ELEC-270 Solutions to Assignment 5

Size: px
Start display at page:

Download "ELEC-270 Solutions to Assignment 5"

Transcription

1 ELEC-270 Solutions to Assignment 5 1. How many positive integers less than 1000 (a) are divisible by 7? (b) are divisible by 7 but not by 11? (c) are divisible by both 7 and 11? (d) are divisible by 7 or 11? (e) are divisible by exactly one of 7 and 11? (f) are divisible by neither 7 nor 11? (a) Every seventh number is divisible by 7. Therefore there are 999 / such numbers. Note that we use the floor function, because the k th multiple of 7 does not occur until the number 7k has been reached. (b) For solving this part and the next four parts, we need to use the Principal of Inclusion-Exclusion. As in (a), there are floor 999 / numbers in our range that are divisible by both 7 and 11 (meaning they are divisible by 77). If we remove these 12 numbers from the 142 numbers divisible by 7, we are left with those that are divisible by 7 but not 11, i.e., there are =130 of them. (c) As explained in (b), there are 12 of them. (d) As in (a), there are floor 999 /11 90 numbers divisible by 11. By the Principle of Inclusion-Exclusion, there are = 220 that are divisible by 7 or 11. (e) We need to subtract from the answer to (d) the number calculated in (c). I.e., there are that are divisible by exactly one of 7 and 11. (f) If we subtract the answer to (d) from the total number of positive integers less than 1000, we have the number divisible by neither 7 nor 11, i.e., = Let A = {w, x, y, z } and B = {1, 2, 3}. (a) How many functions are there from A to B? (b) i. How many functions are there from A to {1, 2}? ii. How many functions are there from A to {2, 3}? iii. How many functions are there from A to {1, 3}? (c) A function f: A B is called onto if for all b B there is at least one a A with f (a) = b. I.e., every element in the range B gets mapped to by at least one element in the domain A. i. Since none of the functions in b(i), (ii), (iii) would be onto functions from A to B (because in each case, some element of B is left out of the range of values), how many functions are there from A to B that are not onto? Be careful not to count a function more than once. E.g., the function that maps w to 2, x to 2, y to 2 and z to 2 is a function in both b(i) and b(ii). ii. What principle are you using in c(i)? (d) Using the results from (a) and (c)(i), how many onto functions are there from A to B?

2 (a) Each of the 4 elements of A may get mapped to one of the 3 elements of B. there are 3 4 possible functions from A to B. (b) Each of the 4 elements of A may get mapped to one of the 2 elements in the subset of B. for each (i), (ii), (iii), get 2 4. (c) (i) Now, none of the 32 4 functions in (b)(i) are onto. Subtract ones that are not distinct. The only functions (i) and (ii) share are those that map each element of A to {2} (because any other function f of (i) maps some elements of A to {1} and such an f would be different from a function of (ii) that can t map anything to {1}) 3 functions must be subtracted from 32 4 Total number of functions that are not onto: (ii) Principle of Inclusion-Exclusion (d) Total # of onto functions: 3 4 (32 4 3) = How many bit strings of length 10 contain five consecutive 0s or five consecutive 1s? First we count the number of bit strings of length 10 that contain five consecutives 0 s. We will base the count on where the string of five or more consecutive 0 s starts. If it starts in the first bit, then the first five bits are all 0 s, but there is free choice for the last five bits; therefore there are 2 5 = 32 such strings. If it starts in the second bit, then the first bit must be a 1, the next five bits are all 0 s, but there is free choice for the last four bits; therefore there are 2 4 = 16 such strings. If it starts in the third bit, then the second bit must be a 1, but the first bit and the last three bits are arbitrary; therefore there are 2 4 = 16 such strings. Similarly, there are 16 such strings that have the consecutive 0 s starting in each of positions four, five, and six. This gives us a total of = 112 strings that contain five consecutive 0 s. Symmetrically, there are 112 strings that contain five consecutive 1 s. Clearly there are exactly two strings that contain both ( and ). Therefore by the inclusion-exclusion principle, the answer is = Show that if five points are picked in the interior of a square with a side of length 2, then at least two of these points are no farther than 2 apart. Divide the interior of the square, with lines joining the midpoints of opposite sides, into four 1 1 squares as shown below. By the pigeonhole principle, at least two of the five points must be in the same small square. The furthest apart two points in a square could be is the length of the diagonal, which is 2 for a square 1 unit on a side

