Last Time. Compiler requirements C preprocessor Volatile

Size: px
Start display at page:

Download "Last Time. Compiler requirements C preprocessor Volatile"

Transcription

1 Last Time Compiler requirements C preprocessor Volatile

2 Today Coding and translation of interrupt handlers Coding inline assembly Compiler intrinsics

3 Interrupts 30-second interrupt review: Interrupts are a kind of asynchronous exception When some external condition becomes true, CPU jumps to the interrupt vector When interrupt returns, previously executing code resumes as if nothing happened With appropriate compiler support interrupts look just like regular functions Don t be fooled there are major semantic differences between interrupts and functions Interrupts are concurrent They don t obey the calling convention

4 ColdFire Interrupt declspec(interrupt) void rtc_handler(void) { MCF_GPIO_PORTTC ^= 0xf; }

5 Interrupt Assembly _rtc_handler1: 0x strldsr #0x2700 0x link a6,#0 0x A lea -12(a7),a7 0x E movem.l d0-d1/a0,(a7) 0x lea IPSBAR ,a0 0x move.b (a0),d1 0x A moveq #0,d0 0x C move.b d1,d0 0x E eori.l #0xf,d0 0x move.b d0,(a0) 0x movem.l (a7),d0-d1/a0 0x A unlk a6 0x C addq.l #4,a7 0x E rte

6 ARM / GCC Interrupt void attribute ((interrupt("irq"))) tc0_cmp (void); { timeval++; VICVectAddr = 0; } Other embedded compilers provide analogous extensions Later lectures: correct usage of interrupts

7 Inline Assembly Two reasons to add assembly into a C program: 1. Need to say something that can t be said in C 2. Need higher performance than the C compiler provides In both cases Write most of a function in C and then throw in a few instructions of assembly where needed Let the compiler do the grunt work of respecting the calling convention When writing asm to increase performance: Be absolutely sure you identified the culprit First try to write faster C

8 CodeWarrior Inline Asm long square (short a) { long result=0; asm { move.w a,d0 // fetch function argument a mulu.w d0,d0 // multiply move.l d0,result // store in local result } return result; } Compiler generates glue code integrating the assembler and C code

9 Inline Assembly Example square: 0x link a6,#0 0x subq.l #8,a7 0x move.w d0,-8(a6) 0x A clr.l -6(a6) 0x E move.w -8(a6),d0 0x mulu.w d0,d0 0x move.l d0,-6(a6) 0x move.l -6(a6),d0 0x C unlk a6 0x E rts

10 GCC Inline Assembly Format: asm volatile (code : outputs : inputs : clobbers ); Code instructions Outputs maps results of instructions into C variables Inputs maps C variables to inputs of instructions Clobbers tells the compiler to forget the contents of some registers This syntax is much more difficult to use than CodeWarrior s!

11 Intrinsics Intrinsic functions are built in to the compiler As opposed to living in a library somewhere Why do compilers support intrinsics? Efficiency can perform interesting optimizations Ease of use Compile can add function calls where they do not exist in your code Compiler can eliminate library calls in your code Need to be careful when compiler inserts function calls for you performance of resulting code may be bad

12 Intrinsic Example 1 int smul (int x, int y) { return x*y; } ColdFire code: _smul: 0x link a6,#0 0x muls.l d1,d0 0x unlk a6 0x A rts

13 More Example 1 ARM7 smul: mul bx lr r0, r1, r0 AVR smul: rcall mulhi3 ret

14 Intrinsic Example 2 int sdiv (int x, int y) { return x/y; } ColdFire code: _sdiv: 0x link a6,#0 0x divs.l d1,d0 0x unlk a6 0x A rts

15 More Example 2 On ARM7 sdiv: str lr, [sp, #-4]! bl divsi3 ldr pc, [sp], #4 On AVR sdiv: rcall divmodhi4 mov r25,r23 mov r24,r22 ret

16 Example 3 struct foo { int x, y[3]; double z; }; void struct_copy2 (struct foo *a, struct foo *b) { *a=*b; } ColdFire code: struct_copy2: 0x link a6,#0 0x moveq #6,d1 0x move.w (a1),(a0) 0x move.w 2(a1),2(a0) 0x E addq.l #4,a1 0x addq.l #4,a0 0x subq.l #1,d1 0x bne.s *-14 0x unlk a6 0x rts

17 More Example 3 On ARM7 struct_copy2: str lr, [sp, #-4]! mov lr, r1 mov ip, r0 ldmia lr!, {r0, r1, r2, r3} stmia ip!, {r0, r1, r2, r3} ldmia lr, {r0, r1} stmia ip, {r0, r1} ldr pc, [sp], #4

