Internet of Things. Kim Jonatan Wessel Bjørneset LuLiu 26/02/2016

Size: px
Start display at page:

Download "Internet of Things. Kim Jonatan Wessel Bjørneset LuLiu 26/02/2016"

Transcription

1 Internet of Things Kim Jonatan Wessel Bjørneset LuLiu 26/02/2016 1

2 Kim Master student at 1st year Norwegian Bachelor in programming and networking at IFI, UiO Thesis: Security and privacy in smart electric grids and IoT LuLiu Master student of 1st year Chinese Master in programming and networks Thesis: Big Data Analytics for PV Systems Real-time Monitoring 2

3 Wi-Fi Enabled Sensors for Internet of Things: A Practical Approach Authors: Serbulent Tozlu, Murat Senel, Wei Mao, and Abtin Keshavarzian, Robert Bosch LLC Note: All pictures used in these slides are from original article, and the Internet 3

4 Introduction From home appliances and electronics to small battery powered devices Low powered Wi-Fi technology This article evaluates three typical sensor application scenarios: Power consumption Interference (and reliability) Range performance 4

5 IEEE with 6LoWPAN adaptation layer 6LoWPAN was developed for taking IP for wireless sensors Picture: wikipedia Traditionally considered for sensor network applications: ZigBee and other IEEE based protocols Low-power WiFi Decreasing power consumption on transceivers A Stronger candidate - power efficient Wi-Fi components Existing infrastructure Cost savings Years of battery time IT personell already familiar 5

6 System Model Network of WiFi enabled sensors Associated with an Access Point (AP) Basic operations: Initialization Keep-alive Messages Periodic Data Transmission Event-triggered Data Transmission Command Messages 6

7 Initialization Keep-alive Messages Device reads sensor data periodically Transmits data to a control unit Event-triggered Data Transmission Communicates with the AP periodically Periodic Data Transmission Sensor is powered up Authentication with an AP and acquires an IP Monitors the environment Transmits a message upon a certain event Command Messages Query, Configuration, Command or an action 7

8 Three application scenarios 1 Simple sensor device 2 Monitoring sensor device Ex. thermostat in a heating system Ex. smoke detector 3 Combination of 1 & 2 Configurable sensors and actuators Ex. fire alarm system 8

9 A ZigBee based solution would give years of battery life What about a low-power WiFi based solution? 9

10 Power Consumption Power Save Mode standard got mechanism for turning off transmitter and receiver to save power AP buffers messages Picture: tistory.com mobile station wakes up periodically to receive For broadcast or multicasting, AP sends message immediately mobile station stays awake to receive Unicast messages, mobile station sends a PS Poll message receives the message accordingly A Low-Power WiFi Module - G2M bit CPU, real-time clock, HW encryption engine, sensor, b/g, PHY, MAC ecos & lwip TCP/IP stack Cheaper and more power efficient than n Also, the scenarios didn t require high data rates 10

11 Sleep Current and Wake-Up Energy Wake-Up Process Sleep state regular WiFi devices: 150 to 250µA Sleep state G2 chip: 4µA Time and energy depends on the application size G2 chip allows multiple images to boot from based on the reason Transmit/receive energy IEEE kb/s max data rate IEEE b/g 1Mb/s to 54Mb/s WiFi enabled sensors have higher data rate, spends less time....and therefore also spends less energy per bit 11

12 MAC Retransmissions uses acknowledgements to ensure reliability Unacknowledged frames are retransmitted Different MAC retransmission rates due to interference Power consumption especially significant for low data rate operations Security A tradeoff exists between security and energy WEP Security: bad Time: fast, low power usage WPA/TKIP-PSK Security: good Time: authentication takes more time, more power usage WPA2/AES-PSK Security: good Time: authentication takes more time, more power usage Best tradeoff! Since re-authentication should be avoided 12

13 13

14 Performance Evaluation Initialization: 250mJ, ~3s Keep-Alive messages Periodic Data Small packet size High data rate Event Triggered Messages Command Messages Infrequent PS with 10 sec 5 ½ years with AA 14

15 The bigger packet size the more power consumption Power consumption on different packet size 15

16 The higher data rates the lower power consumption Packet size at low data rates has a noticeable impact on power consumption Packet size at high data rates has a minor impact on power consumption Power consumption on different data rates 16

17 Interference and Reliability Measure impact of interference on reliability and real-time capability of Wi-Fi enabled sensors receiver sender T1 Benchmark phase (only background Wi-Fi traffic) PSR - Packet Success Rate RTT - Round-Trip-Time = T2-T1 100 percent PSR and 95 percent RTT was around 15 ms T2 Add extra Wi-Fi interferers out-of-network Interference Wi-Fi enabled sensors and interferers are in the same channel but they are associated to different APs. In-Network Interference Wi-Fi enabled sensors and interferers are associated to the same AP. 17

18 Experimental Result Observations Sensor network perform better in out-of-network than in-network scenario. 18

19 RTT is significant higher here, almost 125 ms PSR is almost 100 percent Conclusion: MAC - layer retransmission packets make RTT increase significantly, but packets are not lost 19

20 The higher data rates of the sensors decrease the RTT slightly. 20

21 Packet size of the sensors have limited effect on RTT 21

22 Uplink channel to the AP is perfect in terms of PSR Downlink channel experiences significant losses Conclusion: AP becomes the bottleneck in this case. (AP fills up quickly and starts dropping packets) PSR decreases with bigger packets (AP send out smaller packets faster) 22

23 Communication Range AP should placed in an optimal location to provide good coverage Wi-Fi enabled sensors possible deployed in all corners of the building A measurement in a typical European house placed the AP in different location measure Wi-Fi signal lower data rates longer communication range more coverage area 23

24 Measurement Results With AP in basement High data rate coverage for ground floor low data rate for top floor(1 Mb/s) 24

25 With AP in the living area good coverage at high data rate at most locations data rate not so high in the basement ( 1-11 Mb/s ) 25