3 Note: the most common mistake people usually make in trying to prove the above result is an (incorrect) argument about how the points are distributed. First of all, you cannot choose how the 5 points are to be distributed. Incorrect reasoning would include something along the lines of the following: If you distribute the points as far apart as possible (say, on the four corners of the square), then obviously this is the worst distribution you can choose and even in this case, it s obvious that any 5 th point thrown into the square will have to be at least 2 distance from some other point (since if the 5 th point is in the middle of the square then it s 2 from each corner point and if it s not in the middle then it s closer than 2 from some corner point). The foregoing reasoning is incorrect because it assumes a particular distribution under the assumption that this distribution is worse than all others. This notion of worse is a sort of feeling about the distribution and is not mathematically precise: there is nothing worse or better about this particular distribution than any other and it, therefore, doesn t prove anything about all possible distributions. 5. (Adapted from Textbook exercise 16, Supplementary Exercises of Chapter 6) (a) Show that in any set of n+1 positive integers not exceeding 2n there must be two that are relatively prime. (b) Show, by example, that if 100 integers are selected from the set {1, 2, 3,, 200} then it is possible that no two numbers in the selection are relatively prime. (a) Partition the set of numbers 1 to 2n into the following n subsets {1, 2},{3, 4},, {2n-1, 2n}. Then if you take n+1 numbers from the set of the numbers from 1 to 2n, by the pigeonhole principle, at least two of them will be in the same subset. I.e., n + 1 numbers = pigeons n groupings of the 2n numbers = pigeonholes in the group of n +1 numbers at least two are consecutive, say k and k + 1. By (a), k and k+1 are relatively prime. There are at least two numbers that are relatively prime. (b) if n = 100 2n = 200 Can take the following set of 100 numbers from {1 200}: 2, 4, 6, 8, 10, 200 Since all the numbers are even, any pair of them has a common factor of 2. Therefore no pair is relatively prime.

4 6. Let S={ 3 + 4i i = 0,, 25}. If elements are randomly selected from S, how many elements must be selected from S to guarantee that at least two will sum to 110? Justify your answer and show all calculations. S = {3+4i i = 0,, 25} = {3, 7, 11, 15,, 103} S = 26 The following pairs sum to 110: (7,103) (11,99) (15,95) (19,91) (23,87) (27,83) 12 pairs (31,79) (35,75) (39,71) (43,67) (47,63) (51,59) The numbers 55 and 3 don t appear in any pair (since = 55 and there s only one 55 in the set and = 107 but the largest number in the set is 103) Claim If 15 numbers in the set are picked, then at least two of them will sum to 110. First of all, before we prove this claim, we argue that if only 14 are picked, you could end up with the numbers 3, 55 and the twelve first elements in each of the above pairs (namely, 7, 11, 15, etc) and since the first elements need the second elements to sum to 110, there won t be any two that sum to 110. So, no fewer than 15 numbers will guarantee that at least two sum to 110. Note: we are not claiming that there does not exist a collection of 14 numbers where at least two sum to 110. However, you are asked how many MUST be selected to GUARANTEE that at least two sum to 110. Since the selection is out of your control, you cannot assume that a selection of 14 will always guarantee that at least two sum to 110. If pick 15 elements, have 3 possibilities: (1) Case 1: 55 and 3 are both picked. Then 13 of the other numbers come from the twelve pairs.

5 Pigeons = numbers picked Pigeonholes = pairs 13 By Pigeonhole Principle, 2 12 must be in same pair (2) Case 2: Only one of 55 or 3 is picked. Then 14 of the other numbers come from the twelve pairs. 14 Again, by Pigeonhole Principle, 2 12 (3) Case 3: Neither 55 nor 3 is picked. Then 15 of the other numbers come from the twelve pairs. 15 By Pigeonhole Principle, 2 12 Since a selection of 14 or fewer numbers will not guarantee that at least two of the numbers sum to 110, by the above claim, 15 numbers must be picked to guarantee that at least two sum to 110. Note: since the claim proves that picking 15 numbers achieves the result, you cannot say that 16 (or any number higher than 15) must be picked to guarantee the result!

