George Landon Chao Shen Chengdong Li

Size: px
Start display at page:

Download "George Landon Chao Shen Chengdong Li"

Transcription

1 George Landon Chao Shen Chengdong Li

2 An Introduction George Landon

3 Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin. John Von Neumann (1951)

4 Introduction Definition History Types Tests for Randomness Uses

5 Webster Defines Random Lacking a definite plan, purpose, or pattern A set where each of the elements has equal probability of occurrence

6 Random Numbers A sequence in which each term is unpredictable D. H. Lehmer (1951) Examples between 1 and , 95, 11, 60, 22

7 History according to Knuth In times of yore: - Balls were drawn out of well stirred urns - Dice were rolled - Cards were dealt

8 Organizing Random Numbers In 1927, L.H.C Tippet published a table of 40,000 random digits Mechanically Driven Special Machines were used to generate random numbers Kendall and Babington-Smith (1939) Generated a table of 100,000 random digits RAND Corporation (1955) Generated a table of 1,000,000 random digits

9 Types Truly Random Pseudorandom Quasi-Random

10 Truly Random Follows directly from definition of random. Each element has equal probability of being chosen from the set.

11 Truly Random Examples Randomly emmited particles of radiation Geiger Counter Thermal noise from a resistor Intel s Random Number Generator

12 Pseudorandom A finite set of numbers that display qualities of random numbers Tests can show that there are patterns Subsequent numbers can be guessed

13 Quasi-Random A series of numbers satisfying some mathematical random properties even though no random appearance is provided Good for Monte-Carlo methods Lower discrepancies offer better convergence

14 Some Tests for Randomness Entropy Information density of the content of a sequence High density usually means random Arithmetic Mean Chi-square Test Provides a probability for the randomness for a sequence An example Pseudorandom number test

15 Practical Uses Simulation Computer Programming Decision Making Recreation

16 Simulation Simulate natural phenomena on a computer Used for experiments in sterile conditions to make them more realistic Useful in all of the Applied Disciplines

17 Computer Programming Test program effectiveness Test algorithm correctness Instead of all possible inputs use a few random numbers Microsoft has used this logic in testing their software

18 Decision Making When an unbiased decision is needed Fixed decision can cause some algorithms to run more slowly Good way of choosing who goes first Sporting events

19 Recreation Lottery Equal odds The KY Lottery uses Microsoft Excel s RNG for various second chance drawings Casinos Provides a chance for luck

20 Recreation (cont) Video Games Random events keep games entertaining Q-bert

21 References 3D Project Team. e1.html ENT - A Pseudorandom Number Sequence Test Program. Knuth, D. The Art of Computer Programming Volume Random.org.

22 Classification Chao Shen

23 Classification of random numbers Truely random numbers Pseudo-random numbers Quasi-random numbers

24 The advantages of true random No periodicities. numbers Not based on an algorithm. No predictability of random numbers based on knowledge of preceding sequences. Certainty that no hidden correlations are present.

25 Example : ZRANDOM

26 Pseudo-random number generator The pseudo-random number generator requires a number to start with that gets plugged in to the set of equations. After that it uses part of the result from the last time it was used as input to the next iteration. This starting number is called the seed.

27 Methods for Random Number Generation Linear Congruential Generators Lagged Fibonnaci Generators Shift Register Generators Combined Generators

28 Linear Congruential Generators (LCG) X i =(ax i-1 +c) Mod m where m is the modulus, a the multiplier, and c the additive constant or addend. The size of the modulus constrains the period, and it is usually chosen to be either prime or a power of 2. LCGs are not recommended to be used in computer simulations, nor any other purposes which require higher degrees of randomness.

29 Example ( LCG) Let a=1,c=5,m=16 and x 0 =1. The sequence of pseudo-random integers generated by this algorithm is: 1,6,15,12,13,2,11,8,9,14,7,4,5,10,3,0,1,6,15, 12,13,2,11,8,9,14,.

30 Improvement of LCG Multiple recursive generators (MRG) X i =( a 1 X i-1 +a 2 X i a k X i-k +b) mod M By choosing k > 1 will increase the time taken to generate each number, but will greatly improve the period and randomness properties of the generator

31 Lagged Fibonnaci Generators LFGs have become popular recently. The name comes from the Fibonacci sequence : 1, 1, 2, 3, 5, 8,... (X n = X n-1 + X n-2 ). LFGs generate random numbers from the following iterative scheme: X n = X n-i X n-k (mod m), i and k are lags, i >k, and is a binary operation.

32 Shift Register Generators Shift register (SRG) generators are generally used in a form where they can be considered as a special case of a lagged Fibonacci generator using XOR. XOR gives by far the worst randomness properties of any operation for an LFG, so these generators are not recommended.

33 Combined Generators Better quality sequences can often be obtained by combining the output of the basic generators to create a new random sequence as : Z n =X n Y n where is typically either the exclusive-or operator or addition modulo some integer m, and x and y are sequences from two independent generators.

34 Requirements for Sequential Random Number Generators uniformly distributed uncorrelated never repeats itself satisfy any statistical test for randomness reproduceable portable

35 Requirements for Sequential Random Number Generators (continue) can be changed by adjusting an initial seed value can easily be split into many independent subsequences can be generated rapidly using limited computer memory

36 Parallel Random Number Generators Many different parallel random number generators have been proposed, but most of them use the same basic concept, which is to parallelize a sequential generator by taking the elements of the sequence of pseudo-random numbers it generates and distributing them among the processors in some way.

37 The Leapfrog Method Ideally we would like a parallel random number generator to produce the same sequence of random numbers for different numbers of processors. A simple way to achieve this goal is for processor P of an N processor machine to generate the subsequence X P, X P+N, X P+2N,.,

38 Sequence Splitting This can be done by splitting the sequence into non-overlapping contiguous sections, each generated by a different processor. X PL, X PL+1, X PL+2,, Generators that apply leapfrog and sequence splitting method

39 Independent Sequences This method is similar to sequence splitting, in that each processor generates a different, contiguous section of the sequence. However in this case the starting point in the sequence is chosen at random for each processor, rather than computed in advance using a regular increment.

