CSE 12 Week Eight, Lecture Two

Size: px
Start display at page:

Download "CSE 12 Week Eight, Lecture Two"

Transcription

1 CSE 12 Week Eight, Lecture Two Hw9: Persistence: What: Data existing longer than. Where: In a datafile on. Why: Most programs persist data. - Data going away when program ends is not common. - Users doesn t want to re-enter data every time they start their program. - Limitation to store objects is based on disk availability, not memory availability. - Data objects are only in memory as they are needed. o Memory usage at run time is reduced.

2 The data on disk: How to view the datafiles? Tool: od : Octal Dump, a UNIX utility. Option: -x: display in hexadecimal -c: display is ASCII characters Not all the data in the datafile will be ASCII: - - -

3 Structure of the datafile: - object ( ) followed by many objects. - Allocation starts with. - Space is reserved in the file for root and occupancy from the. o Values of root and occupancy when reserving space are. - values of root and occupancy will be written by. Algorithm: With each insertion of a new TNode: - Append one TNode to the of the datafile. - Each TNode is serialized to disk as one contiguous section of memory in one operation: o Serialization: Writing an object in memory to disk. o TNodes are serialized from to by TNode s. - Each TNode is read from disk as one contiguous section in one operation. o TNodes are read from into by TNode s. - Mechanism of being able to read or write all data fields as one unit of memory: o TNode data is.

4 Differences and similarities from hw8: - One Tree in memory at all times (same as hw8). - Each TNode in the Tree will really be. o If you want to go get a TNode: Read the TNode from disk into memory. o All TNodes in memory are They can once function using that TNode ends. All TNodes will be allocated: o o No more calls to: new delete o Each object that is newly inserted into the Tree consists of updating two TNodes on disk: Ex: left = new TNode (.);// hw8 syntax left is a field of. o For hw9: Need to update! Why: To make that parent - child relationship : o Updated parent goes. - root, left, right are no longer pointers in hw9. o They are now from where. - this_position: o Equivalent to the pointer of memory. o What: The into where when. o Why: Used to be able to.

5 Working with the disk file: - In the fstream class are two private variables that act like disk heads used to read and write data from and to disk: 1. read data ( g or get pointer) 2. write data ( p or put pointer) - Use accessor methods to set and get private variables: - Continuously throughout low level Tree and TNode code: - seek a pointer: o Moves the disk head to a position in the datafile directly before performing a read or a write. - tell where a pointer currently is: o Result is assigned to left, right, root, or this_position - The g and p are like disk heads that automatically advance when you read or write data to the disk file. Observations: Deleted TNodes will remain as unused fragments without. - Data is there, but not. - Similar to many clients that maintain messages locally on your system. - Not good in high security applications. One more aspect to hw9: - ASCII file input. - Supports repeatability in testing. o Go though in more detail next time.

6 The development guide handout. Uses: As a constant companion throughout development of your solution. Not: Just a final validation. ieng6.ucsd.edu% od -x Driver.datafile ^^^^^^^ ^^^^^^^^^ offset root occupancy ^^^^^^^^^ Perform test of the initial ^D without any TNode input a second time and reverify: - Really exercising two different paths through the Tree constructor: 1. File is present, but empty. 2. File is present with contents of only root and occupancy. - ^D test should give same results both times! o Size of Driver.datafile is 16 bytes. o root and occupancy maintain values. blue is the color of the student name red is the color of the student number Inserting one item: ieng6.ucsd.edu% od -x Driver.datafile b ff

7 Inserting to the left and right of root: Match underlined, italicized and bold offsets: ieng6.ucsd.edu% od -x Driver.datafile b ff fff a5a 5a5a 5a5a 5a5a 5a5a 5a5a 5a5a 005a ffff View a deleted Node: ieng6.ucsd.edu% od -x Driver.datafile fff ffff ffff ffff ffff fff a5a 5a5a 5a5a 5a5a 5a5a 5a5a 5a5a 005a ffff Bold Italicized TNode is in the file but not in the Tree!

8 A new test of your Driver begins with make fresh - make clean, make new also start fresh. Testing Driver again without a make fresh : - Not a new test data is still there from old test. To run sample: cd ~ touch Driver.datafile../public/hw9/Driver rm Driver.datafile touch Calc.datafile../public/hw9/Calc rm Calc.datafile - You don t have permissions to create files in the public area. o Driver program will appear broken if run from public. Advice: - You ll want to check your file pointer for validity at the beginning of each method: if (!*fio) cerr << fio is corrupt in Tree s Insert!\n ; Possible reasons for fio corruption: 1. Writing. 2. Reading.