18 Example 4 int len_hello1 (void) { return strlen ("hello"); } ColdFire code: len_hello1: 0x link a6,#0 0x lea _@71,a0 0x A jsr _strlen 0x unlk a6 0x rts

19 More Example 4 ARM7 len_hello1: mov r0, #5 bx lr

20 Summary You need to understand what actually happens on the processor Interrupts are fundamental to what embedded systems do We ll be seeing more about them soon Inline assembly lets you get fine-grain control Intrinsics hide things from you Function calls can appear, disappear relative to what you expect from the code For example all floating point is emulated in software on our ColdFire processors Need to look at compiler output to see what happened

Last Time. Low-level parts of the toolchain for embedded systems. Any weak link in the toolchain will hinder development

Last Time. Low-level parts of the toolchain for embedded systems. Any weak link in the toolchain will hinder development Last Time Low-level parts of the toolchain for embedded systems Ø Linkers Ø Programmers Ø Booting an embedded CPU Ø Debuggers Ø JTAG Any weak link in the toolchain will hinder development Today: Intro

More information

Something Cool. RFID is an exciting and growing. This reader from Parallax is $40 and has a serial interface

Something Cool. RFID is an exciting and growing. This reader from Parallax is $40 and has a serial interface Something Cool RFID is an exciting and growing technology This reader from Parallax is $40 and has a serial interface Lab Lab 1 due next Tues Seemed to go pretty well on Tues? Questions? Quiz Results Problem

More information

Page 1. Lab. Something Cool. Quiz Results. Last Time. Embedded Compilers. Today: Intro to Embedded C

Page 1. Lab. Something Cool. Quiz Results. Last Time. Embedded Compilers. Today: Intro to Embedded C Something Cool Lab RFID is an exciting and growing technology This reader from Parallax is $40 and has a serial interface Lab 1 due next Tues Seemed to go pretty well on Tues? Questions? Quiz Results Last

More information

Manual Instrumentation 2 Manual Instrumentation Process Throughout this document we will refer to the code in an unsupported language as the original

Manual Instrumentation 2 Manual Instrumentation Process Throughout this document we will refer to the code in an unsupported language as the original CodeTEST Tools Application Note Manual Instrumentation Manually insert test-point instructions, or tags, in source code to gather real time execution analysis using the Freescale CodeTEST Tools. Purpose

More information

Page 1. Ripped From The Headlines. Last Time. Today. Embedded Diversity. Lots of chips. Brief ColdFire History

Page 1. Ripped From The Headlines. Last Time. Today. Embedded Diversity. Lots of chips. Brief ColdFire History Ripped From The Headlines OpenBTS: A software-based GSM access point, allowing standard GSM-compatible mobile phones to make telephone calls without using existing telecommunication providers' networks.

More information

C Calling Conventions

C Calling Conventions C Calling Conventions 1. parameters are passed on the run-time or system stack, SP (or A7) 2. parameters pushed on stack in right to left order of call A6 used as the stack frame pointer local variables

More information

Page 1. Last Time. Today. Embedded Compilers. Compiler Requirements. What We Get. What We Want

Page 1. Last Time. Today. Embedded Compilers. Compiler Requirements. What We Get. What We Want Last Time Today Low-level parts of the toolchain for embedded systems Linkers Programmers Booting an embedded CPU Debuggers JTAG Any weak link in the toolchain will hinder development Compilers: Expectations

More information

Important From Last Time

Important From Last Time Important From Last Time Embedded C Ø Pros and cons Macros and how to avoid them Intrinsics Interrupt syntax Inline assembly Today Advanced C What C programs mean How to create C programs that mean nothing

More information

NET3001. Advanced Assembly

NET3001. Advanced Assembly NET3001 Advanced Assembly Arrays and Indexing supposed we have an array of 16 bytes at 0x0800.0100 write a program that determines if the array contains the byte '0x12' set r0=1 if the byte is found plan:

More information

Last Time. Response time analysis Blocking terms Priority inversion. Other extensions. And solutions

Last Time. Response time analysis Blocking terms Priority inversion. Other extensions. And solutions Last Time Response time analysis Blocking terms Priority inversion And solutions Release jitter Other extensions Today Timing analysis Answers a question we commonly ask: At most long can this code take

More information

Lab 2 Use Traps. Lab 2 Input and Output 2 nd Semester. Lab 2 English. Lab 2 Pseudocode

Lab 2 Use Traps. Lab 2 Input and Output 2 nd Semester. Lab 2 English. Lab 2 Pseudocode Lab 2 Input and Output Lab 2 Use Traps Write (i.e. design and implement) an assembly language program that will accept user input from the keyboard and echo this to the terminal screen. Input should terminate

More information

Important From Last Time

Important From Last Time Important From Last Time Embedded C Pros and cons Macros and how to avoid them Intrinsics Interrupt syntax Inline assembly Today Advanced C What C programs mean How to create C programs that mean nothing