40 Requirements for Parallel Random Number Generators there should be no inter-processor correlation sequences generated on each processor should satisfy the qualities of serial random number generators it should generate same sequence for different number of processors it should work for any number of processors there should be no data movement between processors

41 Suggestions on choosing RNGs Never trust a parallel random number generator. In particular, never trust the default random number generator provided with the system you are using. If a generator is shown to fail a certain empirical test, that does not necessarily mean that it will also perform poorly for your application, or the results you spent many months gathering using that generator are now invalid.

42 Recommendations for sequential RNGS A multiplicative lagged Fibonacci generator with a lag of at least 127, and preferably 1279 or more. A 48-bit or preferably 64-bit linear congruential generator that performs well in the Spectral Test and has a prime modulus. A 32-bit (or more) combined linear congruential generator, with well-chosen parameters. If speed is an issue, use an additive lagged Fibonacci generator with a lag of at least 1279.

43 Recommendations for parallel RNGs A combined linear congruential generator using sequence splitting; A lagged Fibonacci generator, although great care must be exercised in the initialization procedure, to ensure that the seed tables on each processor are random and uncorrelated.

44 Test for Randomness import java.util.random; class RandomTest { public static void main (String args[]) { int[] ndigits = new int[10]; double x; int n; Random myrandom = new Random(); // Initialize the array for (int i = 0; i < 10; i++) { ndigits[i] = 0; }

45 for (long i=0; i < ; i++) { } continue // generate a new random number between 0 and 9 x = myrandom.nextdouble() * 10.0; n = (int) x; //count the digits in the random number ndigits[n]++; for (int i = 0; i < 10; i++) { } } System.out.println(i+": " + ndigits[i]);}

46 0: : : : : : : : : : 9907 Sample output

47 Random number generator in Matlab Y = randn(m,n) or Y = randn([m n]) returns an m-by-n matrix of random entries. Y = randn(m,n,p,...) or Y = randn([m n p...]) generates random arrays. Y = randn(size(a)) returns an array of random entries that is the same size as A. randn, by itself, returns a scalar whose value changes each time it's referenced.

48 Example: x=randn randn(100,50)

49 Recommended Random Number Generator Software Combined linear congruential generators with parameters recommended by L'Ecuyer, parallelized using sequence splitting. * RANECU from CERNLIB Lagged Fibonacci generator using ultiplication, parallelized using independent sequences. * FIBMULT from Syracuse University Lagged Fibonacci generator using addition, parallelized using independent sequences. Be sure to use the largest possible lag. *Scalable Parallel Random Number Generator (SPRNG) Library from NCSA *FIBADD from Syracuse University

50 Online Reference view1.1/prngreview.pdf aching/ random.html

51 continue html

52 Application Chengdong Li

53 Application of random number in different areas Control/test of gambling machines Creation of lottery numbers Encryption of data (e.g. for communication in the Internet) Generation of code numbers or transaction numbers Digital signatures Direct use for Monte-Carlo simulations or generation of seed numbers Numeric solution of mathematical problems

54 Topics covered: Random number Computer game cryptography Scientific research

55 Random number and game

56 Why introduce random into Game? Interest. Simulating some phenomenon in real world

57 Examples: Computer game

58 Computer game (cont.) Super mario Advance

59 Example: lottery

60 Random number and Cryptography "It is impossible to predict the unpredictable." -Don Cherry

61 What is Cryptography? To most people, cryptography means keeping communications private, however, today s cryptography is more than this: Encryption Transform data into a form that is virtually impossible to read without the appropriate knowledge (a key). Decryption Transform encrypted data back into an intelligible form (by an algorithm and a key). Digital Authentication Provide assurance that communication is from a particular person. Certification Prove we know certain information without revealing the information

62 The application of cryptography Build secure protocol and scheme. Provide basic tools for higher application.

63 Example:

64 Example (cont.)

65 Random source in Cryptography Almost all cryptographic protocols require the generation and use of secret values that must be unknown to attackers. Random number generator (RNG) is required. For example RNGs are required to generate public/private key pairs for asymmetric (public key) algorithms including RSA, DSA, and Diffie-Hellman. Keys for symmetric and hybrid cryptosystems are also generated randomly. RNGs are also used to create challenges, nonces (salts), padding bytes, and blinding values. The one time pad the only provably-secure encryption system uses as much key material as cipher-text and requires that the key-stream be generated from a truly random process.

66 A product example:

67 Why use random? Secure systems today are built on strong cryptographic algorithms that foil pattern analysis attempts. The security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of random techniques to generate secret quantities can foil the attacker efficiently.

68 Desired requirement for random Because security protocols rely on the unpredictability of the keys they use, random number generators for cryptographic applications must meet stringent requirements. The most important is that attackers, including those who know the RNG design, must not be able to make any useful predictions about the RNG outputs.

69 Mathematical view The entropy of the RNG output should be as close as possible to the bit length. Entropy: According to Shannon, the entropy H of any message or state is: H = K n i= 1 p i log p i Where P i is the probability of state i out of n possible states and K is an optional constant to provide units (e.g. 1/log(2) bit). In the case of a RNG that produces a k-bit binary result, P i is the probability that an output will equal i, where 0 i<2 k.

70 Mathematical view (cont.) For a perfect RNG, P i =2 -n and the entropy of the output is equal to K bits. This means that all possible outcomes are equally likely, and on average the information can not be represented in a sequence shorter than K bits. In contrast, the entropy of typical English alphabetic text is 1.5 bits per character. This is because there is much more correlation between the different bits in commonly used words, and the the words in the text.