9 Cost: - Measures efficiency by tracking work: o Unit of Work is one Slower component of your system. Much slower than memory access. Operations: - Counts operations requested by user. o Inserts, Lookup, Remove of Tree. - Used to compute average cost. Cost of operations: 84 tree accesses: Number of operations: 17 Average cost: tree accesses/operation Logistics: Partners are allowed: One or two person submissions are allowed

10 Week Eight, Discussion Two: Syntax for fio s read and write: fio->read (param1, param2); - param1: the address in memory that is the destination of the information from the disk. - param2: how many bytes to read. - How: reading from disk begins at the current position of the g pointer. o Therefore, call before calling. fio->write (param1, param2); - param1: the address in memory that is the source of the information to go to disk. - param2: how many bytes to write. - How: writing to disk begins at the current position of the p pointer. o Therefore, call before calling. Levels of abstraction: Please maintain appropriate layers of abstraction in your code: - Example: No direct calls to disk accessing methods from Tree/TNode s Insert, Lookup, Remove, RARM. o Direct calls to disk accessing methods will be in.

11 To work on binary file aspect of the assignment, one update to Driver.c is required: 1. The name of the datafile needs to be passed to the SymTab constructor.: hw8: hw9: SymTab<UCSDStudent> ST; SymTab<UCSDStudent> ST ( ); Once this one update is done, then the hw8 Driver.c will work on hw9 s Tree on disk. - Completing ASCII file input part of the assignment is not necessary in order to complete the binary file part of the assignment. TNode constructor will call TNode s Read and TNode s Write methods - TNode s Read and Write will call fio->read and fio->write field-by-field o They will work all : reading or writing. Tree constructor assistance: Tree<Whatever> :: Tree (const char * datafile) : fio (new fstream (datafile, ios :: out ios :: in) { }

12 hw8 to hw9 translation: One line of code in hw8 translates to two lines in hw9: Example: left->insert (a, b, c); // hw8 TNode<Whatever> lefttnode (left, fio); lefttnode.insert (a, b, c); // hw9 To get started: 1. copy hw8 bodies into hw9 bodies. 2. translate each hw8 body into a hw9 body. 3. return 0 or return in empty bodies. 4. implement TNode constructors and Write/Read methods. 5. review/update UCSDStudent class. 6. add parameter to SymTab/Tree constructor. 7. implement Tree constructor/destructor. 8. test constructor/insert/write methods (following testing guide).

CSE 12, Week Six, Lecture Two Discussion: Getting started on hw7 & hw8

CSE 12, Week Six, Lecture Two Discussion: Getting started on hw7 & hw8 CSE 12, Week Six, Lecture Two Discussion: Getting started on hw7 & hw8 Tree: What: - A container object - Composed of a TNodes o Each TNode holds - One root TNode pointer o The TNode in the Tree - Zero

More information

CSE 12 Week Eight, Lecture One

CSE 12 Week Eight, Lecture One CSE 12 Week Eight, Lecture One Heap: (The data structure, not the memory area) - A binary tree with properties: - 1. Parent s are greater than s. o the heap order - 2. Nodes are inserted so that tree is

More information

Inheritance: Develop solutions by abstracting real-world object and their interaction into code to develop software solutions. Layering: Organization

Inheritance: Develop solutions by abstracting real-world object and their interaction into code to develop software solutions. Layering: Organization Final Exam Overview: Monday, 3pm-6pm, in WLH 2005 First pages: Quiz question - No quiz of week 2 - No bit manipulation (shifting and masking) - Quizzes: week 4, 6, 8, 10 One page on C++ language features

More information

16 Sharing Main Memory Segmentation and Paging

16 Sharing Main Memory Segmentation and Paging Operating Systems 64 16 Sharing Main Memory Segmentation and Paging Readings for this topic: Anderson/Dahlin Chapter 8 9; Siberschatz/Galvin Chapter 8 9 Simple uniprogramming with a single segment per

More information

CSE 12 Week Three Lecture One Tomorrow s discussion: Getting started on hw4

CSE 12 Week Three Lecture One Tomorrow s discussion: Getting started on hw4 CSE 12 Week Three Lecture One Tomorrow s discussion: Getting started on hw4 Finishing content from last Tuesday Ex in 4 bits, signed addition: 1 bit of sign, 3 bits of magnitude 0101: 5 + 0110: +6 -------

More information

CSE 12 Spring 2016 Week One, Lecture Two

CSE 12 Spring 2016 Week One, Lecture Two CSE 12 Spring 2016 Week One, Lecture Two Homework One and Two: hw2: Discuss in section today - Introduction to C - Review of basic programming principles - Building from fgetc and fputc - Input and output

More information

FILE SYSTEMS. CS124 Operating Systems Winter , Lecture 23

FILE SYSTEMS. CS124 Operating Systems Winter , Lecture 23 FILE SYSTEMS CS124 Operating Systems Winter 2015-2016, Lecture 23 2 Persistent Storage All programs require some form of persistent storage that lasts beyond the lifetime of an individual process Most

More information

Segmentation with Paging. Review. Segmentation with Page (MULTICS) Segmentation with Page (MULTICS) Segmentation with Page (MULTICS)

Segmentation with Paging. Review. Segmentation with Page (MULTICS) Segmentation with Page (MULTICS) Segmentation with Page (MULTICS) Review Segmentation Segmentation Implementation Advantage of Segmentation Protection Sharing Segmentation with Paging Segmentation with Paging Segmentation with Paging Reason for the segmentation with

More information

15 Sharing Main Memory Segmentation and Paging

15 Sharing Main Memory Segmentation and Paging Operating Systems 58 15 Sharing Main Memory Segmentation and Paging Readings for this topic: Anderson/Dahlin Chapter 8 9; Siberschatz/Galvin Chapter 8 9 Simple uniprogramming with a single segment per

More information

Result: original lp in main is. Goal was.

