions totaling 28

More information

Statistical Evaluation of a Self-Tuning Vectorized Library for the Walsh Hadamard Transform

Statistical Evaluation of a Self-Tuning Vectorized Library for the Walsh Hadamard Transform Statistical Evaluation of a Self-Tuning Vectorized Library for the Walsh Hadamard Transform Michael Andrews and Jeremy Johnson Department of Computer Science, Drexel University, Philadelphia, PA USA Abstract.

More information

CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion

CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion CSCE 110 Dr. Amr Goneid Exercise Sheet (7): Exercises on Recursion Consider the following recursive function: int what ( int x, int y) if (x > y) return what (x-y, y); else if (y > x) return what (x, y-x);

More information

USER MANUAL. UNURAN for Windows VERSION 0.6.0

USER MANUAL. UNURAN for Windows VERSION 0.6.0 USER MANUAL UNURAN for Windows VERSION 0.6.0 INTRODUCTION Page 2 UNURAN for Windows is a user-friendly implementation of algorithms for generating uniform and non-uniform random numbers wrapped around

More information

POST-SIEVING ON GPUs

POST-SIEVING ON GPUs POST-SIEVING ON GPUs Andrea Miele 1, Joppe W Bos 2, Thorsten Kleinjung 1, Arjen K Lenstra 1 1 LACAL, EPFL, Lausanne, Switzerland 2 NXP Semiconductors, Leuven, Belgium 1/18 NUMBER FIELD SIEVE (NFS) Asymptotically

More information

Algorithms for Hard Problems

Algorithms for Hard Problems Algorithms for Hard Problems Monte Carlo and Markov Chain Monte Carlo methods, backtracking, branch & bound and alpha-beta pruning. Why parallel algorithms? Monte Carlo and Markov chain Monte Carlo methods

More information

3 Assignment 1 [Assignment ID:cpp_basics]

3 Assignment 1 [Assignment ID:cpp_basics] SENG 475 & ECE 596C, Summer 2019 3-1 3 Assignment 1 [Assignment ID:cpp_basics] 3.1 Preamble (Please Read Carefully) Before starting work on this assignment, it is critically important that you carefully

More information

Linear Congruential Number Generators. A useful, if not important, ability of modern computers is random number

Linear Congruential Number Generators. A useful, if not important, ability of modern computers is random number Jagannath Pisharath Newer Math Fall 2003 Linear Congruential Number Generators A useful, if not important, ability of modern computers is random number generation. Without this ability, if you wanted to,

More information

A Secured Key Generation Scheme Using Enhanced Entropy

A Secured Key Generation Scheme Using Enhanced Entropy 236 A Secured Key Generation Scheme Using Enhanced Entropy M.S. Irfan Ahmed Asst. Professor, VLB Engineering College, Coimbatore E.R. Naganathan Reader, Computer Science Department Alagappa University,

More information

PROBLEM SOLVING TECHNIQUES SECTION - A. 1. Answer any ten of the following

PROBLEM SOLVING TECHNIQUES SECTION - A. 1. Answer any ten of the following PROBLEM SOLVING TECHNIQUES SECTION - A 1. Answer any ten of the following a. Define an algorithm. An algorithm is a finite set of instructions that if followed, accomplishes a particular task. b. Define

More information

Implementation of the Pseudo-Random Numbers Generators and the Low Discrepancy Sequences

Implementation of the Pseudo-Random Numbers Generators and the Low Discrepancy Sequences 16 pages 1 Implementation of the Pseudo-Random Numbers Generators and the Low Discrepancy Sequences Anne GILLE-GENEST March 1, 2012 Contents 1 Implementation 2 2 Pseudo-Random Numbers Generators 2 2.1

More information

Discrete-Event Simulation:

Discrete-Event Simulation: Discrete-Event Simulation: A First Course Section 2.2: Lehmer Random Number Generators: Implementation Section 2.2: Discrete-Event Simulation c 2006 Pearson Ed., Inc. 0-13-142917-5 Section 2.2: Lehmer