71 Type of Random source Two type: true-random unconditionally unguessable, even by an adversary with infinite computing resources pseudo-random good only against computationally limited adversaries

72 The requirement from different algorithm The frequency and volume of require for random is different: RSA Required when key pair is generated, Thereafter, any number of messages can be signed without any further need for randomness. DSA Requires good random numbers for each signature. One time pad Requires a volume of randomness equal to all the messages to be processed.

73 RSA

74 DSA:

75 One time pad: Encryption Decryption m i c i Key Key k stream generator z i c i k stream generator z i m i

76 Authentication I m Alice Alice K Alice-Bob {R} Bob R Bob authenticate Alice based on a shared secret key K Alice-Bob

77 How to generate randomness? Hardware used to generate truly randomness: Sound/video input Disk drive Mouse event. Quantum effects in a semiconductor Unplugged microphone air turbulence within a sealed disk drive timing between keystrokes

78 How to generate randomness? Non-hardware strategy: Mixing functions One which combines two or more inputs and produces an output where each output bit is a different complex non-linear function of all the input bits. DES use strong mixing functions.

79 Example of mixer

80 Difference of two strategy: Hardware generation is based on a physical process. The advantages are obvious: No periodicities. Not based on an algorithm. No predictability of random numbers based on knowledge of preceding sequences. No hidden correlations are present. The equipartition fluctuations are purely stochastic. (Pseudo-random numbers contain systematic, unnatural fluctuations in the equipartition.)

81 Conclusion: Generation of unguessable "random" secret quantities for security use is an essential but difficult task. hardware techniques to produce such randomness would be relatively simple In the absence of hardware sources of randomness, a variety of user and software sources can frequently be used instead with care.

82 Random number in scientific research

83 Example of randomness required For scientific experiments, it is convenient that a series of random numbers can be replayed for use in several experiments, and pseudo-random numbers are well suited for this purpose. Most random number generators produce what is known as white noise. Here white means the successive values of the random numbers are not correlated with each other. It has a very rich frequency.

84 Application

85 White noise and its usage Feature: All frequency. Usage: DSP and filter System identification Simulation. Spectra analysis.

86 Useful links: shtml

A Secured Key Generation Scheme Using Enhanced Entropy

A Secured Key Generation Scheme Using Enhanced Entropy 236 A Secured Key Generation Scheme Using Enhanced Entropy M.S. Irfan Ahmed Asst. Professor, VLB Engineering College, Coimbatore E.R. Naganathan Reader, Computer Science Department Alagappa University,

More information

T Cryptography and Data Security

T Cryptography and Data Security T-79.159 Cryptography and Data Security Lecture 10: 10.1 Random number generation 10.2 Key management - Distribution of symmetric keys - Management of public keys Kaufman et al: Ch 11.6; 9.7-9; Stallings:

More information

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation

You ve already read basics of simulation now I will be taking up method of simulation, that is Random Number Generation Unit 5 SIMULATION THEORY Lesson 39 Learning objective: To learn random number generation. Methods of simulation. Monte Carlo method of simulation You ve already read basics of simulation now I will be

More information

Chapter 6 Random Number Generation

Chapter 6 Random Number Generation Chapter 6 Random Number Generation Requirements / application Pseudo-random bit generator Hardware and software solutions [NetSec/SysSec], WS 2007/2008 6.1 Requirements and Application Scenarios Security

More information

Analysis of Cryptography and Pseudorandom Numbers

Analysis of Cryptography and Pseudorandom Numbers ISSN: 2454-2377 Volume 2, Issue 2, June 2016 Analysis of Cryptography and Pseudorandom Numbers Richa Agarwal Student, M. Tech., Computer Science, Invertis University, Bareilly, India Abstract: With the

More information

T Cryptography and Data Security

T Cryptography and Data Security T-79.4501 Cryptography and Data Security Lecture 10: 10.1 Random number generation 10.2 Key management - Distribution of symmetric keys - Management of public keys Stallings: Ch 7.4; 7.3; 10.1 1 The Use

More information

Network Security. Random Number Generation. Chapter 6. Network Security (WS 2003): 06 Random Number Generation 1 Dr.-Ing G.

Network Security. Random Number Generation. Chapter 6. Network Security (WS 2003): 06 Random Number Generation 1 Dr.-Ing G. Network Security Chapter 6 Random Number Generation Network Security (WS 2003): 06 Random Number Generation 1 Tasks of Key Management (1) Generation: It is crucial to security, that keys are generated

More information

Randomness in Cryptography

Randomness in Cryptography Randomness in Cryptography JKU Linz 2007 Randomness in Cryptography 1 Randomness? Randomness in Cryptography 2 The need for randomness Contents 1 Introduction The need for randomness Formal denitions,

More information

Random and Pseudorandom Bit Generators

Random and Pseudorandom Bit Generators Random and Pseudorandom Bit Generators Random bit generators Pseudorandom bit generators Cryptographically Secure PRBG Statistical tests Unpredictable quantities The security of many cryptographic systems

More information

Random Number Generators for Parallel Computers

Random Number Generators for Parallel Computers Random Number Generators for Parallel Computers Paul D. Coddington Northeast Parallel Architectures Center, 111 College Place, Syracuse University, Syracuse, NY 13244-4100, U.S.A. paulc@npac.syr.edu Version

More information

CSC/ECE 774 Advanced Network Security

CSC/ECE 774 Advanced Network Security Computer Science CSC/ECE 774 Advanced Network Security Topic 2. Network Security Primitives CSC/ECE 774 Dr. Peng Ning 1 Outline Absolute basics Encryption/Decryption; Digital signatures; D-H key exchange;

More information

UNIT 9A Randomness in Computation: Random Number Generators

UNIT 9A Randomness in Computation: Random Number Generators UNIT 9A Randomness in Computation: Random Number Generators 1 Last Unit Computer organization: what s under the hood 3 This Unit Random number generation Using pseudorandom numbers 4 Overview The concept

More information

Recurrent Neural Network Models for improved (Pseudo) Random Number Generation in computer security applications