Result: original lp in main is. Goal was. CSE 12, Week Two, Lecture Two Thursday s Discussion Section: Getting started on hw3 Goal: Call a method that assigns a variable (a long) to zero; that variable exists elsewhere: void func ( ) { ; main

More information

And Even More and More C++ Fundamentals of Computer Science

And Even More and More C++ Fundamentals of Computer Science And Even More and More C++ Fundamentals of Computer Science Outline C++ Classes Friendship Inheritance Multiple Inheritance Polymorphism Virtual Members Abstract Base Classes File Input/Output Friendship

More information

CSE 12 Spring 2018 Week One, Lecture Two

CSE 12 Spring 2018 Week One, Lecture Two CSE 12 Spring 2018 Week One, Lecture Two Homework One and Two: - Introduction to C - Review of basic programming principles - Building from fgetc and fputc - Input and output strings and numbers - Introduction

More information

CSE 12 Week Five, Lecture One Today s discussion: hw5 detail & delete_list

CSE 12 Week Five, Lecture One Today s discussion: hw5 detail & delete_list CSE 12 Week Five, Lecture One Today s discussion: hw5 detail & delete_list Hash Tables: What: - A container object. Behavior: - An item is inserted into the table where. - An item is search for in the

More information

File Systems. Chapter 11, 13 OSPP

File Systems. Chapter 11, 13 OSPP File Systems Chapter 11, 13 OSPP What is a File? What is a Directory? Goals of File System Performance Controlled Sharing Convenience: naming Reliability File System Workload File sizes Are most files

More information

Files & I/O. Today. Comp 104: Operating Systems Concepts. Operating System An Abstract View. Files and Filestore Allocation

Files & I/O. Today. Comp 104: Operating Systems Concepts. Operating System An Abstract View. Files and Filestore Allocation Comp 104: Operating Systems Concepts Files and Filestore Allocation Today Files Introduction Filestore allocation policies Contiguous allocation Linked allocation File allocation table Indexed allocation

More information

Address spaces and memory management

Address spaces and memory management Address spaces and memory management Review of processes Process = one or more threads in an address space Thread = stream of executing instructions Address space = memory space used by threads Address

More information

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements CS61C L25 Virtual I (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #25 Virtual I 27-8-7 Scott Beamer, Instructor Another View of the Hierarchy Thus far{ Next: Virtual { Regs Instr.

More information

ECE 598 Advanced Operating Systems Lecture 14

ECE 598 Advanced Operating Systems Lecture 14 ECE 598 Advanced Operating Systems Lecture 14 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 19 March 2015 Announcements Homework #4 posted soon? 1 Filesystems Often a MBR (master

More information

CMSC 104 -Lecture 2 John Y. Park, adapted by C Grasso

CMSC 104 -Lecture 2 John Y. Park, adapted by C Grasso CMSC 104 -Lecture 2 John Y. Park, adapted by C Grasso 1 Topics Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Binary to Decimal Converting

More information

,879 B FAT #1 FAT #2 root directory data. Figure 1: Disk layout for a 1.44 Mb DOS diskette. B is the boot sector.

,879 B FAT #1 FAT #2 root directory data. Figure 1: Disk layout for a 1.44 Mb DOS diskette. B is the boot sector. Homework 11 Spring 2012 File Systems: Part 2 MAT 4970 April 18, 2012 Background To complete this assignment, you need to know how directories and files are stored on a 1.44 Mb diskette, formatted for DOS/Windows.

More information

OPERATING SYSTEMS CS136

OPERATING SYSTEMS CS136 OPERATING SYSTEMS CS136 Jialiang LU Jialiang.lu@sjtu.edu.cn Based on Lecture Notes of Tanenbaum, Modern Operating Systems 3 e, 1 Chapter 4 FILE SYSTEMS 2 File Systems Many important applications need to

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 17: Paging Lecture Overview Recap: Today: Goal of virtual memory management: map 2^32 byte address space to physical memory Internal fragmentation

More information

Preview. COSC350 System Software, Fall

Preview. COSC350 System Software, Fall Preview File System File Name, File Structure, File Types, File Access, File Attributes, File Operation Directories Directory Operations File System Layout Implementing File Contiguous Allocation Linked

More information

Iterator: A way to sequentially access ( traverse ) each object in a container or collection. - Access is done as needed, not necessarily at once.

