ThyNVM. Enabling So1ware- Transparent Crash Consistency In Persistent Memory Systems

Size: px
Start display at page:

Download "ThyNVM. Enabling So1ware- Transparent Crash Consistency In Persistent Memory Systems"

Transcription

1 ThyNVM Enabling So1ware- Transparent Crash Consistency In Persistent Memory Systems Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur Mutlu

2 TWO- LEVEL STORAGE MODEL MEMORY CPU STORAGE Ld/St DRAM FILE I/O VOLATILE FAST BYTE ADDR NONVOLATILE SLOW BLOCK ADDR 2

3 TWO- LEVEL STORAGE MODEL MEMORY STORAGE CPU Ld/St DRAM FILE I/O NVM PCM, STT-RAM VOLATILE FAST BYTE ADDR NONVOLATILE SLOW BLOCK ADDR Non- volamle memories combine characterismcs of memory and storage 3

4 PERSISTENT MEMORY CPU Ld/St NVM PERSISTENT MEMORY Provides an opportunity to manipulate persistent data directly 4

5 CHALLENGE: CRASH CONSISTENCY Persistent Memory System System crash can result in permanent data corrupmon in NVM 5

6 CURRENT SOLUTIONS Explicit interfaces to manage consistency NV- Heaps [ASPLOS 11], BPFS [SOSP 09], Mnemosyne [ASPLOS 11] AtomicBegin { Insert a new node; } AtomicEnd; Limits adopmon of NVM Have to rewrite code with clear parmmon between volamle and non- volamle data Burden on the programmers 6

7 OUR APPROACH: ThyNVM Goal: Software transparent consistency in persistent memory systems 7

8 ThyNVM: Summary A new hardware-based checkpointing mechanism Checkpoints at mul$ple granulari$es to reduce both checkpoineng latency and metadata overhead Overlaps checkpoin$ng and execu$on to reduce checkpoineng latency Adapts to DRAM and NVM characterisecs 4.9% Performs within of an idealized DRAM with zero cost consistency 8

9 OUTLINE Crash Consistency Problem Current Solutions ThyNVM Evaluation Conclusion 9

10 CRASH CONSISTENCY PROBLEM Add a node to a linked list 2. Link to prev 1. Link to next System crash can result in inconsistent memory state 10

11 OUTLINE Crash Consistency Problem Current Solutions ThyNVM Evaluation Conclusion 11

12 CURRENT SOLUTIONS Explicit interfaces to manage consistency NV- Heaps [ASPLOS 11], BPFS [SOSP 09], Mnemosyne [ASPLOS 11] Example Code update a node in a persistent hash table void hashtable_update(hashtable_t* ht, void *key, void *data) { list_t* chain = get_chain(ht, key); pair_t* pair; pair_t updatepair; updatepair.first = key; pair = (pair_t*) list_find(chain, &updatepair); pair->second = data; 12 }

13 CURRENT SOLUTIONS void TMhashtable_update(TMARCGDECL hashtable_t* ht, void *key, void*data) { list_t* chain = get_chain(ht, key); pair_t* pair; pair_t updatepair; updatepair.first = key; pair = (pair_t*) TMLIST_FIND(chain, &updatepair); pair->second = data; } 13

14 CURRENT SOLUTIONS Manual declaramon of persistent components void TMhashtable_update(TMARCGDECL hashtable_t* ht, void *key, void*data) { list_t* chain = get_chain(ht, key); pair_t* pair; pair_t updatepair; updatepair.first = key; pair = (pair_t*) TMLIST_FIND(chain, &updatepair); pair->second = data; } 14

15 CURRENT SOLUTIONS Manual declaramon of persistent components void TMhashtable_update(TMARCGDECL hashtable_t* ht, void *key, void*data) { list_t* chain = get_chain(ht, key); pair_t* pair; pair_t updatepair; updatepair.first = key; pair = (pair_t*) TMLIST_FIND(chain, &updatepair); pair->second = data; } Need a new implementamon 15

16 CURRENT SOLUTIONS Manual declaramon of persistent components void TMhashtable_update(TMARCGDECL hashtable_t* ht, void *key, void*data) { list_t* chain = get_chain(ht, key); pair_t* pair; pair_t updatepair; updatepair.first = key; pair = (pair_t*) TMLIST_FIND(chain, &updatepair); pair->second = data; Third party code } can be inconsistent Need a new implementamon 16

17 CURRENT SOLUTIONS Manual declaramon of persistent components void TMhashtable_update(TMARCGDECL hashtable_t* ht, void *key, void*data) { list_t* chain = get_chain(ht, key); pair_t* pair; pair_t updatepair; updatepair.first = key; pair = (pair_t*) TMLIST_FIND(chain, Prohibited &updatepair); pair->second = data; Third party code } OperaMon can be inconsistent Need a new implementamon Burden on the programmers 17

18 OUTLINE Crash Consistency Problem Current Solutions ThyNVM Evaluation Conclusion 18

19 OUR GOAL Software transparent consistency in persistent memory systems Execute legacy applica$ons Reduce burden on programmers Enable easier integra$on of NVM 19

20 NO MODIFICATION IN THE CODE void hashtable_update(hashtable_t* ht, void *key, void *data) { list_t* chain = get_chain(ht, key); pair_t* pair; pair_t updatepair; updatepair.first = key; pair = (pair_t*) list_find(chain, &updatepair); pair->second = data; }

21 RUN THE EXACT SAME CODE void hashtable_update(hashtable_t* ht, void *key, void *data){ list_t* chain = get_chain(ht, key); pair_t* pair; pair_t updatepair; updatepair.first = key; pair = (pair_t*) list_find(chain, &updatepair); pair->second = data; } Persistent Memory System So1ware transparent memory crash consistency 21