26 Conclusion & Summary Power consumption At a high data rate, packets size have small impact on power consumption At a low data rate, packets size have noticeable impact on power consumption Retransmission have an impact on energy consumption WPA2 gives best tradeoff in terms of security and battery lifetime overhead Timely command messages plays an important role in overall energy consumption 26

27 Impact of interference Interference have little affect on reliability Except under heavy in-network traffic, the AP becomes the bottleneck Communication range AP even if not installed in an optimal location can provide full coverage for all potential sensor locations create a tradeoff between communication range and battery lifetime (data rate higher or lower) 27

28 The Internet of Things: A survey Authors: Note: All pictures used in this slide are from original article, and the internet 28

29 Introduction IoT - could be things or objects NIC predicts that by 2025, Internet nodes might reside in everyday things such as RFID tags, sensors, actuators, mobile phones etc food packages, furniture, paper documents and more This article: describes different visions of IoT reviews enabling technology for IoT description of the principal applications for IoT analyzes major research issues to be faced 29

30 IoT - Many visions IoT - Internet oriented IoT - Things oriented huge number of objects involved IoT - Semantic oriented unique addressing, representation and storing IoT semantically means WordWide network of interconnected objects uniquely addressable based on standard communication protocols 30

31 Things IPSO Alliance RFID tags, uid, NFC, WSAN, WISP, Spimes, smart items LoWPAN Internet Ø Internet over anything Web of Things Idea behind the semantic oriented IoT visions: Extremely large number of objects connected to the Internet Represent, store, search, interconnect etc 31

32 Enabling Technologies Reduced size, weight, energy consumption, and cost of radio RFID systems: reader(s), unique tag as identifier Picture: from the Internet monitor objects in real time without the need to be in Line-Of-Sight logistics, e-health, security mapping real world -> virtual world An RFID tag is a small chip with antenna receiving signals, and transmitting the tag ID induction, current signal power received divided by power transmitted = ID Passive, Semi-passive (battery) and active (battery) 32

33 Sensor Networks Can cooperate with RFID Used in e-health, environmental monitoring, intelligent transportation systems, military etc A number of sensing nodes communication in a wireless multi-hop network Can be many nodes Nodes reporting to a special node, a sink Many problems at all layers of the protocol stack Mostly based on Many nodes, few IP addresses largest phy layer 127 bytes, 102 octets at MAC layer sleep mode - cannot communicate 33

34 The green node in the figure: is a special node a sink, collecting data from the other nodes 34

35 WISPs Wireless Identification and Sensing Platforms RFID Small size, low costs, no battery WSN powered by regular RFID readers integration of sensing technology into passive RFID tags leads to new applications to IoT RFID sensor networks RFID readers will be the sinks Reader not required high radio coverage peer to peer RSN sensing, computing and communication capabilites 35

36 Middleware Software layer between technological and application levels Simplifying development of new services Programmers doesn t need to know about the sets of technology in the lower layers Using a SOA approach SOA makes it easier for software components on computers connected over a network to cooperate Allows for software and hardware reusing not a specific technology for service implementation 36

37 Applications Applications are on top of the architecture exporting all the system s functionalities to the end user exploits the features of the middleware layer Service Composition Provides functionalities to build the services for applications Only services visible, all currently connected service instances visible in a repository 37

38 Service Management Main functions available for each object in the IoT scenario object dynamic discovery status monitoring service configuration Might expand set of functionalities to QoS and lock management Might enable remote deployment of new services during run-time for application needs Services associated to each object in the network can be shown in a repository Upper layer composes complex services by joining these services provided at this layer 38

39 Object Abstraction Wrapping layer for devices with undiscoverable web service main sub layers: interface: web interface, in/out msg operations communicate external world communication: logic behind web service methods translates these into device-specific commands to communicate with real-world objects Often provided through a proxy opens a communication socket with the device s console translated into a web service language, reducing complexity to end-device Privacy and Security RFID tags in clothes, groceries trigger ID and info without knowing, like a surveillance middleware must include functions to preserve security, trust and privacy 39

40 Applications Application domains and relevant major scenarios 40

41 Transportation and logistics domain Logistics Assisted driving Posters equipped with NFC tags or visual markers Monitoring environment parameters provide better navigation and safety find right path according to information about jam and incident Mobile ticketing Real-time monitoring supply chain(shorten supply time) improve the efficiency of the food supply chain Augmented maps Tourist maps equipped with tags 41

42 Healthcare domain Tracking Identification and authentication Reduce incidents harmful to patience Data collection Identification of a person or object in motion Reduce form processing time Sensing Diagnose patient condition provide real-time information on patient health indicator 42

43 Smart environment domain Comfortable homes and offices Industrial plants room heating adapted domestic incidents avoided energy saved quality control emergency event react Smart gym recognize trainee through RFID tag 43

44 Personal and social domain Social networking Historical queries record and display events extremly useful for applications support long-term activities Losses real-time updates in social networks control friend lists view the last recorded location leverages user-defined event to notify users Thefts objects are removed from a restricted area without authorization 44

45 Futuristic applications domain Robot taxi City information model automatically track user s location via GPS users can request taxi at certain location and time on a detailed map sharing energy in the most cost-effective and resource-efficient fashion Enhanced game room measure excitement and energy levels of players controllers recognize RFID tags on objects 45

46 Addressing issues IPv4 & IPv6 RFID tags use bit identifiers Proposed approach A integrate RFID identifiers and IPv6 addresses use 64 bits of the interface identifier of the IPv6 address to report the RFID tag indentifier other 64 bits of the network prefix to address the gateway between the RFID system and the internet if the RFID tag identifier is 96 bits long agent will be used, maps the RFID identifier into a 64 bits field used as interface ID of the IPv6 address agent must keep updated the mapping 46