Iterator: A way to sequentially access ( traverse ) each object in a container or collection. - Access is done as needed, not necessarily at once. CSE 12, Week Seven, Lecture One Iterator: A way to sequentially access ( traverse ) each object in a container or collection - Access is done as needed, not necessarily at once. - Implemented by a private

More information

Operating Systems. Week 9 Recitation: Exam 2 Preview Review of Exam 2, Spring Paul Krzyzanowski. Rutgers University.

Operating Systems. Week 9 Recitation: Exam 2 Preview Review of Exam 2, Spring Paul Krzyzanowski. Rutgers University. Operating Systems Week 9 Recitation: Exam 2 Preview Review of Exam 2, Spring 2014 Paul Krzyzanowski Rutgers University Spring 2015 March 27, 2015 2015 Paul Krzyzanowski 1 Exam 2 2012 Question 2a One of

More information

CSE 120 Principles of Operating Systems Spring 2017

CSE 120 Principles of Operating Systems Spring 2017 CSE 120 Principles of Operating Systems Spring 2017 Lecture 12: Paging Lecture Overview Today we ll cover more paging mechanisms: Optimizations Managing page tables (space) Efficient translations (TLBs)

More information

UNIX File Systems. How UNIX Organizes and Accesses Files on Disk

UNIX File Systems. How UNIX Organizes and Accesses Files on Disk UNIX File Systems How UNIX Organizes and Accesses Files on Disk Why File Systems File system is a service which supports an abstract representation of the secondary storage to the OS A file system organizes

More information

ECE 598 Advanced Operating Systems Lecture 18

ECE 598 Advanced Operating Systems Lecture 18 ECE 598 Advanced Operating Systems Lecture 18 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 5 April 2016 Homework #7 was posted Project update Announcements 1 More like a 571

More information

File Systems. CS170 Fall 2018

File Systems. CS170 Fall 2018 File Systems CS170 Fall 2018 Table of Content File interface review File-System Structure File-System Implementation Directory Implementation Allocation Methods of Disk Space Free-Space Management Contiguous

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2018 Lecture 16: Advanced File Systems Ryan Huang Slides adapted from Andrea Arpaci-Dusseau s lecture 11/6/18 CS 318 Lecture 16 Advanced File Systems 2 11/6/18

More information

Operating systems. Lecture 7 File Systems. Narcis ILISEI, oct 2014

Operating systems. Lecture 7 File Systems. Narcis ILISEI, oct 2014 Operating systems Lecture 7 File Systems Narcis ILISEI, oct 2014 Goals for today File Systems FS Operations Inodes, directories Example FS: FAT, ISO9660 C++ FS access API Examples Exercises File systems

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2017 Lecture 16: File Systems Examples Ryan Huang File Systems Examples BSD Fast File System (FFS) - What were the problems with the original Unix FS? - How

More information

INTERNAL REPRESENTATION OF FILES:

INTERNAL REPRESENTATION OF FILES: INTERNAL REPRESENTATION OF FILES: Every file on a UNIX system has a unique inode. The inode contains the information necessary for a process to access a file, such as file ownership, access rights, file

More information

CSE 333. Lecture 11 - constructor insanity. Hal Perkins Paul G. Allen School of Computer Science & Engineering University of Washington

CSE 333. Lecture 11 - constructor insanity. Hal Perkins Paul G. Allen School of Computer Science & Engineering University of Washington CSE 333 Lecture 11 - constructor insanity Hal Perkins Paul G. Allen School of Computer Science & Engineering University of Washington Administrivia Exercises: - New exercise out today, due Monday morning

More information

File System. Preview. File Name. File Structure. File Types. File Structure. Three essential requirements for long term information storage

File System. Preview. File Name. File Structure. File Types. File Structure. Three essential requirements for long term information storage Preview File System File System File Name, File Structure, File Types, File Access, File Attributes, File Operation Directories Directory Operations Contiguous Allocation Linked List Allocation Linked

More information

CS 1550 Project 3: File Systems Directories Due: Sunday, July 22, 2012, 11:59pm Completed Due: Sunday, July 29, 2012, 11:59pm

CS 1550 Project 3: File Systems Directories Due: Sunday, July 22, 2012, 11:59pm Completed Due: Sunday, July 29, 2012, 11:59pm CS 1550 Project 3: File Systems Directories Due: Sunday, July 22, 2012, 11:59pm Completed Due: Sunday, July 29, 2012, 11:59pm Description FUSE (http://fuse.sourceforge.net/) is a Linux kernel extension

More information

John Wawrzynek & Nick Weaver

John Wawrzynek & Nick Weaver CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory John Wawrzynek & Nick Weaver http://inst.eecs.berkeley.edu/~cs61c From Previous Lecture: Operating Systems Input / output (I/O) Memory

More information

CS333 Intro to Operating Systems. Jonathan Walpole

CS333 Intro to Operating Systems. Jonathan Walpole CS333 Intro to Operating Systems Jonathan Walpole File Systems Why Do We Need a File System? Must store large amounts of data Data must survive the termination of the process that created it Called persistence