More information

stack frame where register An is used as the argument pointer.

stack frame where register An is used as the argument pointer. STACK FRAMES The MC68000 provides two special instructions to allocate and deallocate a data structure called a frame in the stack to make subroutines easier to code. general structure of a frame: SP local

More information

A Bit of History. Program Mem Data Memory. CPU (Central Processing Unit) I/O (Input/Output) Von Neumann Architecture. CPU (Central Processing Unit)

A Bit of History. Program Mem Data Memory. CPU (Central Processing Unit) I/O (Input/Output) Von Neumann Architecture. CPU (Central Processing Unit) Memory COncepts Address Contents Memory is divided into addressable units, each with an address (like an array with indices) Addressable units are usually larger than a bit, typically 8, 16, 32, or 64

More information

ARM Assembly Programming II

ARM Assembly Programming II ARM Assembly Programming II Computer Organization and Assembly Languages Yung-Yu Chuang 2007/11/26 with slides by Peng-Sheng Chen GNU compiler and binutils HAM uses GNU compiler and binutils gcc: GNU C

More information

MIPS Functions and Instruction Formats

MIPS Functions and Instruction Formats MIPS Functions and Instruction Formats 1 The Contract: The MIPS Calling Convention You write functions, your compiler writes functions, other compilers write functions And all your functions call other

More information

ECE 598 Advanced Operating Systems Lecture 8

ECE 598 Advanced Operating Systems Lecture 8 ECE 598 Advanced Operating Systems Lecture 8 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 11 February 2016 Homework #3 Due. Announcements Homework #4 Posted Soon 1 HW#3 Comments

More information

Page 1. Today. Important From Last Time. Is the assembly code right? Is the assembly code right? Which compiler is right?

Page 1. Today. Important From Last Time. Is the assembly code right? Is the assembly code right? Which compiler is right? Important From Last Time Today Embedded C Pros and cons Macros and how to avoid them Intrinsics Interrupt syntax Inline assembly Advanced C What C programs mean How to create C programs that mean nothing

More information

ECE 598 Advanced Operating Systems Lecture 8

ECE 598 Advanced Operating Systems Lecture 8 ECE 598 Advanced Operating Systems Lecture 8 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 15 February 2018 Homework #3 Due. Announcements Homework #4 Posted Soon 1 (Review)

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Mark Brehob University of Michigan Lecture 3: Toolchain, ABI, Memory Mapped I/O Sept. 12 th, 2018 Slides developed in part by Prof. Dutta 1 Announcements

More information

E85 Lab 8: Assembly Language

E85 Lab 8: Assembly Language E85 Lab 8: Assembly Language E85 Spring 2016 Due: 4/6/16 Overview: This lab is focused on assembly programming. Assembly language serves as a bridge between the machine code we will need to understand

More information

Subroutine. Chapter 8

Subroutine. Chapter 8 Chapter 8 Subroutine Expected Outcomes Describe and apply the stack for data storage Describe the process of subroutine in any programs Develop a subroutine and code Interpret subroutine process in the

More information

Subroutines. passing data

Subroutines. passing data Subroutines passing data Mechanisms: pass by value pass by result pass by value result/ value return/ copy restore pass by reference pass by name pass by lazy evaluation Techniques: 1. in registers 2.

More information

EE4144: ARM Cortex-M Processor

EE4144: ARM Cortex-M Processor EE4144: ARM Cortex-M Processor EE4144 Fall 2014 EE4144 EE4144: ARM Cortex-M Processor Fall 2014 1 / 10 ARM Cortex-M 32-bit RISC processor Cortex-M4F Cortex-M3 + DSP instructions + floating point unit (FPU)

More information

EE 357 Lab 1 Some Assembly Required

EE 357 Lab 1 Some Assembly Required EE 357 Lab ome Assembly Required Introduction In this lab you will write assembly code to control the 4 s on your MCF55259 board as well as read the input values of the 4 DIP switches. 2 hat you will learn

More information

/* concatenate char append[] to the end of s[] */ char * strcat(s, append) register char *s, *append; { char *save = s;

/* concatenate char append[] to the end of s[] */ char * strcat(s, append) register char *s, *append; { char *save = s; # Copyright (C) 1994 by Yuan Yu. All Rights Reserved. This script is hereby placed in the public domain, and therefore unlimited editing and redistribution is permitted. NO WARRANTY Yuan Yu PROVIDES ABSOLUTELY

More information

An Introduction to Assembly Programming with the ARM 32-bit Processor Family

An Introduction to Assembly Programming with the ARM 32-bit Processor Family An Introduction to Assembly Programming with the ARM 32-bit Processor Family G. Agosta Politecnico di Milano December 3, 2011 Contents 1 Introduction 1 1.1 Prerequisites............................. 2