22 ThyNVM APPROACH Periodic checkpointing of data managed by hardware time Running CheckpoinMng Running CheckpoinMng Epoch 0 Epoch 1 Transparent to applicamon and system 22

23 CHECKPOINTING OVERHEAD 1. Metadata overhead Metadata Table Working locamon Checkpoint locamon X X Y Y time Running CheckpoinMng Running CheckpoinMng Epoch 0 Epoch 1 2. Checkpointing latency 23

24 1. METADATA AND CHECKPOINTING GRANULARITY Working locamon Checkpoint locamon X X Y Y PAGE CACHE BLOCK PAGE GRANULARITY One Entry Per Page Small Metadata BLOCK GRANULARITY One Entry Per Block Huge Metadata 24

25 2. LATENCY AND LOCATION DRAM- BASED WRITEBACK Working locamon 2. Update the metadata table Checkpoint locamon 1. Writeback data from DRAM X X W DRAM NVM Long latency of wrimng back data to NVM 25

26 2. LATENCY AND LOCATION NVM- BASED REMAPPING Working locamon Y 2. Update the metadata table Checkpoint locamon Write No copying a new X of locaeon data DRAM NVM Short latency in NVM- based remapping 26

27 ThyNVM KEY MECHANISMS CheckpoinMng granularity Small granularity: large metadata Large granularity: small metadata Latency and locamon Writeback from DRAM: long latency Remap in NVM: short latency Based on these we propose two key mechanisms 1. Dual granularity checkpoinmng 2. Overlap of execumon and checkpoinmng

28 1. DUAL GRANULARITY CHECKPOINTING Page Writeback in DRAM Block Remapping in NVM DRAM GOOD FOR STREAMING WRITES NVM GOOD FOR RANDOM WRITES High write locality pages in DRAM, low write locality pages in NVM 28

29 2. OVERLAPPING CHECKOINTING AND EXECUTION time Running CheckpoinMng Running CheckpoinMng Epoch 0 Epoch 1 Epoch 0 Epoch 1 time Running CheckpoinMng Running CheckpoinMng Running CheckpoinMng Epoch 0 Epoch 1 Epoch 2 Hides the long latency of Page Writeback

30 OUTLINE Crash Consistency Problem Current Solutions ThyNVM Evaluation Conclusion 30

31 METHODOLOGY Cycle accurate x86 simulator Gem5 Comparison Points: Ideal DRAM: DRAM- based, no cost for consistency Lowest latency system Ideal NVM: NVM- based, no cost for consistency NVM has higher latency than DRAM Journaling: Hybrid, commit dirty cache blocks Leverages DRAM to buffer dirty blocks Shadow Paging: Hybrid, copy- on- write pages Leverages DRAM to buffer dirty pages 31

32 ADAPTIVITY TO ACCESS PATTERN RANDOM SEQUENTIAL B ET T E R Normalized Write Traffic To NVM Journal Shadow ThyNVM Normalized Write Traffic To NVM Journal Shadow ThyNVM Journaling is beher for Random and Shadow paging is beher for SequenMal ThyNVM adapts to both access paherns 32

33 OVERLAPPING CHECKPOINTING AND EXECUTION 60 RANDOM 60 SEQUENTIAL B ET T E R Percentage of ExecuMon Time Percentage of ExecuMon Time Journal Shadow ThyNVM 0 Journal Shadow ThyNVM ThyNVM Can spend spends 35-45% only of 2.4%/5.5% the execumon of the execumon Mme checkpoinmng on checkpoinmng Stalls the applicamon for a negligible Mme 33

34 PERFORMANCE OF LEGACY CODE Normalized IPC Ideal DRAM Ideal NVM ThyNVM gcc bwaves milc leslie. soplex Gems lbm omnet Within - 4.9%/+2.7% of an idealized DRAM/NVM system Provides consistency without significant performance overhead 34

35 OUTLINE Crash Consistency Problem Current Solutions ThyNVM Evaluation Conclusion 35

36 ThyNVM A new hardware-based checkpointing mechanism, with no programming effort Checkpoints at mul$ple granulari$es to minimize both latency and metadata Overlaps checkpoin$ng and execu$on Adapts to DRAM and NVM characterisecs Can enable widespread adop$on of persistent memory 36

37 Available at hhp://persper.com/thynvm ThyNVM Enabling So1ware- transparent Crash Consistency In Persistent Memory Systems Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur Mutlu

SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS

SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS SOLVING THE DRAM SCALING CHALLENGE: RETHINKING THE INTERFACE BETWEEN CIRCUITS, ARCHITECTURE, AND SYSTEMS Samira Khan MEMORY IN TODAY S SYSTEM Processor DRAM Memory Storage DRAM is critical for performance

More information

Hardware Support for NVM Programming

Hardware Support for NVM Programming Hardware Support for NVM Programming 1 Outline Ordering Transactions Write endurance 2 Volatile Memory Ordering Write-back caching Improves performance Reorders writes to DRAM STORE A STORE B CPU CPU B

More information

Improving Cache Performance by Exploi7ng Read- Write Disparity. Samira Khan, Alaa R. Alameldeen, Chris Wilkerson, Onur Mutlu, and Daniel A.

Improving Cache Performance by Exploi7ng Read- Write Disparity. Samira Khan, Alaa R. Alameldeen, Chris Wilkerson, Onur Mutlu, and Daniel A. Improving Cache Performance by Exploi7ng Read- Write Disparity Samira Khan, Alaa R. Alameldeen, Chris Wilkerson, Onur Mutlu, and Daniel A. Jiménez Summary Read misses are more cri?cal than write misses

More information

Improving Cache Performance by Exploi7ng Read- Write Disparity. Samira Khan, Alaa R. Alameldeen, Chris Wilkerson, Onur Mutlu, and Daniel A.