Solution : a) C(18, 1)C(325, 1) = 5850 b) C(18, 1) + C(325, 1) = 343

Solution : a) C(18, 1)C(325, 1) = 5850 b) C(18, 1) + C(325, 1) = 343 DISCRETE MATHEMATICS HOMEWORK 5 SOL Undergraduate Course College of Computer Science Zhejiang University Fall-Winter 2014 HOMEWORK 5 P344 1. There are 18 mathematics majors and 325 computer science majors

More information

COT 3100 Spring 2010 Midterm 2

COT 3100 Spring 2010 Midterm 2 COT 3100 Spring 2010 Midterm 2 For the first two questions #1 and #2, do ONLY ONE of them. If you do both, only question #1 will be graded. 1. (20 pts) Give iterative and recursive algorithms for finding

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

1 Algorithm and Proof for Minimum Vertex Coloring

1 Algorithm and Proof for Minimum Vertex Coloring Solutions to Homework 7, CS 173A (Fall 2018) Homework 7 asked you to show that the construction problems Maximum Independent Set, Minimum Vertex Coloring, and Maximum Clique could all be solved in polynomial

More information

2009 HMMT Team Round. Writing proofs. Misha Lavrov. ARML Practice 3/2/2014

2009 HMMT Team Round. Writing proofs. Misha Lavrov. ARML Practice 3/2/2014 Writing proofs Misha Lavrov ARML Practice 3/2/2014 Warm-up / Review 1 (From my research) If x n = 2 1 x n 1 for n 2, solve for x n in terms of x 1. (For a more concrete problem, set x 1 = 2.) 2 (From this

More information

Semantics via Syntax. f (4) = if define f (x) =2 x + 55.

Semantics via Syntax. f (4) = if define f (x) =2 x + 55. 1 Semantics via Syntax The specification of a programming language starts with its syntax. As every programmer knows, the syntax of a language comes in the shape of a variant of a BNF (Backus-Naur Form)

More information

Solutions to In Class Problems Week 9, Fri.

Solutions to In Class Problems Week 9, Fri. Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science November 4 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised November 4, 2005, 1254 minutes Solutions

More information

HMMT February 2018 February 10, 2018

HMMT February 2018 February 10, 2018 HMMT February 2018 February 10, 2018 Combinatorics 1. Consider a 2 3 grid where each entry is one of 0, 1, and 2. For how many such grids is the sum of the numbers in every row and in every column a multiple

More information

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value 1 Number System Introduction In this chapter, we will study about the number system and number line. We will also learn about the four fundamental operations on whole numbers and their properties. Natural

More information

Analyze the obvious algorithm, 5 points Here is the most obvious algorithm for this problem: (LastLargerElement[A[1..n]:

Analyze the obvious algorithm, 5 points Here is the most obvious algorithm for this problem: (LastLargerElement[A[1..n]: CSE 101 Homework 1 Background (Order and Recurrence Relations), correctness proofs, time analysis, and speeding up algorithms with restructuring, preprocessing and data structures. Due Thursday, April

More information

Definition MATH Benjamin V.C. Collins, James A. Swenson MATH 2730

Definition MATH Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Benjamin V.C. Collins James A. Swenson s and undefined terms The importance of definition s matter! may be more important in Discrete Math than in any math course that you have had previously.

More information

LESSON 1: INTRODUCTION TO COUNTING

LESSON 1: INTRODUCTION TO COUNTING LESSON 1: INTRODUCTION TO COUNTING Counting problems usually refer to problems whose question begins with How many. Some of these problems may be very simple, others quite difficult. Throughout this course

More information

To illustrate what is intended the following are three write ups by students. Diagonalization

To illustrate what is intended the following are three write ups by students. Diagonalization General guidelines: You may work with other people, as long as you write up your solution in your own words and understand everything you turn in. Make sure to justify your answers they should be clear

More information

Introduction. CS243: Discrete Structures. Combinatorics. Product Rule. Basic Counting Rules. Example 2. Example 1

Introduction. CS243: Discrete Structures. Combinatorics. Product Rule. Basic Counting Rules. Example 2. Example 1 Introduction CS243: Discrete Structures Combinatorics Işıl Dillig Consider a set of objects and a property of interest Often, we want to know how many of these objects have the desired property Example:

More information

CS525 Winter 2012 \ Class Assignment #2 Preparation

CS525 Winter 2012 \ Class Assignment #2 Preparation 1 CS525 Winter 2012 \ Class Assignment #2 Preparation Ariel Stolerman 2.26) Let be a CFG in Chomsky Normal Form. Following is a proof that for any ( ) of length exactly steps are required for any derivation