More information

Lecture 3: Instruction Set Architecture

Lecture 3: Instruction Set Architecture Lecture 3: Instruction Set Architecture CSE 30: Computer Organization and Systems Programming Summer 2014 Diba Mirza Dept. of Computer Science and Engineering University of California, San Diego 1. Steps

More information

Introduction to C CMSC 104 Spring 2014, Section 02, Lecture 6 Jason Tang

Introduction to C CMSC 104 Spring 2014, Section 02, Lecture 6 Jason Tang Introduction to C CMSC 104 Spring 2014, Section 02, Lecture 6 Jason Tang Topics History of Programming Languages Compilation Process Anatomy of C CMSC 104 Coding Standards Machine Code In the beginning,

More information

CprE 288 Introduction to Embedded Systems ARM Assembly Programming: Translating C Control Statements and Function Calls

CprE 288 Introduction to Embedded Systems ARM Assembly Programming: Translating C Control Statements and Function Calls CprE 288 Introduction to Embedded Systems ARM Assembly Programming: Translating C Control Statements and Function Calls Instructors: Dr. Phillip Jones 1 Announcements Final Projects Projects: Mandatory

More information

ARM PROGRAMMING. When use assembly

ARM PROGRAMMING. When use assembly ARM PROGRAMMING Bùi Quốc Bảo When use assembly Functions that cannot be implemented in C, such as special register accesses and exclusive accesses Timing-critical routines Tight memory requirements, causing

More information

EECS 373 Winter 2017 Homework #3

EECS 373 Winter 2017 Homework #3 EECS 373 Winter 2017 Homework #3 Due January 25 th on Gradescope. Late homework is not accepted. Name: unique name: You are to turn in this assignment filling in the blanks as needed. Assignments that

More information

ECE251: Thursday September 27

ECE251: Thursday September 27 ECE251: Thursday September 27 Exceptions: Interrupts and Resets Chapter in text and Lab #6. READ ALL this material! This will NOT be on the mid-term exam. Lab Practical Exam #1 Homework # due today at

More information

ARM Assembly Programming

ARM Assembly Programming ARM Assembly Programming Computer Organization and Assembly Languages g Yung-Yu Chuang 2007/12/1 with slides by Peng-Sheng Chen GNU compiler and binutils HAM uses GNU compiler and binutils gcc: GNU C compiler

More information

Subroutines and the Stack

Subroutines and the Stack 3 31 Objectives: A subroutine is a reusable program module A main program can call or jump to the subroutine one or more times The stack is used in several ways when subroutines are called In this lab

More information

Compilers and Interpreters

Compilers and Interpreters Compilers and Interpreters Pointers, the addresses we can see Programs that write other programs Managing the details A compiler is a program that, when fed itself as input, produces ITSELF! Then how was

More information

CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing. Instructors: Dr. Phillip Jones Dr.

CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing. Instructors: Dr. Phillip Jones Dr. CprE 288 Translating C Control Statements and Function Calls, Loops, Interrupt Processing Instructors: Dr. Phillip Jones Dr. Zhao Zhang 1 Announcements Final Projects Projects: Mandatory Demos Deadweek

More information

ECE251: Tuesday September 18

ECE251: Tuesday September 18 ECE251: Tuesday September 18 Subroutine Parameter Passing (Important) Allocating Memory in Subroutines (Important) Recursive Subroutines (Good to know) Debugging Hints Programming Hints Preview of I/O

More information

ARM Assembly Programming

ARM Assembly Programming ARM Assembly Programming Computer Organization and Assembly Languages g Yung-Yu Chuang with slides by Peng-Sheng Chen GNU compiler and binutils HAM uses GNU compiler and binutils gcc: GNU C compiler as:

More information

Stack Frames. September 2, Indiana University. Geoffrey Brown, Bryce Himebaugh 2015 September 2, / 15

Stack Frames. September 2, Indiana University. Geoffrey Brown, Bryce Himebaugh 2015 September 2, / 15 Stack Frames Geoffrey Brown Bryce Himebaugh Indiana University September 2, 2016 Geoffrey Brown, Bryce Himebaugh 2015 September 2, 2016 1 / 15 Outline Preserving Registers Saving and Restoring Registers

More information

Writing ARM Assembly. Steven R. Bagley

Writing ARM Assembly. Steven R. Bagley Writing ARM Assembly Steven R. Bagley Introduction Previously, looked at how the system is built out of simple logic gates Last week, started to look at the CPU Writing code in ARM assembly language Assembly

More information

Better sharc data such as vliw format, number of kind of functional units

Better sharc data such as vliw format, number of kind of functional units Better sharc data such as vliw format, number of kind of functional units Pictures of pipe would help Build up zero overhead loop example better FIR inner loop in coldfire Mine more material from bsdi.com