47 Proposed approach B RFID message and headers are included into the IPv6 package payload 47

48 Networking issues Domain Name Service(DNS) Object Name Service(ONS) TCP is not appropriate DNS provides IP address of a host from a certain input name ONS associates specific object and the related RFID tag identifier Connection setup is unnecessary Congestion control is useless Data buffer is too costly for battery-less devices Traffic in IoT is unknown Traffic characteristics strongly depend on application scenario 48

49 Security issues Why IoT is vulnerable to attacks? Why authentication is difficult? Physical attack easily (most time unattended) Eavesdropping is simple(most communication are wireless) Cannot implement complex security schemes(resource limited) cannot exchange too many messages with the authentication servers Limitation of existing solutions taking some sensor nodes role as gateway 49

50 Example of attack A is the node to authenticate other system elements an attacker wants to steal the identity of B A and B are two transceivers This attack can happen regardless the signal is encrypted or not 50

51 Privacy issues Ensuring individuals can control the data collected Restrict network ability to gather data detail level example for comfortable homes and offices information collected not linkable with identity The scope and the way tracked should be informed Data collected should be processed for basic purpose and then deleted sensor network report approximate location cameras for video surveillance blur people s image Periodically delete information after use for the purpose 51

52 Conclusions IoT should be considered as part of the overall internet in the future host-to-host communication is a limitation factor for now Data-centric networks(self-addressable and self- routable) Assigning an IPv6 address to reach IoT element Internet evolution will require a change 52

53 Thank you for your attention! 26/02/

Chapter 16: The Internet of Things: A survey. Department of Computer Science And Information Engineering National Taipei University

Chapter 16: The Internet of Things: A survey. Department of Computer Science And Information Engineering National Taipei University Chapter 16: The Internet of Things: A survey Department of Computer Science And Information Engineering National Taipei University 1 Outline Introduction One paradigm, many vision Enabling technologies

More information

Internet of Things (IoT) CSE237A

Internet of Things (IoT) CSE237A Internet of Things (IoT) CSE237A Class Overview What ve covered until now: All material that will be on exam! Where we are going today: IoT & exam review Due today: Article on IoT HW3 at 11:59pm; upload.pdf

More information

Ubiquitous Sensor Network KIM, YONG-WOON ETRI

Ubiquitous Sensor Network KIM, YONG-WOON ETRI Ubiquitous Sensor Network 2007. 7. 10. KIM, YONG-WOON ETRI Table of Contents USN Definition USN Applications USN Problem Domains USN Service Requirements USN Technical Issues USN Technology Layer Model

More information

DASH7 ALLIANCE PROTOCOL - WHERE RFID MEETS WSN. public

DASH7 ALLIANCE PROTOCOL - WHERE RFID MEETS WSN. public DASH7 ALLIANCE PROTOCOL - WHERE RFID MEETS WSN public DASH7 ALLIANCE PROTOCOL OPEN STANDARD OF ULTRA LOW POWER MID-RANGE SENSOR AND ACTUATOR COMMUNICATION Wireless Sensor and Actuator Network Protocol

More information

Securing Internet of things Infrastructure Standard and Techniques

Securing Internet of things Infrastructure Standard and Techniques Securing Internet of things Infrastructure Standard and Techniques Paper Author : Zubair A. Baig Name: Farooq Abdullah M.Sc Programming and Networks University of Oslo. Security internet of Things Standards

More information

ETSI STANDARDS FOR THE SMART HOME: DECT ULTRA LOW ENERGY Standard overview and future standarization needs Angel Bóveda

ETSI STANDARDS FOR THE SMART HOME: DECT ULTRA LOW ENERGY Standard overview and future standarization needs Angel Bóveda ETSI STANDARDS FOR THE SMART HOME: DECT ULTRA LOW ENERGY Standard overview and future standarization needs Angel Bóveda Wireless Partners S.L. ETSI Board member, co-leader of the IoT strategic group ETSI

More information

Wireless Sensor Networks

Wireless Sensor Networks Wireless Sensor Networks c.buratti@unibo.it +39 051 20 93147 Office Hours: Tuesday 3 5 pm @ Main Building, second floor Credits: 6 Ouline 1. WS(A)Ns Introduction 2. Applications 3. Energy Efficiency Section

More information

An IoT-Aware Architecture for Smart

An IoT-Aware Architecture for Smart An IoT-Aware Architecture for Smart Healthcare System Presented By: Amnah Allboani Abstract Smart hospital system (SHS) relies on complementary technologies specifically RFID, WSN, and smart mobile, interoperating

More information

IPv6 Stack. 6LoWPAN makes this possible. IPv6 over Low-Power wireless Area Networks (IEEE )

IPv6 Stack. 6LoWPAN makes this possible. IPv6 over Low-Power wireless Area Networks (IEEE ) Reference: 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann What is 6LoWPAN? 6LoWPAN makes this possible - Low-power RF + IPv6 = The Wireless Embedded Internet IPv6 over Low-Power wireless Area

More information

Internet of Things. Sungkyunkwan University. Mobile Computing. Hyunseung Choo

Internet of Things. Sungkyunkwan University. Mobile Computing. Hyunseung Choo Sungkyunkwan University Internet of Things Mobile Computing Sungkyunkwan University Hyunseung Choo choo@skku.edu Mobile Computing Copyright 2000-2016 Networking Laboratory 1/32 Contents Introduction Characteristics

More information

System Architecture Challenges in the Home M2M Network

System Architecture Challenges in the Home M2M Network System Architecture Challenges in the Home M2M Network Michael Starsinic InterDigital Communications M2M Background M2M Communications Machine-to-Machine or Machine-to-Man The Machine usually includes

More information

Lecture 04 Introduction: IoT Networking - Part I

Lecture 04 Introduction: IoT Networking - Part I Introduction to Industry 4.0 and Industrial Internet of Things Prof. Sudip Misra Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture 04 Introduction: IoT Networking

More information

Project: IEEE P Task Group for Wireless Smart Sensors

Project: IEEE P Task Group for Wireless Smart Sensors Project: IEEE P1451.5 Task Group for Wireless Smart Sensors Title: [Industrial Sensing Applications] Date Submitted: [23 Sep, 2002] Source: [Kenneth D. Cornett] Company: [Motorola, Inc.] Address: [8000