Recurrent Neural Network Models for improved (Pseudo) Random Number Generation in computer security applications Recurrent Neural Network Models for improved (Pseudo) Random Number Generation in computer security applications D.A. Karras 1 and V. Zorkadis 2 1 University of Piraeus, Dept. of Business Administration,

More information

Security. Communication security. System Security

Security. Communication security. System Security Security Communication security security of data channel typical assumption: adversary has access to the physical link over which data is transmitted cryptographic separation is necessary System Security

More information

Stream Ciphers. Çetin Kaya Koç Winter / 13

Stream Ciphers. Çetin Kaya Koç   Winter / 13 Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 1 / 13 Block Ciphers Cryptography Plaintext: M i with M i = n, where n is the block length (in bits) Ciphertext: C i with C i = m, where m n, however,

More information

CSC 774 Network Security

CSC 774 Network Security CSC 774 Network Security Topic 2. Review of Cryptographic Techniques CSC 774 Dr. Peng Ning 1 Outline Encryption/Decryption Digital signatures Hash functions Pseudo random functions Key exchange/agreement/distribution

More information

Computer Security. 08r. Pre-exam 2 Last-minute Review Cryptography. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 08r. Pre-exam 2 Last-minute Review Cryptography. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 08r. Pre-exam 2 Last-minute Review Cryptography Paul Krzyzanowski Rutgers University Spring 2018 March 26, 2018 CS 419 2018 Paul Krzyzanowski 1 Cryptographic Systems March 26, 2018 CS

More information

Random-Number Generation

Random-Number Generation Random-Number Generation Overview Desired properties of a good generator Linear-congruential generators Tausworthe generators Survey of random number generators Seed selection Myths about random number

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Outline Random number generation Properties of random numbers Linear Congruential

More information

Analysis, demands, and properties of pseudorandom number generators

Analysis, demands, and properties of pseudorandom number generators Analysis, demands, and properties of pseudorandom number generators Jan Krhovják Department of Computer Systems and Communications Faculty of Informatics, Masaryk University Brno, Czech Republic Jan Krhovják

More information

Stream Ciphers. Koç ( ucsb ccs 130h explore crypto fall / 13

Stream Ciphers.   Koç (  ucsb ccs 130h explore crypto fall / 13 Stream Ciphers Çetin Kaya Koç http://cs.ucsb.edu/~koc koc@cs.ucsb.edu Koç (http://cs.ucsb.edu/~koc) ucsb ccs 130h explore crypto fall 2014 1 / 13 Block Ciphers Plaintext: M i with M i = n, where n is the

More information

CSCE GPU PROJECT PRESENTATION SCALABLE PARALLEL RANDOM NUMBER GENERATION

CSCE GPU PROJECT PRESENTATION SCALABLE PARALLEL RANDOM NUMBER GENERATION CSCE 5013-002 GPU PROJECT PRESENTATION SCALABLE PARALLEL RANDOM NUMBER GENERATION Farhad Parsan 10/25/2010 OUTLINE Introduction Design Performance Live Demonstration Conclusion 2 INTRODUCTION Scalable

More information

Cryptographic Primitives A brief introduction. Ragesh Jaiswal CSE, IIT Delhi

Cryptographic Primitives A brief introduction. Ragesh Jaiswal CSE, IIT Delhi Cryptographic Primitives A brief introduction Ragesh Jaiswal CSE, IIT Delhi Cryptography: Introduction Throughout most of history: Cryptography = art of secret writing Secure communication M M = D K (C)

More information

Introduction. CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell

Introduction. CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell Introduction CSE 5351: Introduction to cryptography Reading assignment: Chapter 1 of Katz & Lindell 1 Cryptography Merriam-Webster Online Dictionary: 1. secret writing 2. the enciphering and deciphering

More information

CSC 580 Cryptography and Computer Security

CSC 580 Cryptography and Computer Security CSC 580 Cryptography and Computer Security Random Bit Generators (Sections 8.1-8.3) February 20, 2018 Overview Today: HW 4 solution discussion Pseudorandom generation - concepts and simple techniques Reminder:

More information

Other Topics in Cryptography. Truong Tuan Anh

Other Topics in Cryptography. Truong Tuan Anh Other Topics in Cryptography Truong Tuan Anh 2 Outline Public-key cryptosystem Cryptographic hash functions Signature schemes Public-Key Cryptography Truong Tuan Anh CSE-HCMUT 4 Outline Public-key cryptosystem

More information

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018

Computer Security. 08. Cryptography Part II. Paul Krzyzanowski. Rutgers University. Spring 2018 Computer Security 08. Cryptography Part II Paul Krzyzanowski Rutgers University Spring 2018 March 23, 2018 CS 419 2018 Paul Krzyzanowski 1 Block ciphers Block ciphers encrypt a block of plaintext at a

More information

Proposed Pseudorandom Number Generator

Proposed Pseudorandom Number Generator IJSRD National Conference on Technological Advancement and Automatization in Engineering January 2016 ISSN:2321-0613 Mahesh S Naik Research Scholar Shri Jagdishprasad Jhabarmal Tibrewala University, Rajasthan

More information

CSC 474/574 Information Systems Security

CSC 474/574 Information Systems Security CSC 474/574 Information Systems Security Topic 2.1 Introduction to Cryptography CSC 474/574 By Dr. Peng Ning 1 Cryptography Cryptography Original meaning: The art of secret writing Becoming a science that

More information

Applied Cryptography and Computer Security CSE 664 Spring 2018

Applied Cryptography and Computer Security CSE 664 Spring 2018 Applied Cryptography and Computer Security Lecture 13: Public-Key Cryptography and RSA Department of Computer Science and Engineering University at Buffalo 1 Public-Key Cryptography What we already know

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 13 Random Numbers and Stochastic Simulation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright

More information

Computational Methods. Randomness and Monte Carlo Methods

Computational Methods. Randomness and Monte Carlo Methods Computational Methods Randomness and Monte Carlo Methods Manfred Huber 2010 1 Randomness and Monte Carlo Methods Introducing randomness in an algorithm can lead to improved efficiencies Random sampling