More information

CprE 288 Introduction to Embedded Systems Course Review for Exam 3. Instructors: Dr. Phillip Jones

CprE 288 Introduction to Embedded Systems Course Review for Exam 3. Instructors: Dr. Phillip Jones CprE 288 Introduction to Embedded Systems Course Review for Exam 3 Instructors: Dr. Phillip Jones 1 Announcements Exam 3: See course website for day/time. Exam 3 location: Our regular classroom Allowed

More information

Last Time. Think carefully about whether you use a heap Look carefully for stack overflow Especially when you have multiple threads

Last Time. Think carefully about whether you use a heap Look carefully for stack overflow Especially when you have multiple threads Last Time Cost of nearly full resources RAM is limited Think carefully about whether you use a heap Look carefully for stack overflow Especially when you have multiple threads Embedded C Extensions for

More information

COMP 7860 Embedded Real- Time Systems: Threads

COMP 7860 Embedded Real- Time Systems: Threads COMP 7860 Embedded Real- Time Systems: Threads Jacky Baltes Autonomous Agents Lab University of Manitoba Winnipeg, Canada R3T 2N2 Email: jacky@cs.umanitoba.ca WWW: http://www.cs.umanitoba.ca/~jacky http://aalab.cs.umanitoba.ca

More information

x86 architecture et similia

x86 architecture et similia x86 architecture et similia 1 FREELY INSPIRED FROM CLASS 6.828, MIT A full PC has: PC architecture 2 an x86 CPU with registers, execution unit, and memory management CPU chip pins include address and data

More information

Today s objective: introduction to really simple subroutines to simplify program structure for I/O

Today s objective: introduction to really simple subroutines to simplify program structure for I/O a 1 st look procedures and functions in high level languages are modeled on subroutines typically, assembly code is very modular with the main routine less than 100 lines long Today s objective: introduction

More information

ARM Assembly Programming

ARM Assembly Programming Introduction ARM Assembly Programming The ARM processor is very easy to program at the assembly level. (It is a RISC) We will learn ARM assembly programming at the user level and run it on a GBA emulator.

More information

Addressing Modes. To review data transfer instructions and applying the more advanced addressing modes.

Addressing Modes. To review data transfer instructions and applying the more advanced addressing modes. Addressing Modes Aims To review 68000 data transfer instructions and applying the more advanced addressing modes. Intended Learning Outcomes At the end of this module, students t should be able to Review

More information

CS5460: Operating Systems

CS5460: Operating Systems CS5460: Operating Systems Lecture 2: OS Hardware Interface (Chapter 2) Course web page: http://www.eng.utah.edu/~cs5460/ CADE lab: WEB L224 and L226 http://www.cade.utah.edu/ Projects will be on Linux

More information

Student # (In case pages get detached) The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

Student # (In case pages get detached) The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE 243S - Computer Organization The Edward S. Rogers Sr. Department of Electrical and Computer Engineering Mid-term Examination, March 2005 Name Student # Please circle your lecture section for exam return

More information

Mark Redekopp, All rights reserved. EE 357 Unit 5. Assembler Directives and Programming

Mark Redekopp, All rights reserved. EE 357 Unit 5. Assembler Directives and Programming EE 357 Unit 5 Assembler Directives and Programming Assembler Syntax An assembler takes a source code file and builds a memory image (binary) executable file Specifies the location in memory (either relative

More information

Programming. A. Assembly Language Programming. A.1 Machine Code. Machine Code Example: Motorola ADD

Programming. A. Assembly Language Programming. A.1 Machine Code. Machine Code Example: Motorola ADD A. Assembly Language Programming Programming of a computer system: Machine code direct execution Assembly language tool: assembler High level programming language tool: interpreter tool: compiler Programming

More information

CPE/EE 421 Microcomputers

CPE/EE 421 Microcomputers CPE/EE 421 Microcomputers Instructor: Dr Aleksandar Milenkovic Lecture Note S06 *Material used is in part developed by Dr. D. Raskovic and Dr. E. Jovanov CPE/EE 421/521 Microcomputers 1 Course Administration

More information

ECE 498 Linux Assembly Language Lecture 5

ECE 498 Linux Assembly Language Lecture 5 ECE 498 Linux Assembly Language Lecture 5 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 29 November 2012 Clarifications from Lecture 4 What is the Q saturate status bit? Some

More information

Final Exam. Date: May 12, 2017

Final Exam. Date: May 12, 2017 Final Exam Date: May 12, 2017 UT EID: Printed Name: Last, First Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat on this exam:

More information

ME 4447/6405 Introduction to Mechatronics Instructor: Professor Charles Ume

ME 4447/6405 Introduction to Mechatronics Instructor: Professor Charles Ume ME 4447/6405 Introduction to Mechatronics Instructor: Professor Charles Ume Lecture on Codewarrior Integrated Development Environment Contents Overview of C Compliers for HCS12 CodeWarrior Pointers Interrupts

More information

Subroutines. we jump to a new location in the code

Subroutines. we jump to a new location in the code Subroutines EE 57 Unit 7 Subroutines Stacks Subroutines (or functions) are portions of code that we can call from anywhere in our code, execute that t subroutine, and then A subroutine to calculate the

More information

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2)

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2) Introduction to the MIPS ISA Overview Remember that the machine only understands very basic instructions (machine instructions) It is the compiler s job to translate your high-level (e.g. C program) into

More information

SimBench. A Portable Benchmarking Methodology for Full-System Simulators. Harry Wagstaff Bruno Bodin Tom Spink Björn Franke

SimBench. A Portable Benchmarking Methodology for Full-System Simulators. Harry Wagstaff Bruno Bodin Tom Spink Björn Franke SimBench A Portable Benchmarking Methodology for Full-System Simulators Harry Wagstaff Bruno Bodin Tom Spink Björn Franke Institute for Computing Systems Architecture University of Edinburgh ISPASS 2017

More information

CSE 410. Operating Systems

CSE 410. Operating Systems CSE 410 Operating Systems Handout: syllabus 1 Today s Lecture Course organization Computing environment Overview of course topics 2 Course Organization Course website http://www.cse.msu.edu/~cse410/ Syllabus

More information

Comparison InstruCtions

Comparison InstruCtions Status Flags Now it is time to discuss what status flags are available. These five status flags are kept in a special register called the Program Status Register (PSR). The PSR also contains other important

More information

ECE 598 Advanced Operating Systems Lecture 11

ECE 598 Advanced Operating Systems Lecture 11 ECE 598 Advanced Operating Systems Lecture 11 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 23 February 2016 Announcements Homework #5 Posted Some notes, discovered the hard

More information

W4118: PC Hardware and x86. Junfeng Yang

W4118: PC Hardware and x86. Junfeng Yang W4118: PC Hardware and x86 Junfeng Yang A PC How to make it do something useful? 2 Outline PC organization x86 instruction set gcc calling conventions PC emulation 3 PC board 4 PC organization One or more

More information

ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines

ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines ARM Cortex-M4 Architecture and Instruction Set 4: The Stack and subroutines M J Brockway February 13, 2016 The Cortex-M4 Stack SP The subroutine stack is full, descending It grows downwards from higher

More information

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2016 1 ISA is the HW/SW

More information

Optimizing C For Microcontrollers

Optimizing C For Microcontrollers Optimizing C For Microcontrollers Khem Raj, Comcast Embedded Linux Conference & IOT summit - Portland OR Agenda Introduction Knowing the Tools Data Types and sizes Variable and Function Types Loops Low

More information

Computer Organization & Assembly Language Programming (CSE 2312)

Computer Organization & Assembly Language Programming (CSE 2312) Computer Organization & Assembly Language Programming (CSE 2312) Lecture 16: Processor Pipeline Introduction and Debugging with GDB Taylor Johnson Announcements and Outline Homework 5 due today Know how

More information

Computer Organization & Assembly Language Programming (CSE 2312)

Computer Organization & Assembly Language Programming (CSE 2312) Computer Organization & Assembly Language Programming (CSE 2312) Lecture 15: Running ARM Programs in QEMU and Debugging with gdb Taylor Johnson Announcements and Outline Homework 5 due Thursday Midterm

More information

ARM ASSEMBLY PROGRAMMING

ARM ASSEMBLY PROGRAMMING ARM ASSEMBLY PROGRAMMING 1. part RAB Računalniška arhitektura 1 Intro lab : Addition in assembler Adding two variables : res := stev1 + stev2 Zbirni jezik Opis ukaza Strojni jezik ldr r1, stev1 R1 M[0x20]

More information

CPSC 213. Introduction to Computer Systems. Static Scalars and Arrays. Unit 1b

CPSC 213. Introduction to Computer Systems. Static Scalars and Arrays. Unit 1b CPSC 213 Introduction to Computer Systems Unit 1b Static Scalars and Arrays 1 Reading for Next 3 Lectures Companion 2.4.1-2.4.3 Textbook Array Allocation and Access 3.8 2 The Big Picture Build machine

More information

System Programming. Prof. Dr. Antônio Augusto Fröhlich. Nov 2006

System Programming. Prof. Dr. Antônio Augusto Fröhlich.   Nov 2006 SysProg Antônio Augusto Fröhlich (http://www.lisha.ufsc.br) 88 System Programming Prof. Dr. Antônio Augusto Fröhlich guto@lisha.ufsc.br http://www.lisha.ufsc.br/~guto Nov 2006 SysProg Antônio Augusto Fröhlich