More information

Chapter 5 Ad Hoc Wireless Network. Jang Ping Sheu

Chapter 5 Ad Hoc Wireless Network. Jang Ping Sheu Chapter 5 Ad Hoc Wireless Network Jang Ping Sheu Introduction Ad Hoc Network is a multi-hop relaying network ALOHAnet developed in 1970 Ethernet developed in 1980 In 1994, Bluetooth proposed by Ericsson

More information

WPAN/WBANs: ZigBee. Dmitri A. Moltchanov kurssit/elt-53306/

WPAN/WBANs: ZigBee. Dmitri A. Moltchanov    kurssit/elt-53306/ WPAN/WBANs: ZigBee Dmitri A. Moltchanov E-mail: dmitri.moltchanov@tut.fi http://www.cs.tut.fi/ kurssit/elt-53306/ IEEE 802.15 WG breakdown; ZigBee Comparison with other technologies; PHY and MAC; Network

More information

Sensor-to-cloud connectivity using Sub-1 GHz and

Sensor-to-cloud connectivity using Sub-1 GHz and Sensor-to-cloud connectivity using Sub-1 GHz and 802.15.4 Nick Lethaby, IoT, Ecosystem Manager, Texas Instruments Agenda Key design considerations for a connected IoT sensor Overview of the Sub-1 GHz band

More information

Internet of Things Application to Smart Grid

Internet of Things Application to Smart Grid Internet of Things Application to Smart Grid 1 Introduction Hamraz, Seyed Hamid December 2013 Computer Science Department, University of Kentucky Hamid.hamraz@uky.edu The Internet of Things (IoT) is a

More information

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1 CSMC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala Fall 2018 CMSC417 Set 1 1 The Medium Access Control Sublayer November 18 Nov 6, 2018 2 Wireless Networking Technologies November 18

More information

Outline : Wireless Networks Lecture 10: Management. Management and Control Services : Infrastructure Reminder.

Outline : Wireless Networks Lecture 10: Management. Management and Control Services : Infrastructure Reminder. Outline 18-759: Wireless Networks Lecture 10: 802.11 Management Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2016 http://www.cs.cmu.edu/~prs/wirelesss16/

More information

COMP327 Mobile Computing Session: Lecture Set 6 - The Internet of Things

COMP327 Mobile Computing Session: Lecture Set 6 - The Internet of Things COMP327 Mobile Computing Session: 2015-2016 Lecture Set 6 - The Internet of Things Internet of Things An invasion of devices for the home and the environment Internet of Things In 2008, the number of things

More information

References. The vision of ambient intelligence. The missing component...

References. The vision of ambient intelligence. The missing component... References Introduction 1 K. Sohraby, D. Minoli, and T. Znadi. Wireless Sensor Networks: Technology, Protocols, and Applications. John Wiley & Sons, 2007. H. Karl and A. Willig. Protocols and Architectures

More information

Proposed Node and Network Models for M2M Internet

Proposed Node and Network Models for M2M Internet 2009-2012 NTT CORPORATION. All Rights Reserved. Proposed Node and Network Models for M2M Internet Yuminobu Igarashi NTT Information Sharing Platform Laboratories 2012 NTT Information Sharing Platform Laboratories

More information

Application Communications Requirements for The Internet of Things Bob Dolin Echelon Corporation

Application Communications Requirements for The Internet of Things Bob Dolin Echelon Corporation Application Communications Requirements for The Internet of Things Bob Dolin Echelon Corporation I. Introduction The purpose of this paper is to document the requirements that the collection of applications

More information

Attacks on WLAN Alessandro Redondi

Attacks on WLAN Alessandro Redondi Attacks on WLAN Alessandro Redondi Disclaimer Under the Criminal Italian Code, articles 340, 617, 617 bis: Up to 1 year of jail for interrupting public service 6 months to 4 years of jail for installing

More information

Part I. Wireless Communication

Part I. Wireless Communication 1 Part I. Wireless Communication 1.5 Topologies of cellular and ad-hoc networks 2 Introduction Cellular telephony has forever changed the way people communicate with one another. Cellular networks enable

More information

Chapter 7. Telecommunications, the Internet, and Wireless Technology

Chapter 7. Telecommunications, the Internet, and Wireless Technology Chapter 7 Telecommunications, the Internet, and Wireless Technology LEARNING OBJECTIVES What are the principal components of telecommunications networks and key networking technologies? What are the different

More information

5g for connected industries

5g for connected industries 5g for connected industries Johan Torsner Research Manager Ericsson Finland Page 1 5G Use Cases P??? Broadband experience everywhere anytime Mass market personalized media and gaming Meters and sensors,

More information

Integration of Wireless Sensor Network Services into other Home and Industrial networks

Integration of Wireless Sensor Network Services into other Home and Industrial networks Integration of Wireless Sensor Network Services into other Home and Industrial networks using Device Profile for Web Services (DPWS) Ayman Sleman Automation and Process Control Engineering, University

More information

Security SSID Selection: Broadcast SSID:

Security SSID Selection: Broadcast SSID: 69 Security SSID Selection: Broadcast SSID: WMM: Encryption: Select the SSID that the security settings will apply to. If Disabled, then the device will not be broadcasting the SSID. Therefore it will

More information

IEEE PROJECTS ON EMBEDDED SYSTEMS

IEEE PROJECTS ON EMBEDDED SYSTEMS S.NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 PROJECT TITLES EMACS: Design And Implementation Of Indoor Environment Monitoring And Control System VOT-EL: Three Tier Secured State Of

More information

Wireless Best Kept Secret For Now

Wireless Best Kept Secret For Now Wireless Best Kept Secret For Now IoT Event June 2014 Gilles Thonet Managing Director Europe, ZigBee Alliance 2014 ZigBee Alliance. All rights reserved. 1 ZigBee Alliance at 10 Years Who we are Open, global,