More information

Random number generation

Random number generation Cryptographic Protocols (EIT ICT MSc) Dr. Levente Buttyán associate professor BME Hálózati Rendszerek és Szolgáltatások Tanszék Lab of Cryptography and System Security (CrySyS) buttyan@hit.bme.hu, buttyan@crysys.hu

More information

Random Number Generator Andy Chen

Random Number Generator Andy Chen Andy Chen University of California, Santa Barbara Andy Chen University of California, Santa Barbara Spring 2017 1 / 17 Introduction Does true randomness exist scientifically? If you know all the elements

More information

PRNGCL: OpenCL Library of Pseudo-Random Number Generators for Monte Carlo Simulations

PRNGCL: OpenCL Library of Pseudo-Random Number Generators for Monte Carlo Simulations PRNGCL: OpenCL Library of Pseudo-Random Number Generators for Monte Carlo Simulations Vadim Demchik vadimdi@yahoo.com http://hgpu.org/ Dnipropetrovsk National University Dnipropetrovsk, Ukraine GTC 14

More information

CS 179: GPU Computing. Lecture 16: Simulations and Randomness

CS 179: GPU Computing. Lecture 16: Simulations and Randomness CS 179: GPU Computing Lecture 16: Simulations and Randomness Simulations South Bay Simulations, http://www.panix.com/~brosen/graphics/iacc.400.jpg Exa Corporation, http://www.exa.com/images/f16.png Flysurfer

More information

Channel Coding and Cryptography Part II: Introduction to Cryptography

Channel Coding and Cryptography Part II: Introduction to Cryptography Channel Coding and Cryptography Part II: Introduction to Cryptography Prof. Dr.-Ing. habil. Andreas Ahrens Communications Signal Processing Group, University of Technology, Business and Design Email: andreas.ahrens@hs-wismar.de

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Public Key Cryptography Modular Arithmetic RSA

More information

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 11 Basic Cryptography

Security+ Guide to Network Security Fundamentals, Third Edition. Chapter 11 Basic Cryptography Security+ Guide to Network Security Fundamentals, Third Edition Chapter 11 Basic Cryptography Objectives Define cryptography Describe hashing List the basic symmetric cryptographic algorithms 2 Objectives

More information

Computer Security 3/23/18

Computer Security 3/23/18 s s encrypt a block of plaintext at a time and produce ciphertext Computer Security 08. Cryptography Part II Paul Krzyzanowski DES & AES are two popular block ciphers DES: 64 bit blocks AES: 128 bit blocks

More information

Cryptography and Network Security Chapter 7. Fourth Edition by William Stallings

Cryptography and Network Security Chapter 7. Fourth Edition by William Stallings Cryptography and Network Security Chapter 7 Fourth Edition by William Stallings Chapter 7 Confidentiality Using Symmetric Encryption John wrote the letters of the alphabet under the letters in its first

More information

CS61A Lecture #39: Cryptography

CS61A Lecture #39: Cryptography Announcements: CS61A Lecture #39: Cryptography Homework 13 is up: due Monday. Homework 14 will be judging the contest. HKN surveys on Friday: 7.5 bonus points for filling out their survey on Friday (yes,

More information

Cryptography and Network Security Chapter 7

Cryptography and Network Security Chapter 7 Cryptography and Network Security Chapter 7 Fifth Edition by William Stallings Lecture slides by Lawrie Brown (with edits by RHB) Chapter 7 Stream Ciphers and Random Number Generation The comparatively

More information

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 17: X509. PGP. Authentication protocols. Key establishment.

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 17: X509. PGP. Authentication protocols. Key establishment. CS355: Cryptography Lecture 17: X509. PGP. Authentication protocols. Key establishment. Public Keys and Trust Public Key:P A Secret key: S A Public Key:P B Secret key: S B How are public keys stored How

More information

Identification Schemes

Identification Schemes Identification Schemes Lecture Outline Identification schemes passwords one-time passwords challenge-response zero knowledge proof protocols Authentication Data source authentication (message authentication):

More information

Introduction to Cryptography. Vasil Slavov William Jewell College

Introduction to Cryptography. Vasil Slavov William Jewell College Introduction to Cryptography Vasil Slavov William Jewell College Crypto definitions Cryptography studies how to keep messages secure Cryptanalysis studies how to break ciphertext Cryptology branch of mathematics,

More information

This chapter continues our overview of public-key cryptography systems (PKCSs), and begins with a description of one of the earliest and simplest

This chapter continues our overview of public-key cryptography systems (PKCSs), and begins with a description of one of the earliest and simplest 1 2 3 This chapter continues our overview of public-key cryptography systems (PKCSs), and begins with a description of one of the earliest and simplest PKCS, Diffie- Hellman key exchange. This first published

More information

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA

Outline. CSCI 454/554 Computer and Network Security. Introduction. Topic 5.2 Public Key Cryptography. 1. Introduction 2. RSA CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography 1. Introduction 2. RSA Outline 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

Monte Carlo Integration and Random Numbers

Monte Carlo Integration and Random Numbers Monte Carlo Integration and Random Numbers Higher dimensional integration u Simpson rule with M evaluations in u one dimension the error is order M -4! u d dimensions the error is order M -4/d u In general

More information

ICT 6541 Applied Cryptography Lecture 8 Entity Authentication/Identification

ICT 6541 Applied Cryptography Lecture 8 Entity Authentication/Identification ICT 6541 Applied Cryptography Lecture 8 Entity Authentication/Identification Hossen Asiful Mustafa Introduction Entity Authentication is a technique designed to let one party prove the identity of another

More information

Introduction to Cryptography and Security Mechanisms: Unit 5. Public-Key Encryption

Introduction to Cryptography and Security Mechanisms: Unit 5. Public-Key Encryption Introduction to Cryptography and Security Mechanisms: Unit 5 Public-Key Encryption Learning Outcomes Explain the basic principles behind public-key cryptography Recognise the fundamental problems that