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17 5.1 Introduction You should all know a few ways of sorting in O(n log n)

More information

Comparing sizes of sets

Comparing sizes of sets Comparing sizes of sets Sets A and B are the same size if there is a bijection from A to B. (That was a definition!) For finite sets A, B, it is not difficult to verify that there is a bijection from A

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week Three Solutions Note: in these notes multiplication is assumed to take precedence over division, so 4!/2!2! = 4!/(2!*2!), and binomial coefficients are written horizontally: (4 2) denotes 4 choose

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

Dr. Amotz Bar-Noy s Compendium of Algorithms Problems. Problems, Hints, and Solutions

Dr. Amotz Bar-Noy s Compendium of Algorithms Problems. Problems, Hints, and Solutions Dr. Amotz Bar-Noy s Compendium of Algorithms Problems Problems, Hints, and Solutions Chapter 1 Searching and Sorting Problems 1 1.1 Array with One Missing 1.1.1 Problem Let A = A[1],..., A[n] be an array

More information

The Graphs of Triangulations of Polygons

The Graphs of Triangulations of Polygons The Graphs of Triangulations of Polygons Matthew O Meara Research Experience for Undergraduates Summer 006 Basic Considerations Let Γ(n) be the graph with vertices being the labeled planar triangulation

More information

Table 1 below illustrates the construction for the case of 11 integers selected from 20.

Table 1 below illustrates the construction for the case of 11 integers selected from 20. Q: a) From the first 200 natural numbers 101 of them are arbitrarily chosen. Prove that among the numbers chosen there exists a pair such that one divides the other. b) Prove that if 100 numbers are chosen

More information

Treaps. 1 Binary Search Trees (BSTs) CSE341T/CSE549T 11/05/2014. Lecture 19

Treaps. 1 Binary Search Trees (BSTs) CSE341T/CSE549T 11/05/2014. Lecture 19 CSE34T/CSE549T /05/04 Lecture 9 Treaps Binary Search Trees (BSTs) Search trees are tree-based data structures that can be used to store and search for items that satisfy a total order. There are many types

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

It is important that you show your work. There are 134 points available on this test.

It is important that you show your work. There are 134 points available on this test. Math 1165 Discrete Math Test April 4, 001 Your name It is important that you show your work There are 134 points available on this test 1 (10 points) Show how to tile the punctured chess boards below with

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

Parallel and Sequential Data Structures and Algorithms Lecture (Spring 2012) Lecture 16 Treaps; Augmented BSTs

Parallel and Sequential Data Structures and Algorithms Lecture (Spring 2012) Lecture 16 Treaps; Augmented BSTs Lecture 16 Treaps; Augmented BSTs Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2012) Lectured by Margaret Reid-Miller 8 March 2012 Today: - More on Treaps - Ordered Sets and Tables

More information

Excerpt from "Art of Problem Solving Volume 1: the Basics" 2014 AoPS Inc.

Excerpt from Art of Problem Solving Volume 1: the Basics 2014 AoPS Inc. Chapter 5 Using the Integers In spite of their being a rather restricted class of numbers, the integers have a lot of interesting properties and uses. Math which involves the properties of integers is

More information

Math 4410 Fall 2010 Exam 3. Show your work. A correct answer without any scratch work or justification may not receive much credit.

Math 4410 Fall 2010 Exam 3. Show your work. A correct answer without any scratch work or justification may not receive much credit. Math 4410 Fall 2010 Exam 3 Name: Directions: Complete all six questions. Show your work. A correct answer without any scratch work or justification may not receive much credit. You may not use any notes,

More information

Repetition Through Recursion

Repetition Through Recursion Fundamentals of Computer Science I (CS151.02 2007S) Repetition Through Recursion Summary: In many algorithms, you want to do things again and again and again. For example, you might want to do something

More information

1.2 Adding Integers. Contents: Numbers on the Number Lines Adding Signed Numbers on the Number Line

1.2 Adding Integers. Contents: Numbers on the Number Lines Adding Signed Numbers on the Number Line 1.2 Adding Integers Contents: Numbers on the Number Lines Adding Signed Numbers on the Number Line Finding Sums Mentally The Commutative Property Finding Sums using And Patterns and Rules of Adding Signed

More information

26 The closest pair problem

26 The closest pair problem The closest pair problem 1 26 The closest pair problem Sweep algorithms solve many kinds of proximity problems efficiently. We present a simple sweep that solves the two-dimensional closest pair problem