More information

Lecture 12: Demand Paging

Lecture 12: Demand Paging Lecture 1: Demand Paging CSE 10: Principles of Operating Systems Alex C. Snoeren HW 3 Due 11/9 Complete Address Translation We started this topic with the high-level problem of translating virtual addresses

More information

File Management By : Kaushik Vaghani

File Management By : Kaushik Vaghani File Management By : Kaushik Vaghani File Concept Access Methods File Types File Operations Directory Structure File-System Structure File Management Directory Implementation (Linear List, Hash Table)

More information

CS 4284 Systems Capstone

CS 4284 Systems Capstone CS 4284 Systems Capstone Disks & File Systems Godmar Back Filesystems Files vs Disks File Abstraction Byte oriented Names Access protection Consistency guarantees Disk Abstraction Block oriented Block

More information

Memory Based Driver Help Kepware Technologies

Memory Based Driver Help Kepware Technologies Memory Based Driver Help 2011 Kepware Technologies 2 Table of Contents Table of Contents 2 3 Overview 3 Channel Setup 4 Data Types Description 5 Address Descriptions 6 Error Descriptions 7 Address ''

More information

Main Points. File layout Directory layout

Main Points. File layout Directory layout File Systems Main Points File layout Directory layout File System Design Constraints For small files: Small blocks for storage efficiency Files used together should be stored together For large files:

More information

UNIX File Hierarchy: Structure and Commands

UNIX File Hierarchy: Structure and Commands UNIX File Hierarchy: Structure and Commands The UNIX operating system organizes files into a tree structure with a root named by the character /. An example of the directory tree is shown below. / bin

More information

Lecture 11: Fragmentation & Addressing. CSE 123: Computer Networks Stefan Savage

Lecture 11: Fragmentation & Addressing. CSE 123: Computer Networks Stefan Savage Lecture 11: Fragmentation & Addressing CSE 123: Computer Networks Stefan Savage So what does IP do? Addressing Fragmentation E.g. FDDI s maximum packet is 4500 bytes while Ethernet is 1500 bytes, how to

More information

COSC345 Software Engineering. Basic Computer Architecture and The Stack

COSC345 Software Engineering. Basic Computer Architecture and The Stack COSC345 Software Engineering Basic Computer Architecture and The Stack Outline Architectural models A little about the 68HC11 Memory map Registers A little bit of assembly (never did us any harm) The program

More information

Lecture 19: File System Implementation. Mythili Vutukuru IIT Bombay

Lecture 19: File System Implementation. Mythili Vutukuru IIT Bombay Lecture 19: File System Implementation Mythili Vutukuru IIT Bombay File System An organization of files and directories on disk OS has one or more file systems Two main aspects of file systems Data structures

More information

Introduction to File Systems

Introduction to File Systems Introduction to File Systems CS-3013 Operating Systems Hugh C. Lauer (Slides include materials from Slides include materials from Modern Operating Systems, 3 rd ed., by Andrew Tanenbaum and from Operating

More information

Chapter 4. File Systems. Part 1

Chapter 4. File Systems. Part 1 Chapter 4 File Systems Part 1 1 Reading Chapter 4: File Systems Chapter 10: Case Study 1: Linux (& Unix) 2 Long-Term Storage of Information Must store large amounts of data Information must survive the

More information

CSE 421/521 - Operating Systems Fall Lecture - XIX. File Systems. University at Buffalo

CSE 421/521 - Operating Systems Fall Lecture - XIX. File Systems. University at Buffalo CSE 421/521 - Operating Systems Fall 2013 Lecture - XIX File Systems Tevfik Koşar University at Buffalo November 7th, 2013 1 File Systems An interface between users and files Provides organized and efficient

More information

Memory Management - Demand Paging and Multi-level Page Tables

Memory Management - Demand Paging and Multi-level Page Tables Memory Management - Demand Paging and Multi-level Page Tables CS 416: Operating Systems Design, Spring 2011 Department of Computer Science Rutgers Sakai: 01:198:416 Sp11 (https://sakai.rutgers.edu) Topics

More information

CSE Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100

CSE Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100 CSE 30321 Computer Architecture I Fall 2011 Homework 07 Memory Hierarchies Assigned: November 8, 2011, Due: November 22, 2011, Total Points: 100 Problem 1: (30 points) Background: One possible organization

More information

Chapter Two. Lesson A. Objectives. Exploring the UNIX File System and File Security. Understanding Files and Directories

Chapter Two. Lesson A. Objectives. Exploring the UNIX File System and File Security. Understanding Files and Directories Chapter Two Exploring the UNIX File System and File Security Lesson A Understanding Files and Directories 2 Objectives Discuss and explain the UNIX file system Define a UNIX file system partition Use the

More information

CSE 120: Principles of Operating Systems. Lecture 10. File Systems. November 6, Prof. Joe Pasquale

CSE 120: Principles of Operating Systems. Lecture 10. File Systems. November 6, Prof. Joe Pasquale CSE 120: Principles of Operating Systems Lecture 10 File Systems November 6, 2003 Prof. Joe Pasquale Department of Computer Science and Engineering University of California, San Diego 2003 by Joseph Pasquale