More information

Chapter 9. Public Key Cryptography, RSA And Key Management

Chapter 9. Public Key Cryptography, RSA And Key Management Chapter 9 Public Key Cryptography, RSA And Key Management RSA by Rivest, Shamir & Adleman of MIT in 1977 The most widely used public-key cryptosystem is RSA. The difficulty of attacking RSA is based on

More information

Linear Congruential Number Generators. A useful, if not important, ability of modern computers is random number

Linear Congruential Number Generators. A useful, if not important, ability of modern computers is random number Jagannath Pisharath Newer Math Fall 2003 Linear Congruential Number Generators A useful, if not important, ability of modern computers is random number generation. Without this ability, if you wanted to,

More information

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d)

Outline. Public Key Cryptography. Applications of Public Key Crypto. Applications (Cont d) Outline AIT 682: Network and Systems Security 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard Topic 5.2 Public Key Cryptography Instructor: Dr. Kun Sun 2 Public Key

More information

Public-Key Cryptography. Professor Yanmin Gong Week 3: Sep. 7

Public-Key Cryptography. Professor Yanmin Gong Week 3: Sep. 7 Public-Key Cryptography Professor Yanmin Gong Week 3: Sep. 7 Outline Key exchange and Diffie-Hellman protocol Mathematical backgrounds for modular arithmetic RSA Digital Signatures Key management Problem:

More information

Cryptographic Concepts

Cryptographic Concepts Outline Identify the different types of cryptography Learn about current cryptographic methods Chapter #23: Cryptography Understand how cryptography is applied for security Given a scenario, utilize general

More information

Some Stuff About Crypto

Some Stuff About Crypto Some Stuff About Crypto Adrian Frith Laboratory of Foundational Aspects of Computer Science Department of Mathematics and Applied Mathematics University of Cape Town This work is licensed under a Creative

More information

Information Security CS526

Information Security CS526 Information Security CS 526 Topic 3 Cryptography: One-time Pad, Information Theoretic Security, and Stream CIphers 1 Announcements HW1 is out, due on Sept 11 Start early, late policy is 3 total late days

More information

RSA. Public Key CryptoSystem

RSA. Public Key CryptoSystem RSA Public Key CryptoSystem DIFFIE AND HELLMAN (76) NEW DIRECTIONS IN CRYPTOGRAPHY Split the Bob s secret key K to two parts: K E, to be used for encrypting messages to Bob. K D, to be used for decrypting

More information

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography

CSCI 454/554 Computer and Network Security. Topic 5.2 Public Key Cryptography CSCI 454/554 Computer and Network Security Topic 5.2 Public Key Cryptography Outline 1. Introduction 2. RSA 3. Diffie-Hellman Key Exchange 4. Digital Signature Standard 2 Introduction Public Key Cryptography

More information

Chapter 9 Public Key Cryptography. WANG YANG

Chapter 9 Public Key Cryptography. WANG YANG Chapter 9 Public Key Cryptography WANG YANG wyang@njnet.edu.cn Content Introduction RSA Diffie-Hellman Key Exchange Introduction Public Key Cryptography plaintext encryption ciphertext decryption plaintext

More information

CS 161 Computer Security

CS 161 Computer Security Popa & Wagner Spring 2016 CS 161 Computer Security Midterm 2 Print your name:, (last) (first) I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be

More information

DESIGN AND IMPLEMENTATION OF PSEUDO RANDOM NUMBER GENERATOR USED IN AES ALGORITHM

DESIGN AND IMPLEMENTATION OF PSEUDO RANDOM NUMBER GENERATOR USED IN AES ALGORITHM DESIGN AND IMPLEMENTATION OF PSEUDO RANDOM NUMBER GENERATOR USED IN AES ALGORITHM M.SUNITHA (1), P.S.SUREKHA (2) M.TECH Scholor, VLSI Design, Jyothismathi College of Engineering and Technology (1) ASST.Professor,

More information

The rsprng Package. July 24, 2006

The rsprng Package. July 24, 2006 The rsprng Package July 24, 2006 Version 0.3-3 Date $Date: 2006-07-14 13:47:47-0500 (Fri, 14 Jul 2006) $ Title R interface to SPRNG (Scalable Parallel Random Number Generators) Author Na (Michael) Li

More information

Key Exchange. Secure Software Systems

Key Exchange. Secure Software Systems 1 Key Exchange 2 Challenge Exchanging Keys &!"#h%&'() & & 1 2 6(6 1) 2 15! $ The more parties in communication, the more keys that need to be securely exchanged " # Do we have to use out-of-band methods?

More information

PRNGs & DES. Luke Anderson. 16 th March University Of Sydney.

PRNGs & DES. Luke Anderson. 16 th March University Of Sydney. PRNGs & DES Luke Anderson luke@lukeanderson.com.au 16 th March 2018 University Of Sydney Overview 1. Pseudo Random Number Generators 1.1 Sources of Entropy 1.2 Desirable PRNG Properties 1.3 Real PRNGs

More information

Cryptography CS 555. Topic 16: Key Management and The Need for Public Key Cryptography. CS555 Spring 2012/Topic 16 1

Cryptography CS 555. Topic 16: Key Management and The Need for Public Key Cryptography. CS555 Spring 2012/Topic 16 1 Cryptography CS 555 Topic 16: Key Management and The Need for Public Key Cryptography CS555 Spring 2012/Topic 16 1 Outline and Readings Outline Private key management between two parties Key management

More information

SOME NOTES ON MULTIPLICATIVE CONGRUENTIAL RANDOM NUMBER GENERATORS WITH MERSENNE PRIME MODULUS Dr. James Harris*

SOME NOTES ON MULTIPLICATIVE CONGRUENTIAL RANDOM NUMBER GENERATORS WITH MERSENNE PRIME MODULUS Dr. James Harris* JournaCof the South Carolina JLcademy of Science l(l):28-32 Fall 2003 SOME NOTES ON MULTIPLICATIVE CONGRUENTIAL RANDOM NUMBER GENERATORS WITH MERSENNE PRIME MODULUS 2 61-1 Dr. James Harris* *Department