More information

Newbie s Guide to AVR Interrupts

Newbie s Guide to AVR Interrupts Newbie s Guide to AVR Interrupts Dean Camera March 15, 2015 ********** Text Dean Camera, 2013. All rights reserved. This document may be freely distributed without payment to the author, provided that

More information

ARM Shift Operations. Shift Type 00 - logical left 01 - logical right 10 - arithmetic right 11 - rotate right. Shift Amount 0-31 bits

ARM Shift Operations. Shift Type 00 - logical left 01 - logical right 10 - arithmetic right 11 - rotate right. Shift Amount 0-31 bits ARM Shift Operations A novel feature of ARM is that all data-processing instructions can include an optional shift, whereas most other architectures have separate shift instructions. This is actually very

More information

ARM Cortex-A9 ARM v7-a. A programmer s perspective Part 2

ARM Cortex-A9 ARM v7-a. A programmer s perspective Part 2 ARM Cortex-A9 ARM v7-a A programmer s perspective Part 2 ARM Instructions General Format Inst Rd, Rn, Rm, Rs Inst Rd, Rn, #0ximm 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

More information

Overview of Compiler. A. Introduction

Overview of Compiler. A. Introduction CMPSC 470 Lecture 01 Topics: Overview of compiler Compiling process Structure of compiler Programming language basics Overview of Compiler A. Introduction What is compiler? What is interpreter? A very

More information

Introduction to 8086 Assembly

Introduction to 8086 Assembly Introduction to 8086 Assembly Lecture 13 Inline Assembly Inline Assembly Compiler-dependent GCC -> GAS (the GNU assembler) Intel Syntax => AT&T Syntax Registers: eax => %eax Immediates: 123 => $123 Memory:

More information

Summer 2003 Lecture 14 07/02/03

Summer 2003 Lecture 14 07/02/03 Summer 2003 Lecture 14 07/02/03 LAB 6 Lab 6 involves interfacing to the IBM PC parallel port Use the material on wwwbeyondlogicorg for reference This lab requires the use of a Digilab board Everyone should

More information

CPE/EE 421 Microcomputers

CPE/EE 421 Microcomputers CPE/EE 421 Microcomputers Instructor: Dr Aleksandar Milenkovic Lecture Note S07 Outline Stack and Local Variables C Programs 68K Examples Performance *Material used is in part developed by Dr. D. Raskovic

More information

Computer Architecture 5.1. Computer Architecture. 5.2 Vector Address: Interrupt sources (IS) such as I/O, Timer 5.3. Computer Architecture

Computer Architecture 5.1. Computer Architecture. 5.2 Vector Address: Interrupt sources (IS) such as I/O, Timer 5.3. Computer Architecture License: http://creativecommons.org/licenses/by-nc-nd/3./ Hardware interrupt: 5. If in an eternal device (for eample I/O interface) a predefined event occurs this device issues an interrupt request to

More information

Alex Milenkovich 1. CPE/EE 421 Microcomputers: Motorola 68000: Assembly Language and C. Outline

Alex Milenkovich 1. CPE/EE 421 Microcomputers: Motorola 68000: Assembly Language and C. Outline Outline CPE/EE 421 Microcomputers: Motorola 68: Assembly Language and C Instructor: Dr Aleksandar Milenkovic Lecture Notes ACIA Example: Pseudo-code + Assembly Passing parameters In registers Passing by

More information

Tutorial 1 Microcomputer Fundamentals

Tutorial 1 Microcomputer Fundamentals Tutorial 1 Microcomputer Fundamentals Question 1 What do these acronyms mean? (a) CPU? (b) ROM? (c) EPROM? (d) RWM? (e) RAM? (f) I/O? What role does the CPU play in a computer system? Why is ROM an essential

More information

Interrupt Programming

Interrupt Programming 19 Think before you speak. Interrupt Programming Interrupt is the one which temporarily suspends the execution of the current program and executes a specific subroutine called interrupt routine and then

More information

SEE 3223 Microprocessors. 4: Addressing Modes. Muhammad Mun im Ahmad Zabidi

SEE 3223 Microprocessors. 4: Addressing Modes. Muhammad Mun im Ahmad Zabidi SEE 3223 Microprocessors 4: Addressing Modes Muhammad Mun im Ahmad Zabidi (munim@utm.my) Addressing Modes Aims To review 68000 data transfer instruchons and applying the more advanced addressing modes.