More information

Functions 2/1/2017. Exercises. Exercises. Exercises. and the following mathematical appetizer is about. Functions. Functions

Functions 2/1/2017. Exercises. Exercises. Exercises. and the following mathematical appetizer is about. Functions. Functions Exercises Question 1: Given a set A = {x, y, z} and a set B = {1, 2, 3, 4}, what is the value of 2 A 2 B? Answer: 2 A 2 B = 2 A 2 B = 2 A 2 B = 8 16 = 128 Exercises Question 2: Is it true for all sets

More information

Section 1.4 Proving Conjectures: Deductive Reasoning

Section 1.4 Proving Conjectures: Deductive Reasoning Section 1.4 Proving Conjectures: Deductive Reasoning May 9 10:15 AM 1 Definition: Proof: A mathematical argument showing that a statement is valid in all cases, or that no counterexample exists. Generalization:

More information

1 Introduction. Counting with Cubes. Barringer Winter MathCamp, 2016

1 Introduction. Counting with Cubes. Barringer Winter MathCamp, 2016 1 Introduction Consider a large cube made from unit cubes 1 Suppose our cube is n n n Look at the cube from a corner so that you can see three faces How many unit cubes are in your line of vision? Build

More information

Copy Material. Geometry Unit 1. Congruence, Proof, and Constructions. Eureka Math. Eureka Math

Copy Material. Geometry Unit 1. Congruence, Proof, and Constructions. Eureka Math. Eureka Math Copy Material Geometry Unit 1 Congruence, Proof, and Constructions Eureka Math Eureka Math Lesson 1 Lesson 1: Construct an Equilateral Triangle We saw two different scenarios where we used the construction

More information

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Module 07 Lecture - 38 Divide and Conquer: Closest Pair of Points We now look at another divide and conquer algorithm,

More information

Midterm 2 Solutions. CS70 Discrete Mathematics and Probability Theory, Spring 2009

Midterm 2 Solutions. CS70 Discrete Mathematics and Probability Theory, Spring 2009 CS70 Discrete Mathematics and Probability Theory, Spring 2009 Midterm 2 Solutions Note: These solutions are not necessarily model answers. Rather, they are designed to be tutorial in nature, and sometimes

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

1.1 The Real Number System

1.1 The Real Number System 1.1 The Real Number System Contents: Number Lines Absolute Value Definition of a Number Real Numbers Natural Numbers Whole Numbers Integers Rational Numbers Decimals as Fractions Repeating Decimals Rewriting

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

2017 SOLUTIONS (PRELIMINARY VERSION)

2017 SOLUTIONS (PRELIMINARY VERSION) SIMON MARAIS MATHEMATICS COMPETITION 07 SOLUTIONS (PRELIMINARY VERSION) This document will be updated to include alternative solutions provided by contestants, after the competition has been mared. Problem

More information

Math Circles: Pigeons and Rams(ey)

Math Circles: Pigeons and Rams(ey) Math Circles: Pigeons and Rams(ey) M. Victor Wickerhauser Sunday, October 2nd, 2016 The Pigeonhole Principle is an accepted fact about finite sets, stating that if a collection of N sets (think pigeonholes

More information

Answers to specimen paper questions. Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes.

Answers to specimen paper questions. Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes. Answers to specimen paper questions Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes. Question 1. (a) The degree of a vertex x is the number

More information

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers Contents STRAND B: Number Theory Unit 7 Number System and Bases Student Text Contents Section 7. Number System 7.2 Binary Numbers 7.3 Adding and Subtracting Binary Numbers 7.4 Multiplying Binary Numbers

More information

1 Counting triangles and cliques

1 Counting triangles and cliques ITCSC-INC Winter School 2015 26 January 2014 notes by Andrej Bogdanov Today we will talk about randomness and some of the surprising roles it plays in the theory of computing and in coding theory. Let

More information

Lecture 20 : Trees DRAFT

Lecture 20 : Trees DRAFT CS/Math 240: Introduction to Discrete Mathematics 4/12/2011 Lecture 20 : Trees Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we discussed graphs. Today we continue this discussion,

More information

Problem Set 7 Solutions

Problem Set 7 Solutions 6.42/8.62J Mathematics for Computer Science March 29, 25 Srini Devadas and Eric Lehman Problem Set 7 Solutions Due: Monday, April 4 at 9 PM Problem. Every function has some subset of these properties:

More information

Invariants and Algorithms

Invariants and Algorithms 1 Introduction Invariants and Algorithms November 9, 2015 Cody Johnson ctj@math.cmu.edu An invariant is something that doesn t change after some process. A monovariant is something that changes in one

More information

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability)

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability) MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability) Last modified: September 16, 2004 Reference: Apostol, Calculus, Vol. 2, section 13.19 (attached). The aim

More information

English for Computer Science

English for Computer Science English for Computer Science Mohammad Farshi Department of Computer Science, Yazd University 1388-1389 (CS Dept. Yazd U.) Yazd Univ. English4CS 1388-1389 1 / 15 Azmoone 1389(CS) Azmoone 1389(CS) (CS Dept.

More information

Unit 1, Lesson 1: Moving in the Plane

Unit 1, Lesson 1: Moving in the Plane Unit 1, Lesson 1: Moving in the Plane Let s describe ways figures can move in the plane. 1.1: Which One Doesn t Belong: Diagrams Which one doesn t belong? 1.2: Triangle Square Dance m.openup.org/1/8-1-1-2

More information

Randomized Algorithms: Selection

Randomized Algorithms: Selection Randomized Algorithms: Selection CSE21 Winter 2017, Day 25 (B00), Day 16 (A00) March 15, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Selection Problem: WHAT Given list of distinct integers a 1, a 2,,

More information

Dynamic Programming Algorithms

Dynamic Programming Algorithms CSC 364S Notes University of Toronto, Fall 2003 Dynamic Programming Algorithms The setting is as follows. We wish to find a solution to a given problem which optimizes some quantity Q of interest; for

More information

CTI, November 19, 2015

CTI, November 19, 2015 Consider a large cube made from unit cubes 1 Suppose our cube is n n n Look at the cube from a corner so that you can see three faces How many unit cubes are in your line of vision? Build a table that

More information

CS228 - Basic Counting and the Pigeonhole Principle

CS228 - Basic Counting and the Pigeonhole Principle CS228 - Basic Counting and the Pigeonhole Principle Nathan Sprague February 19, 2014 Material in these slides is from Discrete Mathematics and Its Applications 7e, Kenneth Rosen, 2012. The Product Rule

More information

UNC Charlotte 2010 Comprehensive

UNC Charlotte 2010 Comprehensive 00 Comprehensive with solutions March 8, 00. A cubic equation x 4x x + a = 0 has three roots, x, x, x. If x = x + x, what is a? (A) 4 (B) 8 (C) 0 (D) (E) 6 Solution: C. Because the coefficient of x is

More information

2.3 Algorithms Using Map-Reduce

2.3 Algorithms Using Map-Reduce 28 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK one becomes available. The Master must also inform each Reduce task that the location of its input from that Map task has changed. Dealing with a failure

More information

Practice Final Exam Solutions

Practice Final Exam Solutions 1 (1 points) For the following problem, the alphabet used is the standard -letter English alphabet, and vowels refers only to the letters A, E, I, O, and U (a) ( points) How many strings of five letters

More information

5 Graphs

5 Graphs 5 Graphs jacques@ucsd.edu Some of the putnam problems are to do with graphs. They do not assume more than a basic familiarity with the definitions and terminology of graph theory. 5.1 Basic definitions

More information

Discrete Structures Lecture The Basics of Counting

Discrete Structures Lecture The Basics of Counting Introduction Good morning. Combinatorics is the study of arrangements of objects. Perhaps, the first application of the study of combinatorics was in the study of gambling games. Understanding combinatorics

More information

Introduction to Algorithms I

Introduction to Algorithms I Summer School on Algorithms and Optimization Organized by: ACM Unit, ISI and IEEE CEDA. Tutorial II Date: 05.07.017 Introduction to Algorithms I (Q1) A binary tree is a rooted tree in which each node has

More information

CS103 Spring 2018 Mathematical Vocabulary

CS103 Spring 2018 Mathematical Vocabulary CS103 Spring 2018 Mathematical Vocabulary You keep using that word. I do not think it means what you think it means. - Inigo Montoya, from The Princess Bride Consider the humble while loop in most programming

More information

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI. February 7, 2009 Second Round Three Hours

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI. February 7, 2009 Second Round Three Hours UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI February 7, 009 Second Round Three Hours (1) An equilateral triangle is inscribed in a circle which is circumscribed by a square. This square is inscribed in