Improving Cache Performance by Exploi7ng Read- Write Disparity. Samira Khan, Alaa R. Alameldeen, Chris Wilkerson, Onur Mutlu, and Daniel A. Improving Cache Performance by Exploi7ng Read- Write Disparity Samira Khan, Alaa R. Alameldeen, Chris Wilkerson, Onur Mutlu, and Daniel A. Jiménez Summary Read misses are more cri?cal than write misses

More information

Architectural Support for Atomic Durability in Non-Volatile Memory

Architectural Support for Atomic Durability in Non-Volatile Memory Architectural Support for Atomic Durability in Non-Volatile Memory Arpit Joshi, Vijay Nagarajan, Stratis Viglas, Marcelo Cintra NVMW 2018 Summary Non-Volatile Memory (NVM) - on the memory bus enables in-memory

More information

NVthreads: Practical Persistence for Multi-threaded Applications

NVthreads: Practical Persistence for Multi-threaded Applications NVthreads: Practical Persistence for Multi-threaded Applications Terry Hsu*, Purdue University Helge Brügner*, TU München Indrajit Roy*, Google Inc. Kimberly Keeton, Hewlett Packard Labs Patrick Eugster,

More information

Loose-Ordering Consistency for Persistent Memory

Loose-Ordering Consistency for Persistent Memory Loose-Ordering Consistency for Persistent Memory Youyou Lu, Jiwu Shu, Long Sun and Onur Mutlu Department of Computer Science and Technology, Tsinghua University, Beijing, China State Key Laboratory of

More information

Blurred Persistence in Transactional Persistent Memory

Blurred Persistence in Transactional Persistent Memory Blurred Persistence in Transactional Persistent Memory Youyou Lu, Jiwu Shu, Long Sun Tsinghua University Overview Problem: high performance overhead in ensuring storage consistency of persistent memory

More information

Distributed Shared Persistent Memory

Distributed Shared Persistent Memory Distributed Shared Persistent Memory (SoCC 17) Yizhou Shan, Yiying Zhang Persistent Memory (PM/NVM) Byte Addressable Persistent CPU Cache Low Latency Capacity Cost effective PM DRAM 2 Many PM Work, but

More information

Overcoming System Memory Challenges with Persistent Memory and NVDIMM-P

Overcoming System Memory Challenges with Persistent Memory and NVDIMM-P Overcoming System Memory Challenges with Persistent Memory and NVDIMM-P JEDEC Server Forum 2017 Bill Gervasi, Discobolus Designs Copyright 2017 Jonathan Hinkle, Lenovo Datacenter Research and Technology

More information

Hardware Undo+Redo Logging. Matheus Ogleari Ethan Miller Jishen Zhao CRSS Retreat 2018 May 16, 2018

Hardware Undo+Redo Logging. Matheus Ogleari Ethan Miller Jishen Zhao   CRSS Retreat 2018 May 16, 2018 Hardware Undo+Redo Logging Matheus Ogleari Ethan Miller Jishen Zhao https://users.soe.ucsc.edu/~mogleari/ CRSS Retreat 2018 May 16, 2018 Typical Memory and Storage Hierarchy: Memory Fast access to working

More information

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh Accelerating Pointer Chasing in 3D-Stacked : Challenges, Mechanisms, Evaluation Kevin Hsieh Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, Onur Mutlu Executive Summary

More information

New Abstractions for Fast Non-Volatile Storage

New Abstractions for Fast Non-Volatile Storage New Abstractions for Fast Non-Volatile Storage Joel Coburn, Adrian Caulfield, Laura Grupp, Ameen Akel, Steven Swanson Non-volatile Systems Laboratory Department of Computer Science and Engineering University

More information

Redrawing the Boundary Between So3ware and Storage for Fast Non- Vola;le Memories

Redrawing the Boundary Between So3ware and Storage for Fast Non- Vola;le Memories Redrawing the Boundary Between So3ware and Storage for Fast Non- Vola;le Memories Steven Swanson Director, Non- Vola;le System Laboratory Computer Science and Engineering University of California, San

More information

JOURNALING techniques have been widely used in modern

JOURNALING techniques have been widely used in modern IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, XXXX 2018 1 Optimizing File Systems with a Write-efficient Journaling Scheme on Non-volatile Memory Xiaoyi Zhang, Dan Feng, Member, IEEE, Yu Hua, Senior

More information

Using Memory-Style Storage to Support Fault Tolerance in Data Centers

Using Memory-Style Storage to Support Fault Tolerance in Data Centers Using Memory-Style Storage to Support Fault Tolerance in Data Centers Xiao Liu Qing Yi Jishen Zhao University of California at Santa Cruz, University of Colorado Colorado Springs {xiszishu,jishen.zhao}@ucsc.edu,

More information

Phase Change Memory An Architecture and Systems Perspective

Phase Change Memory An Architecture and Systems Perspective Phase Change Memory An Architecture and Systems Perspective Benjamin Lee Electrical Engineering Stanford University Stanford EE382 2 December 2009 Benjamin Lee 1 :: PCM :: 2 Dec 09 Memory Scaling density,

More information

STORAGE LATENCY x. RAMAC 350 (600 ms) NAND SSD (60 us)

STORAGE LATENCY x. RAMAC 350 (600 ms) NAND SSD (60 us) 1 STORAGE LATENCY 2 RAMAC 350 (600 ms) 1956 10 5 x NAND SSD (60 us) 2016 COMPUTE LATENCY 3 RAMAC 305 (100 Hz) 1956 10 8 x 1000x CORE I7 (1 GHZ) 2016 NON-VOLATILE MEMORY 1000x faster than NAND 3D XPOINT