More information

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Da t e: August 2 0 th a t 9: :00 SOLUTIONS Interne t working, Examina tion 2G1 3 0 5 Da t e: August 2 0 th 2 0 0 3 a t 9: 0 0 1 3:00 SOLUTIONS 1. General (5p) a) Place each of the following protocols in the correct TCP/IP layer (Application, Transport,

More information

Mobile Wireless Sensor Network enables convergence of ubiquitous sensor services

Mobile Wireless Sensor Network enables convergence of ubiquitous sensor services 1 2005 Nokia V1-Filename.ppt / yyyy-mm-dd / Initials Mobile Wireless Sensor Network enables convergence of ubiquitous sensor services Dr. Jian Ma, Principal Scientist Nokia Research Center, Beijing 2 2005

More information

EMBEDDED MAJOR PROJECTS LIST

EMBEDDED MAJOR PROJECTS LIST EMBEDDED MAJOR PROJECTS LIST GSM AND GPS BASED REAL TIME APPLICATIONS 1. AGRICULTURE FIELD MOTOR CONTROL SYSTEM USING GSM. 2. FIRE DETECTION AND AUTOMATIC ALERT SYSTEM. 3. WEATHER MONITORING SYSTEM IN

More information

Wireless technology Principles of Security

Wireless technology Principles of Security Wireless technology Principles of Security 1 Wireless technologies 2 Overview This module provides an introduction to the rapidly evolving technology of wireless LANs (WLANs). WLANs redefine the way the

More information

EMBEDDED SYSTEMS 2017 IEEE PROJECT

EMBEDDED SYSTEMS 2017 IEEE PROJECT EMBEDDED SYSTEMS 2017 IEEE PROJECT 1. Smartphone Application to evaluate the individual possibilities for the Application of Electric Vehicles 2. Face recognition System for Smartphone based on LBP 3.

More information

Low Power Wide Area Network (LPWAN) Presented By: Dr. Hafiz Yasar Lateef Director, Telxperts Pty Ltd.

Low Power Wide Area Network (LPWAN) Presented By: Dr. Hafiz Yasar Lateef Director, Telxperts Pty Ltd. Low Power Wide Area Network (LPWAN) Presented By: Dr. Hafiz Yasar Lateef Director, Telxperts Pty Ltd. Low Power Wide Area Network (LPWAN) q Low-Power WAN Technologies are designed for machine-to-machine

More information

Guide to Wireless Communications, 3 rd Edition. Objectives

Guide to Wireless Communications, 3 rd Edition. Objectives Guide to Wireless Communications, 3 rd Edition Chapter 5 Wireless Personal Area Networks Objectives Describe a wireless personal area network (WPAN) List the different WPAN standards and their applications

More information

Fig Data flow diagram and architecture when using the TCUP Cloud Server for PaaS for the Developers and large

Fig Data flow diagram and architecture when using the TCUP Cloud Server for PaaS for the Developers and large base Firewall Applications / Services Internet Firewall Apps APIs RESTful Developer Gather Level 1 Apps User Customer Apps User Customer Embedded IoT s/ M2M Sensor s Hotspot Hotspot Enrich Level 2 LWM2M/

More information

Internet of Things: Latest Technology Development and Applications

Internet of Things: Latest Technology Development and Applications Internet of Things: Latest Technology Development and Applications Mr UY Tat-Kong Assistant Vice President Network Evolution Planning & Development 22 August 2014 Agenda Communication Technologies Development

More information

Wireless (NFC, RFID, Bluetooth LE, ZigBee IP, RF) protocols for the Physical- Data Link layer communication technologies

Wireless (NFC, RFID, Bluetooth LE, ZigBee IP, RF) protocols for the Physical- Data Link layer communication technologies Wireless (NFC, RFID, Bluetooth LE, ZigBee IP, RF) protocols for the Physical- Data Link layer communication technologies 1 Connected devices communication to the Local Network and Gateway 1 st to i th

More information

CROSS LAYER PROTOCOL (APTEEN) USING WSN FOR REAL TIME APPLICATION

CROSS LAYER PROTOCOL (APTEEN) USING WSN FOR REAL TIME APPLICATION CROSS LAYER PROTOCOL (APTEEN) USING WSN FOR REAL TIME APPLICATION V. A. Dahifale 1, N. Y. Siddiqui 2 PG Student, College of Engineering Kopargaon, Maharashtra, India 1 Assistant Professor, College of Engineering

More information

Routing in the Internet of Things (IoT) Rolland Vida Convergent Networks and Services

Routing in the Internet of Things (IoT) Rolland Vida Convergent Networks and Services Routing in the Internet of Things (IoT) Rolland Vida Convergent Networks and Services Spring 05. IoT challenges IoT nodes are heterogeneous Some have important resources Smart phones, cars, coke machines

More information

An Introduction to Cyber-Physical Systems INF5910/INF9910

An Introduction to Cyber-Physical Systems INF5910/INF9910 An Introduction to Cyber-Physical Systems INF5910/INF9910 1 Outline What is Cyber Physical Systems (CPS)? Applications Challenges Cyber Physical CPS 2 Cyber Systems Cyber is More than just software More

More information

IoT Standardization Process and Smart IoT

IoT Standardization Process and Smart IoT IoT Standardization Process and Smart IoT Reporter: Linpei Li Joint BUPT-Eurecom Open5G Lab 2017.4.29 Table of contents ⅠIoT Standards Ⅱ Our ITU-T Standardization Process Ⅲ Smart IoT Table of contents

More information

IoT Intro. Fernando Solano Warsaw University of Technology

IoT Intro. Fernando Solano Warsaw University of Technology IoT Intro Fernando Solano Warsaw University of Technology fs@tele.pw.edu.pl Embedded Systems Wireless Sensor and Actuator Networks Enabling technologies Communication Protocols Cloud Computing Big Data