More information

Information Security CS526

Information Security CS526 Information CS 526 Topic 3 Ciphers and Cipher : Stream Ciphers, Block Ciphers, Perfect Secrecy, and IND-CPA 1 Announcements HW1 is out, due on Sept 10 Start early, late policy is 3 total late days for

More information

Distributed Systems. 26. Cryptographic Systems: An Introduction. Paul Krzyzanowski. Rutgers University. Fall 2015

Distributed Systems. 26. Cryptographic Systems: An Introduction. Paul Krzyzanowski. Rutgers University. Fall 2015 Distributed Systems 26. Cryptographic Systems: An Introduction Paul Krzyzanowski Rutgers University Fall 2015 1 Cryptography Security Cryptography may be a component of a secure system Adding cryptography

More information

The most important development from the work on public-key cryptography is the digital signature. Message authentication protects two parties who

The most important development from the work on public-key cryptography is the digital signature. Message authentication protects two parties who 1 The most important development from the work on public-key cryptography is the digital signature. Message authentication protects two parties who exchange messages from any third party. However, it does

More information

Crypto-systems all around us ATM machines Remote logins using SSH Web browsers (https invokes Secure Socket Layer (SSL))

Crypto-systems all around us ATM machines Remote logins using SSH Web browsers (https invokes Secure Socket Layer (SSL)) Introduction (Mihir Bellare Text/Notes: http://cseweb.ucsd.edu/users/mihir/cse207/) Cryptography provides: Data Privacy Data Integrity and Authenticity Crypto-systems all around us ATM machines Remote

More information

Basic Concepts and Definitions. CSC/ECE 574 Computer and Network Security. Outline

Basic Concepts and Definitions. CSC/ECE 574 Computer and Network Security. Outline CSC/ECE 574 Computer and Network Security Topic 2. Introduction to Cryptography 1 Outline Basic Crypto Concepts and Definitions Some Early (Breakable) Cryptosystems Key Issues 2 Basic Concepts and Definitions

More information

CS 161 Computer Security

CS 161 Computer Security Popa & Wagner Spring 2016 CS 161 Computer Security Midterm 2 Problem 1 True or False (10 points) Circle True or False. Do not justify your answer. (a) True or False : It is safe (IND-CPA-secure) to encrypt

More information

Cryptography. and Network Security. Lecture 0. Manoj Prabhakaran. IIT Bombay

Cryptography. and Network Security. Lecture 0. Manoj Prabhakaran. IIT Bombay Cryptography and Network Security Lecture 0 Manoj Prabhakaran IIT Bombay Security In this course: Cryptography as used in network security Humans, Societies, The World Network Hardware OS Libraries Programs

More information

Protecting Information Assets - Week 11 - Cryptography, Public Key Encryption and Digital Signatures. MIS 5206 Protecting Information Assets

Protecting Information Assets - Week 11 - Cryptography, Public Key Encryption and Digital Signatures. MIS 5206 Protecting Information Assets Protecting Information Assets - Week 11 - Cryptography, Public Key Encryption and Digital Signatures MIS5206 Week 11 Identity and Access Control Week 10 continued Cryptography, Public Key Encryption and

More information

Encryption Providing Perfect Secrecy COPYRIGHT 2001 NON-ELEPHANT ENCRYPTION SYSTEMS INC.

Encryption Providing Perfect Secrecy COPYRIGHT 2001 NON-ELEPHANT ENCRYPTION SYSTEMS INC. Encryption Providing Perfect Secrecy Presented at Calgary Unix Users Group. November 27, 2001 by: Mario Forcinito, PEng, PhD With many thanks to Prof. Aiden Bruen from the Mathematics Department, University

More information

Public Key Cryptography and RSA

Public Key Cryptography and RSA Public Key Cryptography and RSA Major topics Principles of public key cryptosystems The RSA algorithm The Security of RSA Motivations A public key system is asymmetric, there does not have to be an exchange

More information

RNG: definition. Simulating spin models on GPU Lecture 3: Random number generators. The story of R250. The story of R250

RNG: definition. Simulating spin models on GPU Lecture 3: Random number generators. The story of R250. The story of R250 Simulating spin models on GPU Lecture 3: Random number generators Martin Weigel Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom and Institut für Physik, Johannes Gutenberg-Universität

More information

Intro to Public Key Cryptography Diffie & Hellman Key Exchange

Intro to Public Key Cryptography Diffie & Hellman Key Exchange Intro to Public Key Cryptography Diffie & Hellman Key Exchange Course Summary Introduction Stream & Block Ciphers Block Ciphers Modes (ECB,CBC,OFB) Advanced Encryption Standard (AES) Message Authentication

More information

L13. Reviews. Rocky K. C. Chang, April 10, 2015

L13. Reviews. Rocky K. C. Chang, April 10, 2015 L13. Reviews Rocky K. C. Chang, April 10, 2015 1 Foci of this course Understand the 3 fundamental cryptographic functions and how they are used in network security. Understand the main elements in securing

More information

Outline. Data Encryption Standard. Symmetric-Key Algorithms. Lecture 4

Outline. Data Encryption Standard. Symmetric-Key Algorithms. Lecture 4 EEC 693/793 Special Topics in Electrical Engineering Secure and Dependable Computing Lecture 4 Department of Electrical and Computer Engineering Cleveland State University wenbing@ieee.org Outline Review

More information

CS669 Network Security

CS669 Network Security UNIT II PUBLIC KEY ENCRYPTION Uniqueness Number Theory concepts Primality Modular Arithmetic Fermet & Euler Theorem Euclid Algorithm RSA Elliptic Curve Cryptography Diffie Hellman Key Exchange Uniqueness

More information

Acronyms. International Organization for Standardization International Telecommunication Union ITU Telecommunication Standardization Sector

Acronyms. International Organization for Standardization International Telecommunication Union ITU Telecommunication Standardization Sector Acronyms 3DES AES AH ANSI CBC CESG CFB CMAC CRT DoS DEA DES DoS DSA DSS ECB ECC ECDSA ESP FIPS IAB IETF IP IPsec ISO ITU ITU-T Triple DES Advanced Encryption Standard Authentication Header American National

More information

Whitenoise Laboratories Inc.