More information

Closing the Performance Gap Between Volatile and Persistent K-V Stores

Closing the Performance Gap Between Volatile and Persistent K-V Stores Closing the Performance Gap Between Volatile and Persistent K-V Stores Yihe Huang, Harvard University Matej Pavlovic, EPFL Virendra Marathe, Oracle Labs Margo Seltzer, Oracle Labs Tim Harris, Oracle Labs

More information

Dalí: A Periodically Persistent Hash Map

Dalí: A Periodically Persistent Hash Map Dalí: A Periodically Persistent Hash Map Faisal Nawab* 1, Joseph Izraelevitz* 2, Terence Kelly*, Charles B. Morrey III*, Dhruva R. Chakrabarti*, and Michael L. Scott 2 1 Department of Computer Science

More information

Logging in Persistent Memory: to Cache, or Not to Cache? Mengjie Li, Matheus Ogleari, Jishen Zhao

Logging in Persistent Memory: to Cache, or Not to Cache? Mengjie Li, Matheus Ogleari, Jishen Zhao Logging in Persistent Memory: to Cache, or Not to Cache? Mengjie Li, Matheus Ogleari, Jishen Zhao Persistent Memory CPU DRAM Disk/Flash Memory Load/store Not persistent Storage Fopen, fread, fwrite, Persistent

More information

Phase Change Memory An Architecture and Systems Perspective

Phase Change Memory An Architecture and Systems Perspective Phase Change Memory An Architecture and Systems Perspective Benjamin C. Lee Stanford University bcclee@stanford.edu Fall 2010, Assistant Professor @ Duke University Benjamin C. Lee 1 Memory Scaling density,

More information

The ILOC Virtual Machine (Lab 1 Background Material) Comp 412

The ILOC Virtual Machine (Lab 1 Background Material) Comp 412 COMP 12 FALL 20 The ILOC Virtual Machine (Lab 1 Background Material) Comp 12 source code IR Front End OpMmizer Back End IR target code Copyright 20, Keith D. Cooper & Linda Torczon, all rights reserved.

More information

PiCL: a Software-Transparent, Persistent Cache Log for Nonvolatile Main Memory

PiCL: a Software-Transparent, Persistent Cache Log for Nonvolatile Main Memory PiCL: a Software-Transparent, Persistent Cache Log for Nonvolatile Main Memory Tri M. Nguyen Department of Electrical Engineering Princeton University Princeton, USA trin@princeton.edu David Wentzlaff

More information

Computer Architecture Lecture 19: Multiprocessors, Consistency, Coherence. Prof. Onur Mutlu ETH Zürich Fall November 2017

Computer Architecture Lecture 19: Multiprocessors, Consistency, Coherence. Prof. Onur Mutlu ETH Zürich Fall November 2017 Computer Architecture Lecture 19: Multiprocessors, Consistency, Coherence Prof. Onur Mutlu ETH Zürich Fall 2017 29 November 2017 Summary of Last Week s Lectures Memory Latency Tolerance Runahead Execution

More information

System Software for Persistent Memory

System Software for Persistent Memory System Software for Persistent Memory Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran and Jeff Jackson 72131715 Neo Kim phoenixise@gmail.com Contents

More information

Amnesic Cache Management for Non-Volatile Memory

Amnesic Cache Management for Non-Volatile Memory Amnesic Cache Management for Non-Volatile Memory Dongwoo Kang, Seungjae Baek, Jongmoo Choi Dankook University, South Korea {kangdw, baeksj, chiojm}@dankook.ac.kr Donghee Lee University of Seoul, South

More information

Linearizability of Persistent Memory Objects

Linearizability of Persistent Memory Objects Linearizability of Persistent Memory Objects Michael L. Scott Joint work with Joseph Izraelevitz & Hammurabi Mendes www.cs.rochester.edu/research/synchronization/ Compiler-Driven Performance Workshop,

More information

SAY-Go: Towards Transparent and Seamless Storage-As-You-Go with Persistent Memory

SAY-Go: Towards Transparent and Seamless Storage-As-You-Go with Persistent Memory SAY-Go: Towards Transparent and Seamless Storage-As-You-Go with Persistent Memory Hyeonho Song, Sam H. Noh UNIST HotStorage 2018 Contents Persistent Memory Motivation SAY-Go Design Implementation Evaluation

More information

Linearizability of Persistent Memory Objects

Linearizability of Persistent Memory Objects Linearizability of Persistent Memory Objects Michael L. Scott Joint work with Joseph Izraelevitz & Hammurabi Mendes www.cs.rochester.edu/research/synchronization/ Workshop on the Theory of Transactional

More information

Rethinking Memory System Design Business as Usual in the Next Decade?

Rethinking Memory System Design Business as Usual in the Next Decade? Rethinking Memory System Design Business as Usual in the Next Decade? Onur Mutlu onur.mutlu@inf.ethz.ch http://users.ece.cmu.edu/~omutlu/ September 23, 2016 MST Workshop Keynote (Milan) The Main Memory

More information

Operating System Supports for SCM as Main Memory Systems (Focusing on ibuddy)

Operating System Supports for SCM as Main Memory Systems (Focusing on ibuddy) 2011 NVRAMOS Operating System Supports for SCM as Main Memory Systems (Focusing on ibuddy) 2011. 4. 19 Jongmoo Choi http://embedded.dankook.ac.kr/~choijm Contents Overview Motivation Observations Proposal:

More information

What You can Do with NVDIMMs. Rob Peglar President, Advanced Computation and Storage LLC