More information

CHAPTER 3 BLUETOOTH AND IEEE

CHAPTER 3 BLUETOOTH AND IEEE CHAPTER 3 BLUETOOTH AND IEEE 802.15 These slides are made available to faculty in PowerPoint form. Slides can be freely added, modified, and deleted to suit student needs. They represent substantial work

More information

Regulation and the Internet of Things

Regulation and the Internet of Things Regulation and the Internet of Things 15 th Global Symposium for Regulators (GSR15) Prof. Ian Brown The views expressed in this presentation are those of the author and do not necessarily reflect the opinions

More information

Ubiquitous Computing. Ambient Intelligence

Ubiquitous Computing. Ambient Intelligence Ubiquitous Computing Ambient Intelligence CS4031 Introduction to Digital Media 2016 Computing Evolution Ubiquitous Computing Mark Weiser, Xerox PARC 1988 Ubiquitous computing enhances computer use by making

More information

Communication and Networking in the IoT

Communication and Networking in the IoT Communication and Networking in the IoT Alper Sinan Akyurek System Energy Efficiency Lab seelab.ucsd.edu 1 Internet of Things l Networking l link (machines, especially computers) to operate interactively

More information

5g Use Cases. Telefonaktiebolaget LM Ericsson 2015 Ericsson July 2015

5g Use Cases. Telefonaktiebolaget LM Ericsson 2015 Ericsson July 2015 5g Use Cases Telefonaktiebolaget LM Ericsson 2015 Ericsson July 2015 BROADBAND EXPERIENCE EVERYWHERE, ANYTIME 5g USE CASES SMART VEHICLES, TRANSPORT & INFRASTRUCTURE MEDIA EVERYWHERE CRITICAL CONTROL OF

More information

Wireless Sensor Networks (WSN)

Wireless Sensor Networks (WSN) Wireless Sensor Networks (WSN) Introduction M. Schölzel Difference to existing wireless networks Infrastructure-based networks e.g., GSM, UMTS, Base stations connected to a wired backbone network Mobile

More information

eztcp Configuration Software ezmanager Manual Version 1.9 Sollae Systems Co., Ltd.

eztcp Configuration Software ezmanager Manual Version 1.9 Sollae Systems Co., Ltd. eztcp Configuration Software ezmanager Manual Version 1.9 Sollae Systems Co., Ltd. http://www.eztcp.com Contents 1 Overview... - 4-1.1 Overview... - 4-1.2 Available products... - 4-2 Window Composition...

More information

USE CASES BROADBAND AND MEDIA EVERYWHERE SMART VEHICLES, TRANSPORT CRITICAL SERVICES AND INFRASTRUCTURE CONTROL CRITICAL CONTROL OF REMOTE DEVICES

USE CASES BROADBAND AND MEDIA EVERYWHERE SMART VEHICLES, TRANSPORT CRITICAL SERVICES AND INFRASTRUCTURE CONTROL CRITICAL CONTROL OF REMOTE DEVICES 5g Use Cases BROADBAND AND MEDIA EVERYWHERE 5g USE CASES SMART VEHICLES, TRANSPORT CRITICAL SERVICES AND INFRASTRUCTURE CONTROL CRITICAL CONTROL OF REMOTE DEVICES HUMAN MACHINE INTERACTION SENSOR NETWORKS

More information

Lecture 8 Wireless Sensor Networks: Overview

Lecture 8 Wireless Sensor Networks: Overview Lecture 8 Wireless Sensor Networks: Overview Reading: Wireless Sensor Networks, in Ad Hoc Wireless Networks: Architectures and Protocols, Chapter 12, sections 12.1-12.2. I. Akyildiz, W. Su, Y. Sankarasubramaniam

More information

Topics. Introduction Architecture Node Types Network Topologies Traffic Modes Frame Format Applications Conclusion

Topics. Introduction Architecture Node Types Network Topologies Traffic Modes Frame Format Applications Conclusion ZigBee Topics Introduction Architecture Node Types Network Topologies Traffic Modes Frame Format Applications Conclusion Introduction The Wireless technologies (WiFi,GSM,and Bluetooth) All have one thing

More information

Rab Nawaz Jadoon DCS. Assistant Professor. Department of Computer Science. COMSATS Institute of Information Technology. Mobile Communication

Rab Nawaz Jadoon DCS. Assistant Professor. Department of Computer Science. COMSATS Institute of Information Technology. Mobile Communication Rab Nawaz Jadoon DCS Assistant Professor COMSATS IIT, Abbottabad Pakistan COMSATS Institute of Information Technology Mobile Communication WSN Wireless sensor networks consist of large number of sensor

More information

Wireless# Guide to Wireless Communications. Objectives

Wireless# Guide to Wireless Communications. Objectives Wireless# Guide to Wireless Communications Chapter 8 High-Speed WLANs and WLAN Security Objectives Describe how IEEE 802.11a networks function and how they differ from 802.11 networks Outline how 802.11g

More information

Internet of Things: An Introduction

Internet of Things: An Introduction Internet of Things: An Introduction IoT Overview and Architecture IoT Communication Protocols Acknowledgements 1.1 What is IoT? Internet of Things (IoT) comprises things that have unique identities and

More information

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview Chapter 4: chapter goals: understand principles behind services service models forwarding versus routing how a router works generalized forwarding instantiation, implementation in the Internet 4- Network

More information

Microcontroller-Based Wireless Sensor Networks Prof. Kasim M. Al-Aubidy Philadelphia University

Microcontroller-Based Wireless Sensor Networks Prof. Kasim M. Al-Aubidy Philadelphia University Embedded Systems Design (0630414) Lecture 14 Microcontroller-Based Wireless Sensor Networks Prof. Kasim M. Al-Aubidy Philadelphia University Introduction: Wireless Sensor Networks (WSNs) have been identified

More information

WP-PD Wirepas Mesh Overview

WP-PD Wirepas Mesh Overview WP-PD-123 - Wirepas Mesh Overview Product Description Version: v1.0a Wirepas Mesh is a de-centralized radio communications protocol for devices. The Wirepas Mesh protocol software can be used in any device,

More information

PUCPR. Internet Protocol. Edgard Jamhour E N G L I S H S E M E S T E R

PUCPR. Internet Protocol. Edgard Jamhour E N G L I S H S E M E S T E R PUCPR Internet Protocol Address Resolution and Routing Edgard Jamhour 2014 E N G L I S H S E M E S T E R 1. Address Resolution The IP address does not identify, indeed, a computer, but a network interface.