More information

Open Petascale libraries Project Ken Miura

Open Petascale libraries Project Ken Miura Open Petascale libraries Project Ken Miura National Institute of Informatics Fujitsu Laboratories Limited OPL Membership 4 19 June 2012 Work Packages WP1: WP2: WP3: WP4: WP5: WP6: WP7: WP8: WP9: Survey

More information

Performance potential for simulating spin models on GPU

Performance potential for simulating spin models on GPU Performance potential for simulating spin models on GPU Martin Weigel Institut für Physik, Johannes-Gutenberg-Universität Mainz, Germany 11th International NTZ-Workshop on New Developments in Computational

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Statistical Methods -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Statistical Methods - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Statistical Methods - Karsten Heeger heeger@wisc.edu Course Schedule and Reading course website http://neutrino.physics.wisc.edu/teaching/phys736/

More information

My 2 hours today: 1. Efficient arithmetic in finite fields minute break 3. Elliptic curves. My 2 hours tomorrow:

My 2 hours today: 1. Efficient arithmetic in finite fields minute break 3. Elliptic curves. My 2 hours tomorrow: My 2 hours today: 1. Efficient arithmetic in finite fields 2. 10-minute break 3. Elliptic curves My 2 hours tomorrow: 4. Efficient arithmetic on elliptic curves 5. 10-minute break 6. Choosing curves Efficient

More information

NVIDIA Fermi Architecture

NVIDIA Fermi Architecture Administrivia NVIDIA Fermi Architecture Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Assignment 4 grades returned Project checkpoint on Monday Post an update on your blog beforehand Poster

More information

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes.

HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes. HiPANQ Overview of NVIDIA GPU Architecture and Introduction to CUDA/OpenCL Programming, and Parallelization of LDPC codes Ian Glendinning Outline NVIDIA GPU cards CUDA & OpenCL Parallel Implementation

More information

Chapter 2 Random Number Generators

Chapter 2 Random Number Generators Chapter 2 Random Number Generators Introduction For many past years, numerous applications of randomness have led to a wide variety of methods for generating random data of various type, like rolling dice,

More information

Cryptography and Network Security Chapter 7

Cryptography and Network Security Chapter 7 Cryptography and Network Security Chapter 7 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 7 Stream Ciphers and Random Number Generation The comparatively

More information

An Implementation of a 5-term GFSR Random Number Generator for Parallel Computations

An Implementation of a 5-term GFSR Random Number Generator for Parallel Computations The Eighth International Symposium on Operations Research and Its Applications (ISORA 9) Zhangjiajie, China, September 2 22, 29 Copyright 29 ORSC & APORC, pp. 448 452 An Implementation of a 5-term GFSR

More information

THE COMPARISON OF PARALLEL SORTING ALGORITHMS IMPLEMENTED ON DIFFERENT HARDWARE PLATFORMS

THE COMPARISON OF PARALLEL SORTING ALGORITHMS IMPLEMENTED ON DIFFERENT HARDWARE PLATFORMS Computer Science 14 (4) 2013 http://dx.doi.org/10.7494/csci.2013.14.4.679 Dominik Żurek Marcin Pietroń Maciej Wielgosz Kazimierz Wiatr THE COMPARISON OF PARALLEL SORTING ALGORITHMS IMPLEMENTED ON DIFFERENT

More information

T Cryptography and Data Security

T Cryptography and Data Security T-79.4501 Cryptography and Data Security Lecture 10: 10.1 Random number generation 10.2 Key management - Distribution of symmetric keys - Management of public keys Stallings: Ch 7.4; 7.3; 10.1 1 The Use

More information

SAC: G: 3-D Cellular Automata based PRNG

SAC: G: 3-D Cellular Automata based PRNG SAC: G: 3-D Cellular Automata based PRNG Rosemary Koikara Kungpook National University School of Computer Science and Engineering Daegu, South Korea rosekoikara@gmail.com ABSTRACT Random numbers are critical

More information