What You can Do with NVDIMMs. Rob Peglar President, Advanced Computation and Storage LLC What You can Do with NVDIMMs Rob Peglar President, Advanced Computation and Storage LLC A Fundamental Change Requires An Ecosystem Windows Server 2016 Windows 10 Pro for Workstations Linux Kernel 4.2 and

More information

Leveraging Nonvolatility for Architecture Design with Emerging NVM

Leveraging Nonvolatility for Architecture Design with Emerging NVM Leveraging Nonvolatility for Architecture Design with Emerging NVM Shuangchen Li Ping Chi Jishen Zhao Kwang-Ting Cheng Yuan Xie Dept. of Electrical and Computer Engineering, University of California, Santa

More information

CSE 2021: Computer Organization

CSE 2021: Computer Organization CSE 2021: Computer Organization Lecture-12a Caches-1 The basics of caches Shakil M. Khan Memory Technology Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic RAM (DRAM) 50ns 70ns, $20 $75 per GB

More information

SMD149 - Operating Systems - File systems

SMD149 - Operating Systems - File systems SMD149 - Operating Systems - File systems Roland Parviainen November 21, 2005 1 / 59 Outline Overview Files, directories Data integrity Transaction based file systems 2 / 59 Files Overview Named collection

More information

and data combined) is equal to 7% of the number of instructions. Miss Rate with Second- Level Cache, Direct- Mapped Speed

and data combined) is equal to 7% of the number of instructions. Miss Rate with Second- Level Cache, Direct- Mapped Speed 5.3 By convention, a cache is named according to the amount of data it contains (i.e., a 4 KiB cache can hold 4 KiB of data); however, caches also require SRAM to store metadata such as tags and valid

More information

arxiv: v1 [cs.dc] 3 Jan 2019

arxiv: v1 [cs.dc] 3 Jan 2019 A Secure and Persistent Memory System for Non-volatile Memory Pengfei Zuo *, Yu Hua *, Yuan Xie * Huazhong University of Science and Technology University of California, Santa Barbara arxiv:1901.00620v1

More information

Loose-Ordering Consistency for Persistent Memory

Loose-Ordering Consistency for Persistent Memory Loose-Ordering Consistency for Persistent Memory Youyou Lu 1, Jiwu Shu 1, Long Sun 1, Onur Mutlu 2 1 Tsinghua University 2 Carnegie Mellon University Summary Problem: Strict write ordering required for

More information

CSE 2021: Computer Organization

CSE 2021: Computer Organization CSE 2021: Computer Organization Lecture-12 Caches-1 The basics of caches Shakil M. Khan Memory Technology Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic RAM (DRAM) 50ns 70ns, $20 $75 per GB

More information

ACCORD: Enabling Associativity for Gigascale DRAM Caches by Coordinating Way-Install and Way-Prediction

ACCORD: Enabling Associativity for Gigascale DRAM Caches by Coordinating Way-Install and Way-Prediction ACCORD: Enabling Associativity for Gigascale DRAM Caches by Coordinating Way-Install and Way-Prediction Vinson Young, Chiachen Chou, Aamer Jaleel *, and Moinuddin K. Qureshi Georgia Institute of Technology

More information

Module Outline. CPU Memory interaction Organization of memory modules Cache memory Mapping and replacement policies.

Module Outline. CPU Memory interaction Organization of memory modules Cache memory Mapping and replacement policies. M6 Memory Hierarchy Module Outline CPU Memory interaction Organization of memory modules Cache memory Mapping and replacement policies. Events on a Cache Miss Events on a Cache Miss Stall the pipeline.

More information

A Cost-efficient NVM-based Journaling Scheme for File Systems

A Cost-efficient NVM-based Journaling Scheme for File Systems 2017 IEEE 35th International Conference on Computer Design A Cost-efficient NVM-based Journaling Scheme for File Systems Xiaoyi Zhang, Dan Feng, Yu Hua and Jianxi Chen Wuhan National Lab for Optoelectronics,

More information

DudeTx: Durable Transactions Made Decoupled

DudeTx: Durable Transactions Made Decoupled DudeTx: Durable Transactions Made Decoupled MENGXING LIU, Tsinghua University MINGXING ZHANG, Tsinghua University KANG CHEN, Tsinghua University XUEHAI QIAN, University of Southern California YONGWEI WU,

More information

PCIe Storage Beyond SSDs

PCIe Storage Beyond SSDs PCIe Storage Beyond SSDs Fabian Trumper NVM Solutions Group PMC-Sierra Santa Clara, CA 1 Classic Memory / Storage Hierarchy FAST, VOLATILE CPU Cache DRAM Performance Gap Performance Tier (SSDs) SLOW, NON-VOLATILE

More information

WALL: A Writeback-Aware LLC Management for PCM-based Main Memory Systems

WALL: A Writeback-Aware LLC Management for PCM-based Main Memory Systems : A Writeback-Aware LLC Management for PCM-based Main Memory Systems Bahareh Pourshirazi *, Majed Valad Beigi, Zhichun Zhu *, and Gokhan Memik * University of Illinois at Chicago Northwestern University

More information

An Analysis of Persistent Memory Use with WHISPER

An Analysis of Persistent Memory Use with WHISPER An Analysis of Persistent Memory Use with WHISPER Sanketh Nalli, Swapnil Haria, Michael M. Swift, Mark D. Hill, Haris Volos*, Kimberly Keeton* University of Wisconsin- Madison & *Hewlett- Packard Labs

More information

Leave the Cache Hierarchy Operation as It Is: A New Persistent Memory Accelerating Approach

Leave the Cache Hierarchy Operation as It Is: A New Persistent Memory Accelerating Approach Leave the Cache Hierarchy Operation as It Is: A New Persistent Memory Accelerating Approach Chun-Hao Lai Jishen Zhao Chia-Lin Yang National Taiwan University, University of California, Santa Cruz, Academia