More information

Mobile Security Fall 2012

Mobile Security Fall 2012 Mobile Security 14-829 Fall 2012 Patrick Tague Class #9 The Internet of Things Partial slide credit to L. Zoia and Y. Zhang Announcements If you haven't signed up for a Survey presentation (two teams,

More information

WarpTCP WHITE PAPER. Technology Overview. networks. -Improving the way the world connects -

WarpTCP WHITE PAPER. Technology Overview. networks. -Improving the way the world connects - WarpTCP WHITE PAPER Technology Overview -Improving the way the world connects - WarpTCP - Attacking the Root Cause TCP throughput reduction is often the bottleneck that causes data to move at slow speed.

More information

IEEE ah. sub 1GHz WLAN for IoT. What lies beneath Wi-Fi HaLow. Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering

IEEE ah. sub 1GHz WLAN for IoT. What lies beneath Wi-Fi HaLow. Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering by wilgengebroed IEEE 802.11ah sub 1GHz WLAN for IoT What lies beneath Wi-Fi HaLow Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering eduardg@entel.upc.edu elopez@entel.upc.edu Contents

More information

Powering the Internet of Things with MQTT

Powering the Internet of Things with MQTT Powering the Internet of Things with MQTT By Ming Fong Senior Principal Development Engineer Schneider-Electric Software, LLC. Introduction In the last ten years, devices such as smartphones, wearable

More information

Introduction to Internet of Things Prof. Sudip Misra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Introduction to Internet of Things Prof. Sudip Misra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Introduction to Internet of Things Prof. Sudip Misra Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 05 Basics of IoT Networking-Part-I In this lecture and

More information

Designing a ZigBee Network

Designing a ZigBee Network Wireless Control That Simply Works Designing a ZigBee Network ESS 2006, Birmingham David Egan Ember Corporation Copyright 2004 ZigBee TM Alliance. All Rights Reserved. Contents: Typical Network Design

More information

Internet of Things (IoT)

Internet of Things (IoT) Internet of Things (IoT) Yan Zhang Professor, University of Oslo, Norway April 7, 2017 1 Outline Internet of Things (IoT) Key Technologies RFID Mobile Cloud Computing Things A real/physical or digital/virtual

More information

The Value of Low Power

The Value of Low Power The Value of Low Power February 2018 This Thread Technical white paper is provided for reference purposes only. The full technical specification is available publicly. To join gain access, please follow

More information

Wireless# Guide to Wireless Communications. Objectives

Wireless# Guide to Wireless Communications. Objectives Wireless# Guide to Wireless Communications Chapter 1 Introduction to Wireless Communications Jorge Olenewa jolenewa@georgebrown.ca Office: E425 ext. 6809 Objectives Explain how the major wireless technologies

More information

ET4254 Communications and Networking 1

ET4254 Communications and Networking 1 Topic 9 Internet Protocols Aims:- basic protocol functions internetworking principles connectionless internetworking IP IPv6 IPSec 1 Protocol Functions have a small set of functions that form basis of

More information

A PERFORMANCE EVALUATION OF YMAC A MEDIUM ACCESS PROTOCOL FOR WSN

A PERFORMANCE EVALUATION OF YMAC A MEDIUM ACCESS PROTOCOL FOR WSN A PERFORMANCE EVALUATION OF YMAC A MEDIUM ACCESS PROTOCOL FOR WSN Albeiro Cortés Cabezas and José de Jesús Salgado Patrón Department of Electronic Engineering, Surcolombiana University, Neiva, Colombia

More information

Computer Networks. Wireless LANs

Computer Networks. Wireless LANs Computer Networks Wireless LANs Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN 802.11 Personal wireless nw WPAN 802.15 WiFi 802.11a 802.11b 802.11h 802.11i/e/

More information

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 A Holistic Approach in the Development and Deployment of WSN-based

More information

Communications Options for Wireless Sensor Networks. Marco Zennaro and Antoine Bagula ICTP and UWC Italy and South Africa

Communications Options for Wireless Sensor Networks. Marco Zennaro and Antoine Bagula ICTP and UWC Italy and South Africa Communications Options for Wireless Sensor Networks Marco Zennaro and Antoine Bagula ICTP and UWC Italy and South Africa WSN communications options When considering communications options, parameters to

More information

Industrial IOT Gateway Family Datasheet

Industrial IOT Gateway Family Datasheet Industrial IOT Gateway Family Datasheet GW-Series Overview Samsara IoT gateways securely connect sensor data to the Samsara cloud. All models include WiFi and built-in cellular connectivity, storage, and

More information

CSNT 180 Wireless Networking. Chapter 7 WLAN Terminology and Technology

CSNT 180 Wireless Networking. Chapter 7 WLAN Terminology and Technology CSNT 180 Wireless Networking Chapter 7 WLAN Terminology and Technology Norman McEntire norman.mcentire@servin.com Founder, Servin Corporation, http://servin.com Technology Training for Technology Professionals

More information

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

ETSF05/ETSF10 Internet Protocols Network Layer Protocols ETSF05/ETSF10 Internet Protocols Network Layer Protocols 2016 Jens Andersson Agenda Internetworking IPv4/IPv6 Framentation/Reassembly ICMPv4/ICMPv6 IPv4 to IPv6 transition VPN/Ipsec NAT (Network Address

More information

CSC 774 Advanced Network Security

CSC 774 Advanced Network Security Computer Science CSC 774 Advanced Network Security Topic 4.3 Mitigating DoS Attacks against Broadcast Authentication in Wireless Sensor Networks 1 Wireless Sensor Networks (WSN) A WSN consists of a potentially