More information

Dynamic Programming Algorithms

Dynamic Programming Algorithms Based on the notes for the U of Toronto course CSC 364 Dynamic Programming Algorithms The setting is as follows. We wish to find a solution to a given problem which optimizes some quantity Q of interest;

More information

An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis October 12, 2016 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

CPSC 121: Models of Computation Assignment #4, due Thursday, March 16 th,2017at16:00

CPSC 121: Models of Computation Assignment #4, due Thursday, March 16 th,2017at16:00 CPSC 121: Models of Computation Assignment #4, due Thursday, March 16 th,2017at16:00 [18] 1. Consider the following predicate logic statement: 9x 2 A, 8y 2 B,9z 2 C, P(x, y, z)! Q(x, y, z), where A, B,

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

(Refer Slide Time: 00:50)

(Refer Slide Time: 00:50) Programming, Data Structures and Algorithms Prof. N.S. Narayanaswamy Department of Computer Science and Engineering Indian Institute of Technology Madras Module - 03 Lecture 30 Searching Unordered linear

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

CS195H Homework 5. Due:March 12th, 2015

CS195H Homework 5. Due:March 12th, 2015 CS195H Homework 5 Due:March 12th, 2015 As usual, please work in pairs. Math Stuff For us, a surface is a finite collection of triangles (or other polygons, but let s stick with triangles for now) with

More information

1 Definition of Reduction

1 Definition of Reduction 1 Definition of Reduction Problem A is reducible, or more technically Turing reducible, to problem B, denoted A B if there a main program M to solve problem A that lacks only a procedure to solve problem

More information

Notes for Recitation 8

Notes for Recitation 8 6.04/8.06J Mathematics for Computer Science October 5, 00 Tom Leighton and Marten van Dijk Notes for Recitation 8 Build-up error Recall a graph is connected iff there is a path between every pair of its

More information

Intermediate Mathematics League of Eastern Massachusetts

Intermediate Mathematics League of Eastern Massachusetts Meet # January 010 Intermediate Mathematics League of Eastern Massachusetts Meet # January 010 Category 1 - Mystery Meet #, January 010 1. Of all the number pairs whose sum equals their product, what is

More information

Counting Product Rule

Counting Product Rule Counting Product Rule Suppose a procedure can be broken down into a sequence of two tasks. If there are n 1 ways to do the first task and n 2 ways to do the second task, then there are n 1 * n 2 ways to

More information

The Helly Number of the Prime-coordinate Point Set

The Helly Number of the Prime-coordinate Point Set The Helly Number of the Prime-coordinate Point Set By KEVIN BARRETT SUMMERS SENIOR THESIS Submitted in partial satisfaction of the requirements for Highest Honors for the degree of BACHELOR OF SCIENCE

More information

Review of Operations on the Set of Real Numbers

Review of Operations on the Set of Real Numbers 1 Review of Operations on the Set of Real Numbers Before we start our jurney through algebra, let us review the structure of the real number system, properties of four operations, order of operations,

More information

CSE 312 Foundations II. 2. Counting. Winter 2017 W.L. Ruzzo

CSE 312 Foundations II. 2. Counting. Winter 2017 W.L. Ruzzo CSE 312 Foundations II 2. Counting Winter 2017 W.L. Ruzzo How many ways are there to do X? E.g., X = choose an integer 1, 2,..., 10 E.g., X = Walk from 1st & Marion to 5th & Pine, going only North or East

More information

Math 485, Graph Theory: Homework #3

Math 485, Graph Theory: Homework #3 Math 485, Graph Theory: Homework #3 Stephen G Simpson Due Monday, October 26, 2009 The assignment consists of Exercises 2129, 2135, 2137, 2218, 238, 2310, 2313, 2314, 2315 in the West textbook, plus the

More information

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Bernhard Werner Projective Geometry SS 208 https://www-m0.ma.tum.de/bin/view/lehre/ss8/pgss8/webhome Solutions for

More information

Greedy algorithms is another useful way for solving optimization problems.

Greedy algorithms is another useful way for solving optimization problems. Greedy Algorithms Greedy algorithms is another useful way for solving optimization problems. Optimization Problems For the given input, we are seeking solutions that must satisfy certain conditions. These

More information

Pythagorean Triples. Chapter 2. Exercises

Pythagorean Triples. Chapter 2. Exercises Chapter Pythagorean Triples Exercises.1. (a) We showed that in any primitive Pythagorean triple (a, b, c), either a or b is even. Use the same sort of argument to show that either a or b must be a multiple

More information

Any questions about the material so far? About the exercises?