More information

Non-Volatile Memory Through Customized Key-Value Stores

Non-Volatile Memory Through Customized Key-Value Stores Non-Volatile Memory Through Customized Key-Value Stores Leonardo Mármol 1 Jorge Guerra 2 Marcos K. Aguilera 2 1 Florida International University 2 VMware L. Mármol, J. Guerra, M. K. Aguilera (FIU and VMware)

More information

Efficient Persist Barriers for Multicores

Efficient Persist Barriers for Multicores fficient Persist Barriers for Multicores Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, Stratis Viglas Summary fficient persist barrier Used to implement persistency models Persistency = when stores become

More information

Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative

Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative Emre Kültürsay *, Mahmut Kandemir *, Anand Sivasubramaniam *, and Onur Mutlu * Pennsylvania State University Carnegie Mellon University

More information

WADE: Writeback-Aware Dynamic Cache Management for NVM-Based Main Memory System

WADE: Writeback-Aware Dynamic Cache Management for NVM-Based Main Memory System WADE: Writeback-Aware Dynamic Cache Management for NVM-Based Main Memory System ZHE WANG, Texas A&M University SHUCHANG SHAN, Chinese Institute of Computing Technology TING CAO, Australian National University

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Principle of Locality Programs access a small proportion of their address space at any time Temporal locality Items accessed recently are likely to

More information

V. Primary & Secondary Memory!

V. Primary & Secondary Memory! V. Primary & Secondary Memory! Computer Architecture and Operating Systems & Operating Systems: 725G84 Ahmed Rezine 1 Memory Technology Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic RAM (DRAM)

More information

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson A Cross Media File System Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson 1 Let s build a fast server NoSQL store, Database, File server, Mail server Requirements

More information

Rethink the Sync 황인중, 강윤지, 곽현호. Embedded Software Lab. Embedded Software Lab.

Rethink the Sync 황인중, 강윤지, 곽현호. Embedded Software Lab. Embedded Software Lab. 1 Rethink the Sync 황인중, 강윤지, 곽현호 Authors 2 USENIX Symposium on Operating System Design and Implementation (OSDI 06) System Structure Overview 3 User Level Application Layer Kernel Level Virtual File System

More information

Silent Shredder: Zero-Cost Shredding For Secure Non-Volatile Main Memory Controllers

Silent Shredder: Zero-Cost Shredding For Secure Non-Volatile Main Memory Controllers Silent Shredder: Zero-Cost Shredding For Secure Non-Volatile Main Memory Controllers 1 ASPLOS 2016 2-6 th April Amro Awad (NC State University) Pratyusa Manadhata (Hewlett Packard Labs) Yan Solihin (NC

More information

Block Device Scheduling. Don Porter CSE 506

Block Device Scheduling. Don Porter CSE 506 Block Device Scheduling Don Porter CSE 506 Quick Recap CPU Scheduling Balance competing concerns with heuristics What were some goals? No perfect solution Today: Block device scheduling How different from

More information

Defining a High-Level Programming Model for Emerging NVRAM Technologies

Defining a High-Level Programming Model for Emerging NVRAM Technologies Defining a High-Level Programming Model for Emerging NVRAM Technologies Thomas Shull, Jian Huang, Josep Torrellas University of Illinois at Urbana-Champaign September 13, 2018 Shull et al. Defining a High-Level

More information

CMU Introduction to Computer Architecture, Spring 2014 HW 5: Virtual Memory, Caching and Main Memory

CMU Introduction to Computer Architecture, Spring 2014 HW 5: Virtual Memory, Caching and Main Memory CMU 18-447 Introduction to Computer Architecture, Spring 2014 HW 5: Virtual Memory, Caching and Main Memory Instructor: Prof. Onur Mutlu TAs: Rachata Ausavarungnirun, Varun Kohli, Xiao Bo Zhao, Paraj Tyle

More information

Memory. Lecture 22 CS301

Memory. Lecture 22 CS301 Memory Lecture 22 CS301 Administrative Daily Review of today s lecture w Due tomorrow (11/13) at 8am HW #8 due today at 5pm Program #2 due Friday, 11/16 at 11:59pm Test #2 Wednesday Pipelined Machine Fetch

More information

Computer Architecture. Lecture 8: Virtual Memory

Computer Architecture. Lecture 8: Virtual Memory Computer Architecture Lecture 8: Virtual Memory Dr. Ahmed Sallam Suez Canal University Spring 2015 Based on original slides by Prof. Onur Mutlu Memory (Programmer s View) 2 Ideal Memory Zero access time

More information

Recoverability. Kathleen Durant PhD CS3200

Recoverability. Kathleen Durant PhD CS3200 Recoverability Kathleen Durant PhD CS3200 1 Recovery Manager Recovery manager ensures the ACID principles of atomicity and durability Atomicity: either all actions in a transaction are done or none are

More information

Mnemosyne Lightweight Persistent Memory

Mnemosyne Lightweight Persistent Memory Mnemosyne Lightweight Persistent Memory Haris Volos Andres Jaan Tack, Michael M. Swift University of Wisconsin Madison Executive Summary Storage-Class Memory (SCM) enables memory-like storage Persistent

More information

An Analysis of Persistent Memory Use with WHISPER

An Analysis of Persistent Memory Use with WHISPER An Analysis of Persistent Memory Use with WHISPER Sanketh Nalli, Swapnil Haria, Michael M. Swift, Mark D. Hill, Haris Volos*, Kimberly Keeton* University of Wisconsin- Madison & *Hewlett- Packard Labs

More information

15-740/ Computer Architecture Lecture 10: Runahead and MLP. Prof. Onur Mutlu Carnegie Mellon University

15-740/ Computer Architecture Lecture 10: Runahead and MLP. Prof. Onur Mutlu Carnegie Mellon University 15-740/18-740 Computer Architecture Lecture 10: Runahead and MLP Prof. Onur Mutlu Carnegie Mellon University Last Time Issues in Out-of-order execution Buffer decoupling Register alias tables Physical

More information

Chapter 6 Objectives

Chapter 6 Objectives Chapter 6 Memory Chapter 6 Objectives Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured.