More information

Porting & Optimising Code 32-bit to 64-bit

Porting & Optimising Code 32-bit to 64-bit Porting & Optimising Code 32-bit to 64-bit Matthew Gretton-Dann Technical Lead - Toolchain Working Group Linaro Connect, Dublin July 2013 A Presentation of Four Parts Register Files Structure Layout &

More information

ARM Cortex M3 Instruction Set Architecture. Gary J. Minden March 29, 2016

ARM Cortex M3 Instruction Set Architecture. Gary J. Minden March 29, 2016 ARM Cortex M3 Instruction Set Architecture Gary J. Minden March 29, 2016 1 Calculator Exercise Calculate: X = (45 * 32 + 7) / (65 2 * 18) G. J. Minden 2014 2 Instruction Set Architecture (ISA) ISAs define

More information

Student ID: For examiner use

Student ID: For examiner use COMP/ Practice Final Exam Student ID: u Make sure you read each question carefully. Questions are not equally weighted, and the size of the answer box is not necessarily related to the length of the expected

More information

(5) Question 2. Give the two most important factors for effective debugging. Jonathan W. Valvano

(5) Question 2. Give the two most important factors for effective debugging. Jonathan W. Valvano EE445M/EE380L Quiz 1 Spring 2013 Page 1 of 5 First Name: Last Name: March 1, 2013, 10:00 to 10:50am Quiz 1 is a closed book exam. You may have one 8.5 by 11 inch sheet of hand-written crib notes, but no

More information

Menu. Introduction to C for Atmel XMega

Menu. Introduction to C for Atmel XMega Menu Introduction to C for Atmel XMega Look into my... See docs/examples on web-site: Usage of simple, EBI.c, usart_serial.c See Software/Docs: Getting Started Writing C, Info on C for the Atmel XMEGA,

More information

Program Development. Chapter 5

Program Development. Chapter 5 Chapter 5 Program Development Expected Outcomes Distinguish between various codes in the programming language Explain the role of assembler and compiler Distinguish between different data types Use directive

More information

Lecture 4 (part 2): Data Transfer Instructions

Lecture 4 (part 2): Data Transfer Instructions Lecture 4 (part 2): Data Transfer Instructions CSE 30: Computer Organization and Systems Programming Diba Mirza Dept. of Computer Science and Engineering University of California, San Diego Assembly Operands:

More information

HPC VT Machine-dependent Optimization

HPC VT Machine-dependent Optimization HPC VT 2013 Machine-dependent Optimization Last time Choose good data structures Reduce number of operations Use cheap operations strength reduction Avoid too many small function calls inlining Use compiler

More information

538 Lecture Notes Week 1

538 Lecture Notes Week 1 538 Clowes Lecture Notes Week 1 (Sept. 6, 2017) 1/10 538 Lecture Notes Week 1 Announcements No labs this week. Labs begin the week of September 11, 2017. My email: kclowes@ryerson.ca Counselling hours:

More information

Chapter - 9 Variable Scope and Functions. Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 1

Chapter - 9 Variable Scope and Functions. Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 1 Chapter - 9 Variable Scope and Functions Practical C++ Programming Copyright 2003 O'Reilly and Associates Page 1 Variable Scope and Class Variables are defined by two attributes: Scope The area where a

More information

Embedded C. ECE Rick

Embedded C. ECE Rick Embedded C ECE 362 https://engineering.purdue.edu/ee362/ Rick Reading Assignment Reading assignment: Family Reference Manual, Chapter 17, "General purpose timers (TIM2 and TIM3)", pages 377 443. Textbook,

More information

EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 1 of 5

EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 1 of 5 EE445M/EE380L.6 Quiz 2 Spring 2017 Solution Page 1 of 5 First Name: Last Name: April 21, 2017, 10:00 to 10:50am Open book, open notes, calculator (no laptops, phones, devices with screens larger than a

More information

Practical Malware Analysis

Practical Malware Analysis Practical Malware Analysis Ch 4: A Crash Course in x86 Disassembly Revised 1-16-7 Basic Techniques Basic static analysis Looks at malware from the outside Basic dynamic analysis Only shows you how the

More information

Using the ColdFire EMAC Unit to Improve RSA Performance Jim Stephens Freescale Semiconductor

Using the ColdFire EMAC Unit to Improve RSA Performance Jim Stephens Freescale Semiconductor Application Note AN3038 Rev. 0, 09/2005 Using the ColdFire EMAC Unit to Improve RSA Performance by: Jim Stephens The widely used RSA public key cryptographic algorithm requires modular exponentiation of

More information

Chapter 10. Programming in C

Chapter 10. Programming in C Chapter 10 Programming in C Lesson 05 Functions in C C program Consists of three parts preprocessor directives macros main function functions 3 Function Each has a name (for identity ID) May have the arguments

More information

ECE 598 Advanced Operating Systems Lecture 4

ECE 598 Advanced Operating Systems Lecture 4 ECE 598 Advanced Operating Systems Lecture 4 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 28 January 2016 Announcements HW#1 was due HW#2 was posted, will be tricky Let me know

More information