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Spring 2018 Lecture 10: Paging Geoffrey M. Voelker Lecture Overview Today we ll cover more paging mechanisms: Optimizations Managing page tables (space) Efficient

More information

Lecture 10: Addressing

Lecture 10: Addressing Lecture 10: Addressing CSE 123: Computer Networks Alex C. Snoeren HW 2 due WEDNESDAY Lecture 10 Overview ICMP The other network-layer protocol IP Addresses Class-based addressing Subnetting Classless addressing

More information

Main Points. File systems. Storage hardware characteristics. File system usage patterns. Useful abstractions on top of physical devices

Main Points. File systems. Storage hardware characteristics. File system usage patterns. Useful abstractions on top of physical devices Storage Systems Main Points File systems Useful abstractions on top of physical devices Storage hardware characteristics Disks and flash memory File system usage patterns File Systems Abstraction on top

More information

Section 4 SOLUTION: AVL Trees & B-Trees

Section 4 SOLUTION: AVL Trees & B-Trees Section 4 SOLUTION: AVL Trees & B-Trees 1. What 3 properties must an AVL tree have? a. Be a binary tree b. Have Binary Search Tree ordering property (left children < parent, right children > parent) c.

More information

Computer Systems II. Memory Management" Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed

Computer Systems II. Memory Management Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed Computer Systems II Memory Management" Memory Management" Subdividing memory to accommodate many processes A program is loaded in main memory to be executed Memory needs to be allocated efficiently to

More information

Project. C++: Inheritance III. Plan. Project. Before we begin. The final exam. Advanced Topics. Project. This week in the home stretch

Project. C++: Inheritance III. Plan. Project. Before we begin. The final exam. Advanced Topics. Project. This week in the home stretch Project C++: III Advanced Topics Othello submitted. Next submission: Team Evaluations Nov 10 th Please don t forget If solo give yourself a good evaluation! Indicate if okay to share feedback with partner

More information

Lecture 4: Memory Management & The Programming Interface

Lecture 4: Memory Management & The Programming Interface CS 422/522 Design & Implementation of Operating Systems Lecture 4: Memory Management & The Programming Interface Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken

More information

Fall 2017 CISC/CMPE320 9/27/2017

Fall 2017 CISC/CMPE320 9/27/2017 Notices: CISC/CMPE320 Today File I/O Text, Random and Binary. Assignment 1 due next Friday at 7pm. The rest of the assignments will also be moved ahead a week. Teamwork: Let me know who the team leader

More information

CS 550 Operating Systems Spring File System

CS 550 Operating Systems Spring File System 1 CS 550 Operating Systems Spring 2018 File System 2 OS Abstractions Process: virtualization of CPU Address space: virtualization of memory The above to allow a program to run as if it is in its own private,

More information

Project 4: File System Implementation 1

Project 4: File System Implementation 1 Project 4: File System Implementation 1 Submit a gzipped tarball of your code to CourseWeb. Due: Friday, December 7, 2018 @11:59pm Late: Sunday, December 9, 2018 @11:59pm with 10% reduction per late day

More information

There is a general need for long-term and shared data storage: Files meet these requirements The file manager or file system within the OS

There is a general need for long-term and shared data storage: Files meet these requirements The file manager or file system within the OS Why a file system? Why a file system There is a general need for long-term and shared data storage: need to store large amount of information persistent storage (outlives process and system reboots) concurrent

More information

Lecture 24: Filesystems: FAT, FFS, NTFS

Lecture 24: Filesystems: FAT, FFS, NTFS CS162: Operating Systems and Systems Programming Lecture 24: Filesystems: FAT, FFS, NTFS 30 July 2015 Charles Reiss https://cs162.eecs.berkeley.edu/ Building a File System File System: Layer of OS that

More information

Memory Hierarchy Requirements. Three Advantages of Virtual Memory

Memory Hierarchy Requirements. Three Advantages of Virtual Memory CS61C L12 Virtual (1) CS61CL : Machine Structures Lecture #12 Virtual 2009-08-03 Jeremy Huddleston Review!! Cache design choices: "! Size of cache: speed v. capacity "! size (i.e., cache aspect ratio)

More information

CSE506: Operating Systems CSE 506: Operating Systems

CSE506: Operating Systems CSE 506: Operating Systems CSE 506: Operating Systems What Software Expects of the OS What Software Expects of the OS Shell Memory Address Space for Process System Calls System Services Launching Program Executables Shell Gives

More information

When: -. - When we have a problem that can be solved through a, where the problem simplifies with : choice is or.