More information

Virtualized and Flexible ECC for Main Memory

Virtualized and Flexible ECC for Main Memory Virtualized and Flexible ECC for Main Memory Doe Hyun Yoon and Mattan Erez Dept. Electrical and Computer Engineering The University of Texas at Austin ASPLOS 2010 1 Memory Error Protection Applying ECC

More information

NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory

NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory Dhananjoy Das, Sr. Systems Architect SanDisk Corp. 1 Agenda: Applications are KING! Storage landscape (Flash / NVM)

More information

Caching and reliability

Caching and reliability Caching and reliability Block cache Vs. Latency ~10 ns 1~ ms Access unit Byte (word) Sector Capacity Gigabytes Terabytes Price Expensive Cheap Caching disk contents in RAM Hit ratio h : probability of

More information

BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory

BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory JOY ARULRAJ JUSTIN LEVANDOSKI UMAR FAROOQ MINHAS PER-AKE LARSON Microsoft Research NON-VOLATILE MEMORY [NVM] PERFORMANCE DRAM VOLATILE

More information

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK]

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK] Lecture 17 Adapted from instructor s supplementary material from Computer Organization and Design, 4th Edition, Patterson & Hennessy, 2008, MK] SRAM / / Flash / RRAM / HDD SRAM / / Flash / RRAM/ HDD SRAM

More information

Soft Updates Made Simple and Fast on Non-volatile Memory

Soft Updates Made Simple and Fast on Non-volatile Memory Soft Updates Made Simple and Fast on Non-volatile Memory Mingkai Dong, Haibo Chen Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University @ NVMW 18 Non-volatile Memory (NVM) ü Non-volatile

More information

Big and Fast. Anti-Caching in OLTP Systems. Justin DeBrabant

Big and Fast. Anti-Caching in OLTP Systems. Justin DeBrabant Big and Fast Anti-Caching in OLTP Systems Justin DeBrabant Online Transaction Processing transaction-oriented small footprint write-intensive 2 A bit of history 3 OLTP Through the Years relational model

More information

Filtered Runahead Execution with a Runahead Buffer

Filtered Runahead Execution with a Runahead Buffer Filtered Runahead Execution with a Runahead Buffer ABSTRACT Milad Hashemi The University of Texas at Austin miladhashemi@utexas.edu Runahead execution dynamically expands the instruction window of an out

More information

NightWatch: Integrating Transparent Cache Pollution Control into Dynamic Memory Allocation Systems

NightWatch: Integrating Transparent Cache Pollution Control into Dynamic Memory Allocation Systems NightWatch: Integrating Transparent Cache Pollution Control into Dynamic Memory Allocation Systems Rentong Guo 1, Xiaofei Liao 1, Hai Jin 1, Jianhui Yue 2, Guang Tan 3 1 Huazhong University of Science

More information

A Page-Based Storage Framework for Phase Change Memory

A Page-Based Storage Framework for Phase Change Memory A Page-Based Storage Framework for Phase Change Memory Peiquan Jin, Zhangling Wu, Xiaoliang Wang, Xingjun Hao, Lihua Yue University of Science and Technology of China 2017.5.19 Outline Background Related

More information

Persistent Memory. High Speed and Low Latency. White Paper M-WP006

Persistent Memory. High Speed and Low Latency. White Paper M-WP006 Persistent Memory High Speed and Low Latency White Paper M-WP6 Corporate Headquarters: 3987 Eureka Dr., Newark, CA 9456, USA Tel: (51) 623-1231 Fax: (51) 623-1434 E-mail: info@smartm.com Customer Service:

More information

Donn Morrison Department of Computer Science. TDT4255 Memory hierarchies

Donn Morrison Department of Computer Science. TDT4255 Memory hierarchies TDT4255 Lecture 10: Memory hierarchies Donn Morrison Department of Computer Science 2 Outline Chapter 5 - Memory hierarchies (5.1-5.5) Temporal and spacial locality Hits and misses Direct-mapped, set associative,

More information

Techniques to improve the scalability of Checkpoint-Restart

Techniques to improve the scalability of Checkpoint-Restart Techniques to improve the scalability of Checkpoint-Restart Bogdan Nicolae Exascale Systems Group IBM Research Ireland 1 Outline A few words about the lab and team Challenges of Exascale A case for Checkpoint-Restart

More information

EFFICIENTLY ENABLING CONVENTIONAL BLOCK SIZES FOR VERY LARGE DIE- STACKED DRAM CACHES

EFFICIENTLY ENABLING CONVENTIONAL BLOCK SIZES FOR VERY LARGE DIE- STACKED DRAM CACHES EFFICIENTLY ENABLING CONVENTIONAL BLOCK SIZES FOR VERY LARGE DIE- STACKED DRAM CACHES MICRO 2011 @ Porte Alegre, Brazil Gabriel H. Loh [1] and Mark D. Hill [2][1] December 2011 [1] AMD Research [2] University

More information

Understanding The Effects of Wrong-path Memory References on Processor Performance

Understanding The Effects of Wrong-path Memory References on Processor Performance Understanding The Effects of Wrong-path Memory References on Processor Performance Onur Mutlu Hyesoon Kim David N. Armstrong Yale N. Patt The University of Texas at Austin 2 Motivation Processors spend