Whitenoise Laboratories Inc. Whitenoise Laboratories Inc. Software Specifications For Tinnitus Utilizing Whitenoise Substitution Stream Cipher (Revised) Written by Stephen Boren email: sboren@bsbutil.com Andre Brisson email: brisson@bsbutil.com

More information

Lecture 6 - Cryptography

Lecture 6 - Cryptography Lecture 6 - Cryptography CMPSC 443 - Spring 2012 Introduction Computer and Network Security Professor Jaeger www.cse.psu.edu/~tjaeger/cse443-s12 Question Setup: Assume you and I donʼt know anything about

More information

PSEUDORANDOM numbers are very important in practice

PSEUDORANDOM numbers are very important in practice Proceedings of the 2013 Federated Conference on Computer Science and Information Systems pp. 515 519 Template Library for Multi- Pseudorandom Number Recursion-based Generars Dominik Szałkowski Institute

More information

Security: Cryptography

Security: Cryptography Security: Cryptography Computer Science and Engineering College of Engineering The Ohio State University Lecture 38 Some High-Level Goals Confidentiality Non-authorized users have limited access Integrity

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Security Handshake Pitfalls Login only Mutual

More information

Cryptography. Dr. Michael Schneider Chapter 10: Pseudorandom Bit Generators and Stream Ciphers

Cryptography. Dr. Michael Schneider Chapter 10: Pseudorandom Bit Generators and Stream Ciphers Cryptography Dr. Michael Schneider michael.schneider@h-da.de Chapter 10: Pseudorandom Bit Generators and Stream Ciphers December 12, 2017 h_da WS2017/18 Dr. Michael Schneider 1 1 Random and Pseudorandom

More information

Security Models: Proofs, Protocols and Certification

Security Models: Proofs, Protocols and Certification Security Models: Proofs, Protocols and Certification Florent Autrau - Yassine Lakhnech - Jean-Louis Roch Master-2 Security, Cryptology and Coding of Information Systems ENSIMAG/Grenoble-INP UJF Grenoble

More information

Computer Networks. Network Security and Ethics. Week 14. College of Information Science and Engineering Ritsumeikan University

Computer Networks. Network Security and Ethics. Week 14. College of Information Science and Engineering Ritsumeikan University Computer Networks Network Security and Ethics Week 14 College of Information Science and Engineering Ritsumeikan University Security Intro for Admins l Network administrators can break security into two

More information

Winter 2011 Josh Benaloh Brian LaMacchia

Winter 2011 Josh Benaloh Brian LaMacchia Winter 2011 Josh Benaloh Brian LaMacchia Symmetric Cryptography January 20, 2011 Practical Aspects of Modern Cryptography 2 Agenda Symmetric key ciphers Stream ciphers Block ciphers Cryptographic hash

More information

A PARALLEL RANDOM NUMBER GENERATOR FOR SHARED MEMORY ARCHITECTURE MACHINE USING OPENMP

A PARALLEL RANDOM NUMBER GENERATOR FOR SHARED MEMORY ARCHITECTURE MACHINE USING OPENMP A PARALLEL RANDOM NUMBER GENERATOR FOR SHARED MEMORY ARCHITECTURE MACHINE USING OPENMP Sayed Ahmed Department of Computer Science University of Manitoba, Canada email:sayed@cs.umanitoba.ca Rasit Eskicioglu

More information

- 0 - CryptoLib: Cryptography in Software John B. Lacy 1 Donald P. Mitchell 2 William M. Schell 3 AT&T Bell Laboratories ABSTRACT

- 0 - CryptoLib: Cryptography in Software John B. Lacy 1 Donald P. Mitchell 2 William M. Schell 3 AT&T Bell Laboratories ABSTRACT - 0 - CryptoLib: Cryptography in Software John B. Lacy 1 Donald P. Mitchell 2 William M. Schell 3 AT&T Bell Laboratories ABSTRACT With the capacity of communications channels increasing at the current

More information

Chapter 3 Traditional Symmetric-Key Ciphers 3.1

Chapter 3 Traditional Symmetric-Key Ciphers 3.1 Chapter 3 Traditional Symmetric-Key Ciphers 3.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 3 Objectives To define the terms and the concepts of symmetric

More information

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 6 Introduction to Public-Key Cryptography

Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl. Chapter 6 Introduction to Public-Key Cryptography Understanding Cryptography A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 6 Introduction to Public-Key Cryptography ver. November 18, 2010 These

More information

Topics. Key Generation. Applying Cryptography

Topics. Key Generation. Applying Cryptography Applying Cryptography Topics 1. Key Generation 2. Randomness and Information Theory 3. PRNGs 4. Entropy Gathering 5. Key Storage 6. Cryptographic APIs Key Generation Goal: generate difficult to guess keys

More information

Assignment 9 / Cryptography

Assignment 9 / Cryptography Assignment 9 / Cryptography Michael Hauser March 2002 Tutor: Mr. Schmidt Course: M.Sc Distributed Systems Engineering Lecturer: Mr. Owens CONTENTS Contents 1 Introduction 3 2 Simple Ciphers 3 2.1 Vignère

More information

Cryptography. Summer Term 2010

Cryptography. Summer Term 2010 Cryptography Summer Term 2010 Harald Baier Chapter 3: Pseudo Random Bit Generators and Stream Ciphers Contents Random bits and pseudo random bits Stream ciphers Harald Baier Cryptography h_da, Summer Term

More information