When: -. - When we have a problem that can be solved through a, where the problem simplifies with : choice is or. CSE 12 Week Five, Lecture One Recursion: What: -. When: -. - When we have a problem that can be solved through a, where the problem simplifies with : choice is or. How: - 1. - 2. - 3. - 4. Why: - Once

More information

FILE SYSTEMS, PART 2. CS124 Operating Systems Fall , Lecture 24

FILE SYSTEMS, PART 2. CS124 Operating Systems Fall , Lecture 24 FILE SYSTEMS, PART 2 CS124 Operating Systems Fall 2017-2018, Lecture 24 2 Last Time: File Systems Introduced the concept of file systems Explored several ways of managing the contents of files Contiguous

More information

Chapter 8 & Chapter 9 Main Memory & Virtual Memory

Chapter 8 & Chapter 9 Main Memory & Virtual Memory Chapter 8 & Chapter 9 Main Memory & Virtual Memory 1. Various ways of organizing memory hardware. 2. Memory-management techniques: 1. Paging 2. Segmentation. Introduction Memory consists of a large array

More information

File System: Interface and Implmentation

File System: Interface and Implmentation File System: Interface and Implmentation Two Parts Filesystem Interface Interface the user sees Organization of the files as seen by the user Operations defined on files Properties that can be read/modified

More information

Principles of Operating Systems

Principles of Operating Systems Principles of Operating Systems Lecture 24-26 - File-System Interface and Implementation Ardalan Amiri Sani (ardalan@uci.edu) [lecture slides contains some content adapted from previous slides by Prof.

More information

22 File Structure, Disk Scheduling

22 File Structure, Disk Scheduling Operating Systems 102 22 File Structure, Disk Scheduling Readings for this topic: Silberschatz et al., Chapters 11-13; Anderson/Dahlin, Chapter 13. File: a named sequence of bytes stored on disk. From

More information

Automatic Memory Management

Automatic Memory Management Automatic Memory Management Why Automatic Memory Management? Storage management is still a hard problem in modern programming Why Automatic Memory Management? Storage management is still a hard problem

More information

[537] Fast File System. Tyler Harter

[537] Fast File System. Tyler Harter [537] Fast File System Tyler Harter File-System Case Studies Local - FFS: Fast File System - LFS: Log-Structured File System Network - NFS: Network File System - AFS: Andrew File System File-System Case

More information

Operating Systems. File Systems. Thomas Ropars.

Operating Systems. File Systems. Thomas Ropars. 1 Operating Systems File Systems Thomas Ropars thomas.ropars@univ-grenoble-alpes.fr 2017 2 References The content of these lectures is inspired by: The lecture notes of Prof. David Mazières. Operating

More information

Computer Engineering II Solution to Exercise Sheet Chapter 6

Computer Engineering II Solution to Exercise Sheet Chapter 6 Distributed Computing FS 2018 Prof. R. Wattenhofer Computer Engineering II Solution to Exercise Sheet Chapter 6 Basic 1 HDDs a) For a random workload, we can assume that the head is equally likely to be

More information

Introduction to Operating Systems

Introduction to Operating Systems Introduction to Operating Systems Lecture 6: Memory Management MING GAO SE@ecnu (for course related communications) mgao@sei.ecnu.edu.cn Apr. 22, 2015 Outline 1 Issues of main memory 2 Main memory management

More information

CS4500/5500 Operating Systems File Systems and Implementations

CS4500/5500 Operating Systems File Systems and Implementations Operating Systems File Systems and Implementations Yanyan Zhuang Department of Computer Science http://www.cs.uccs.edu/~yzhuang UC. Colorado Springs Recap of Previous Classes Processes and threads o Abstraction

More information

UNIT V SECONDARY STORAGE MANAGEMENT

UNIT V SECONDARY STORAGE MANAGEMENT UNIT V SECONDARY STORAGE MANAGEMENT File System Interface: Concept Access Methods Directory Structure File System Mounting File Sharing Protection File System Implementation: File System Structure File

More information

Multi-way Search Trees! M-Way Search! M-Way Search Trees Representation!

Multi-way Search Trees! M-Way Search! M-Way Search Trees Representation! Lecture 10: Multi-way Search Trees: intro to B-trees 2-3 trees 2-3-4 trees Multi-way Search Trees A node on an M-way search tree with M 1 distinct and ordered keys: k 1 < k 2 < k 3

More information

CS2351 Data Structures. Lecture 7: A Brief Review of Pointers in C

CS2351 Data Structures. Lecture 7: A Brief Review of Pointers in C CS2351 Data Structures Lecture 7: A Brief Review of Pointers in C 1 About this lecture Pointer is a useful object that allows us to access different places in our memory We will review the basic use of

More information

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory Recall: Address Space Map 13: Memory Management Biggest Virtual Address Stack (Space for local variables etc. For each nested procedure call) Sometimes Reserved for OS Stack Pointer Last Modified: 6/21/2004

More information

Chapter 5. File and Memory Management

Chapter 5. File and Memory Management K. K. Wagh Polytechnic, Nashik Department: Information Technology Class: TYIF Sem: 5G System Subject: Operating Name of Staff: Suyog S.Dhoot Chapter 5. File and Memory Management A. Define file and explain

More information

Unix File System. Learning command-line navigation of the file system is essential for efficient system usage