More information

A Row Buffer Locality-Aware Caching Policy for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu

A Row Buffer Locality-Aware Caching Policy for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu A Row Buffer Locality-Aware Caching Policy for Hybrid Memories HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Overview Emerging memories such as PCM offer higher density than

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 11: File System Implementation Prof. Alan Mislove (amislove@ccs.neu.edu) File-System Structure File structure Logical storage unit Collection

More information

Lazy Persistency: a High-Performing and Write-Efficient Software Persistency Technique

Lazy Persistency: a High-Performing and Write-Efficient Software Persistency Technique Lazy Persistency: a High-Performing and Write-Efficient Software Persistency Technique Mohammad Alshboul, James Tuck, and Yan Solihin Email: maalshbo@ncsu.edu ARPERS Research Group Introduction Future

More information

PageSeer: Using Page Walks to Trigger Page Swaps in Hybrid Memory Systems

PageSeer: Using Page Walks to Trigger Page Swaps in Hybrid Memory Systems PageSeer: Using Page Walks to Trigger Page Swaps in Hybrid Memory Systems Apostolos Kokolis, Dimitrios Skarlatos, and Josep Torrellas University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu

More information

Computer Systems Laboratory Sungkyunkwan University

Computer Systems Laboratory Sungkyunkwan University File System Internals Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics File system implementation File descriptor table, File table

More information

CONTENT-AWARE SPIN-TRANSFER TORQUE MAGNETORESISTIVE RANDOM-ACCESS MEMORY (STT-MRAM) CACHE DESIGNS

CONTENT-AWARE SPIN-TRANSFER TORQUE MAGNETORESISTIVE RANDOM-ACCESS MEMORY (STT-MRAM) CACHE DESIGNS CONTENT-AWARE SPIN-TRANSFER TORQUE MAGNETORESISTIVE RANDOM-ACCESS MEMORY (STT-MRAM) CACHE DESIGNS By QI ZENG A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

File System Internals. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

File System Internals. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University File System Internals Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics File system implementation File descriptor table, File table

More information

Optimizing Checkpoints Using NVM as Virtual Memory

Optimizing Checkpoints Using NVM as Virtual Memory Optimizing Checkpoints Using NVM as Virtual Memory Sudarsun Kannan, Ada Gavrilovska, Karsten Schwan College of Computing Georgia Institute of Technology, Atlanta, Georgia, USA sudarsun@gatech.edu,{ada,

More information

JANUARY 20, 2016, SAN JOSE, CA. Microsoft. Microsoft SQL Hekaton Towards Large Scale Use of PM for In-memory Databases

JANUARY 20, 2016, SAN JOSE, CA. Microsoft. Microsoft SQL Hekaton Towards Large Scale Use of PM for In-memory Databases JANUARY 20, 2016, SAN JOSE, CA PRESENTATION Cristian TITLE Diaconu GOES HERE Microsoft Microsoft SQL Hekaton Towards Large Scale Use of PM for In-memory Databases What this talk is about Trying to answer

More information

Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory. Hyokyung Bahn (Ewha University)

Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory. Hyokyung Bahn (Ewha University) Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory Hyokyung Bahn (Ewha University) Contents Reliability issues in storage systems Consistency problem Journaling techniques Consistency

More information

Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory

Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory UENIX FA 13 Eunji Lee (Ewha University, eoul, Korea) Hyokyung Bahn (Ewha University) am H. Noh (Hongik University) Outline Reliability

More information

15-740/ Computer Architecture Lecture 20: Main Memory II. Prof. Onur Mutlu Carnegie Mellon University

15-740/ Computer Architecture Lecture 20: Main Memory II. Prof. Onur Mutlu Carnegie Mellon University 15-740/18-740 Computer Architecture Lecture 20: Main Memory II Prof. Onur Mutlu Carnegie Mellon University Today SRAM vs. DRAM Interleaving/Banking DRAM Microarchitecture Memory controller Memory buses

More information

Introduction to File Structures

Introduction to File Structures 1 Introduction to File Structures Introduction to File Organization Data processing from a computer science perspective: Storage of data Organization of data Access to data This will be built on your knowledge

More information

Block Device Scheduling. Don Porter CSE 506

Block Device Scheduling. Don Porter CSE 506 Block Device Scheduling Don Porter CSE 506 Logical Diagram Binary Formats Memory Allocators System Calls Threads User Kernel RCU File System Networking Sync Memory Management Device Drivers CPU Scheduler

More information

Block Device Scheduling

Block Device Scheduling Logical Diagram Block Device Scheduling Don Porter CSE 506 Binary Formats RCU Memory Management File System Memory Allocators System Calls Device Drivers Interrupts Net Networking Threads Sync User Kernel

More information

Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory

Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory Write-Optimized and High-Performance Hashing Index Scheme for Persistent Memory Pengfei Zuo, Yu Hua, Jie Wu Huazhong University of Science and Technology, China 3th USENIX Symposium on Operating Systems

More information

Lightweight Memory Tracing

Lightweight Memory Tracing Lightweight Memory Tracing Mathias Payer*, Enrico Kravina, Thomas Gross Department of Computer Science ETH Zürich, Switzerland * now at UC Berkeley Memory Tracing via Memlets Execute code (memlets) for

More information

The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-Application Interference at Shared Caches and Main Memory

The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-Application Interference at Shared Caches and Main Memory The Application Slowdown Model: Quantifying and Controlling the Impact of Inter-Application Interference at Shared Caches and Main Memory Lavanya Subramanian* Vivek Seshadri* Arnab Ghosh* Samira Khan*

More information