More information

Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk SOLUTIONS

Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk SOLUTIONS Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk Date: January 17 th 2006 at 14:00 18:00 SOLUTIONS 1. General (5p) a) Draw the layered

More information

SDCI Student Project 6 Sensing Capabilites Go Wireless. Mario Caruso Francesco Leotta Leonardo Montecchi Marcello Pietri

SDCI Student Project 6 Sensing Capabilites Go Wireless. Mario Caruso Francesco Leotta Leonardo Montecchi Marcello Pietri SDCI 2012 Student Project 6 Sensing Capabilites Go Wireless Mario Caruso Francesco Leotta Leonardo Montecchi Marcello Pietri Overview Wireless Sensor Network Is a collection of nodes organized into a cooperative

More information

Chapter 24 Wireless Network Security

Chapter 24 Wireless Network Security Chapter 24 Wireless Network Security Wireless Security Key factors contributing to higher security risk of wireless networks compared to wired networks include: o Channel Wireless networking typically

More information

Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5

Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5 Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5 Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained

More information

Lesson 10. Circuit Boards and Devices Ethernet and Wi-Wi Connectivity with the Internet

Lesson 10. Circuit Boards and Devices Ethernet and Wi-Wi Connectivity with the Internet Lesson 10 Circuit Boards and Devices Ethernet and Wi-Wi Connectivity with the Internet 1 Connecting Arduino USB to Internet Arduino board IDE supports USB. USB port connects to a mobile or computer or

More information

Wireless Sensor Networks --- Concepts and Challenges

Wireless Sensor Networks --- Concepts and Challenges Outline Wireless Sensor Networks --- Concepts and Challenges Basic Concepts Applications Characteristics and Challenges 2 Traditional Sensing Method Basic Concepts Signal analysis Wired/Wireless Object

More information

Mobile IP and Mobile Transport Protocols

Mobile IP and Mobile Transport Protocols Mobile IP and Mobile Transport Protocols 1 IP routing Preliminaries Works on a hop-by-hop basis using a routing table 32 bits: 129.97.92.42 Address = subnet + host (Mobility No packet for you) Two parts»

More information

KSN Radio Stack: Sun SPOT Symposium 2009 London.

KSN Radio Stack: Sun SPOT Symposium 2009 London. Andreas Leppert pp Stephan Kessler Sven Meisinger g : Reliable Wireless Communication for Dataintensive Applications in Sensor Networks Sun SPOT Symposium 2009 London www.kit.edu Application in WSN? Targets

More information

Wireless Sensor Networks

Wireless Sensor Networks Wireless Sensor Networks c.buratti@unibo.it +9 051 20 9147 Office Hours: Tuesday 5 pm @ Main Building, third fllor Credits: 6 Protocol Stack Time Synchronization Energy Efficiency Distributed Processing

More information

TamoSoft Throughput Test

TamoSoft Throughput Test TAKE CONTROL IT'S YOUR SECURITY TAMOSOFT df TamoSoft Throughput Test Help Documentation Version 1.0 Copyright 2011-2016 TamoSoft Contents Contents... 2 Introduction... 3 Overview... 3 System Requirements...

More information

Cloud Based IoT Application Provisioning (The Case of Wireless Sensor Applications)

Cloud Based IoT Application Provisioning (The Case of Wireless Sensor Applications) Cloud Based IoT Application Provisioning (The Case of Wireless Sensor Applications) (ENCS 691K Chapter 7) Roch Glitho, PhD Associate Professor and Canada Research Chair My URL - http://users.encs.concordia.ca/~glitho/

More information

Chapter 3 Wireless Configuration

Chapter 3 Wireless Configuration Chapter 3 Wireless Configuration This chapter describes how to configure the wireless features of your WNR854T router. In planning your wireless network, you should consider the level of security required.

More information

Accelerating Innovation and Collaboration for the Next Stage

Accelerating Innovation and Collaboration for the Next Stage Accelerating Innovation and Collaboration for the Next Stage November 8, 2013 Smart Life & Smart Work in the Next Stage - ICT as an Enabler Transportation Intelligent Transportation Systems, Quick Charging

More information

INTERNET OF THINGS FOR SMART CITIES BY ZANELLA ET AL.

INTERNET OF THINGS FOR SMART CITIES BY ZANELLA ET AL. INTERNET OF THINGS FOR SMART CITIES BY ZANELLA ET AL. From IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, FEBRUARY 2014 Presented by: Abid Contents Objective Introduction Smart City Concept & Services

More information

Wireless Sensor Networks

Wireless Sensor Networks Wireless Sensor Networks c.buratti@unibo.it +9 051 20 9147 Office Hours: Tuesday 5 pm @ Main Building, third fllor Credits: 6 Protocol Stack Time Synchronization Energy Efficiency Distributed Processing

More information

WSN NETWORK ARCHITECTURES AND PROTOCOL STACK

WSN NETWORK ARCHITECTURES AND PROTOCOL STACK WSN NETWORK ARCHITECTURES AND PROTOCOL STACK Sensing is a technique used to gather information about a physical object or process, including the occurrence of events (i.e., changes in state such as a drop

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 10 CMPE 257 Spring'15 1 Student Presentations Schedule May 21: Sam and Anuj May 26: Larissa

More information

Data Communications. Data Link Layer Protocols Wireless LANs

Data Communications. Data Link Layer Protocols Wireless LANs Data Communications Data Link Layer Protocols Wireless LANs Wireless Networks Several different types of communications networks are using unguided media. These networks are generally referred to as wireless

More information

Wireless Embedded Systems ( x) Ad hoc and Sensor Networks

Wireless Embedded Systems ( x) Ad hoc and Sensor Networks Wireless Embedded Systems (0120442x) Ad hoc and Sensor Networks Chaiporn Jaikaeo chaiporn.j@ku.ac.th Department of Computer Engineering Kasetsart University Materials taken from lecture slides by Karl

More information