Unix File System. Learning command-line navigation of the file system is essential for efficient system usage ULI101 Week 02 Week Overview Unix file system File types and file naming Basic file system commands: pwd,cd,ls,mkdir,rmdir,mv,cp,rm man pages Text editing Common file utilities: cat,more,less,touch,file,find

More information

File System Interface and Implementation

File System Interface and Implementation Unit 8 Structure 8.1 Introduction Objectives 8.2 Concept of a File Attributes of a File Operations on Files Types of Files Structure of File 8.3 File Access Methods Sequential Access Direct Access Indexed

More information

ecture 33 Virtual Memory Friedland and Weaver Computer Science 61C Spring 2017 April 12th, 2017

ecture 33 Virtual Memory Friedland and Weaver Computer Science 61C Spring 2017 April 12th, 2017 ecture 33 Computer Science 61C Spring 2017 April 12th, 2017 Virtual Memory 1 Multiprogramming The OS runs multiple applications at the same time. But not really: have many more processes/threads than available

More information

Binghamton University. CS-211 Fall Syntax. What the Compiler needs to understand your program

Binghamton University. CS-211 Fall Syntax. What the Compiler needs to understand your program Syntax What the Compiler needs to understand your program 1 Pre-Processing Any line that starts with # is a pre-processor directive Pre-processor consumes that entire line Possibly replacing it with other

More information

Machine Architecture and Number Systems CMSC104. Von Neumann Machine. Major Computer Components. Schematic Diagram of a Computer. First Computer?

Machine Architecture and Number Systems CMSC104. Von Neumann Machine. Major Computer Components. Schematic Diagram of a Computer. First Computer? CMSC104 Lecture 2 Remember to report to the lab on Wednesday Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number

More information

CS510 Operating System Foundations. Jonathan Walpole

CS510 Operating System Foundations. Jonathan Walpole CS510 Operating System Foundations Jonathan Walpole File System Performance File System Performance Memory mapped files - Avoid system call overhead Buffer cache - Avoid disk I/O overhead Careful data

More information

CPS 310 first midterm exam, 10/6/2014

CPS 310 first midterm exam, 10/6/2014 CPS 310 first midterm exam, 10/6/2014 Your name please: Part 1. More fun with fork and exec* What is the output generated by this program? Please assume that each executed print statement completes, e.g.,

More information

Advanced Operating Systems

Advanced Operating Systems Advanced Operating Systems File Systems: File Allocation Table, Linux File System, NTFS Lecture 10 Case Studies of File Systems File Allocation Table (FAT) Unix File System Berkeley Fast File System Linux

More information

CS 390 Chapter 8 Homework Solutions

CS 390 Chapter 8 Homework Solutions CS 390 Chapter 8 Homework Solutions 8.3 Why are page sizes always... Page sizes that are a power of two make it computationally fast for the kernel to determine the page number and offset of a logical

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/20/2013

Operating Systems Comprehensive Exam. Spring Student ID # 3/20/2013 Operating Systems Comprehensive Exam Spring 2013 Student ID # 3/20/2013 You must complete all of Section I You must complete two of the problems in Section II If you need more space to answer a question,

More information

CPSC 213 Labs Cheat-Manual

CPSC 213 Labs Cheat-Manual CPSC 213 Labs Cheat-Manual Phoenix, Ksenia, Harlin Inspired by Jordon Johnson s The Hitchhiker s Guide to CPSC213 Labs and Assignments Outline Assignments Brief. What about Labs. Get/Renew CS Account CS

More information

we are here Page 1 Recall: How do we Hide I/O Latency? I/O & Storage Layers Recall: C Low level I/O

we are here Page 1 Recall: How do we Hide I/O Latency? I/O & Storage Layers Recall: C Low level I/O CS162 Operating Systems and Systems Programming Lecture 18 Systems October 30 th, 2017 Prof. Anthony D. Joseph http://cs162.eecs.berkeley.edu Recall: How do we Hide I/O Latency? Blocking Interface: Wait

More information

Processes, Address Spaces, and Memory Management. CS449 Spring 2016

Processes, Address Spaces, and Memory Management. CS449 Spring 2016 Processes, Address Spaces, and Memory Management CS449 Spring 2016 Process A running program and its associated data Process s Address Space 0x7fffffff Stack Data (Heap) Data (Heap) Globals Text (Code)

More information

CSE 141 Lab NOTES. How we ll grade Part A

CSE 141 Lab NOTES. How we ll grade Part A CSE 141 Lab NOTES Turn in paper ISA design TODAY! Now, on front table Lab 1 Part B Due in 2 weeks (Jan 24) Holiday next Monday no class Office hours that week: Webboard Should be up today or tomorrow!

More information

EECE.4810/EECE.5730: Operating Systems Spring 2017

EECE.4810/EECE.5730: Operating Systems Spring 2017 EECE.4810/EECE.5730: Operating Systems Spring 2017 1. (16 points) Storage devices Final Exam Solution Assume you have a magnetic hard disk with tracks numbered from 0-127, track 0 being the outermost track.

More information