Any questions about the material so far? About the exercises? Any questions about the material so far? About the exercises? Here is a question for you. In the diagram on the board, DE is parallel to AC, DB = 4, AB = 9 and BE = 8. What is the length EC? Polygons Definitions:

More information

Lesson 4.3 Ways of Proving that Quadrilaterals are Parallelograms

Lesson 4.3 Ways of Proving that Quadrilaterals are Parallelograms Lesson 4.3 Ways of Proving that Quadrilaterals are Parallelograms Getting Ready: How will you know whether or not a figure is a parallelogram? By definition, a quadrilateral is a parallelogram if it has

More information

SFU CMPT Lecture: Week 8

SFU CMPT Lecture: Week 8 SFU CMPT-307 2008-2 1 Lecture: Week 8 SFU CMPT-307 2008-2 Lecture: Week 8 Ján Maňuch E-mail: jmanuch@sfu.ca Lecture on June 24, 2008, 5.30pm-8.20pm SFU CMPT-307 2008-2 2 Lecture: Week 8 Universal hashing

More information

(Refer Slide Time 6:48)

(Refer Slide Time 6:48) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 8 Karnaugh Map Minimization using Maxterms We have been taking about

More information

Decreasing the Diameter of Bounded Degree Graphs

Decreasing the Diameter of Bounded Degree Graphs Decreasing the Diameter of Bounded Degree Graphs Noga Alon András Gyárfás Miklós Ruszinkó February, 00 To the memory of Paul Erdős Abstract Let f d (G) denote the minimum number of edges that have to be

More information

Prepared by Sa diyya Hendrickson. Package Summary

Prepared by Sa diyya Hendrickson. Package Summary Introduction Prepared by Sa diyya Hendrickson Name: Date: Package Summary Exponent Form and Basic Properties Order of Operations Using Divisibility Rules Finding Factors and Common Factors Primes, Prime

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

International Mathematics TOURNAMENT OF THE TOWNS. Junior A-Level Solutions Fall 2013

International Mathematics TOURNAMENT OF THE TOWNS. Junior A-Level Solutions Fall 2013 International Mathematics TOURNAMENT OF THE TOWNS Junior A-Level Solutions Fall 201 1. There are 100 red, 100 yellow and 100 green sticks. One can construct a triangle using any three sticks all of different

More information

Graph Theory Part Two

Graph Theory Part Two Graph Theory Part Two Recap from Last Time A graph is a mathematical structure for representing relationships. Nodes A graph consists of a set of nodes (or vertices) connected by edges (or arcs) A graph

More information

Lecture 25 : Counting DRAFT

Lecture 25 : Counting DRAFT CS/Math 240: Introduction to Discrete Mathematics 4/28/2011 Lecture 25 : Counting Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Today we start the last topic of the course, counting. For

More information

1. (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying.

1. (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying. May 9, 2003 Show all work Name There are 260 points available on this test 1 (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying where

More information

CS 341 Homework 1 Basic Techniques

CS 341 Homework 1 Basic Techniques CS 341 Homework 1 Basic Techniques 1. What are these sets? Write them using braces, commas, numerals, (for infinite sets), and only. (a) ({1, 3, 5} {3, 1}) {3, 5, 7} (b) {{3}, {3, 5}, {{5, 7}, {7, 9}}}

More information

11.1 Facility Location

11.1 Facility Location CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Facility Location ctd., Linear Programming Date: October 8, 2007 Today we conclude the discussion of local

More information

Principles of Algorithm Design

Principles of Algorithm Design Principles of Algorithm Design When you are trying to design an algorithm or a data structure, it s often hard to see how to accomplish the task. The following techniques can often be useful: 1. Experiment

More information

Network Flow. The network flow problem is as follows:

Network Flow. The network flow problem is as follows: Network Flow The network flow problem is as follows: Given a connected directed graph G with non-negative integer weights, (where each edge stands for the capacity of that edge), and two distinguished

More information

CS 3512, Spring Instructor: Doug Dunham. Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010

CS 3512, Spring Instructor: Doug Dunham. Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010 CS 3512, Spring 2011 Instructor: Doug Dunham Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010 Prerequisites: Calc I, CS2511 Rough course outline:

More information