Distributed Algorithms. The Leader Election Problem. 1.2 The Network Model. Applications. 1 The Problem and the Model. Lesson two Leader Election

Size: px
Start display at page:

Download "Distributed Algorithms. The Leader Election Problem. 1.2 The Network Model. Applications. 1 The Problem and the Model. Lesson two Leader Election"

Transcription

1 The Problem and the Model Distributed Algorithms Lesson two Leader Election. The problem What is a leader A leader is a member that all other nodes acknowledge as being distinguished to perform some special task. The Leader Election Problem Choosing a leader from a set of candidates, initially a node n i is only aware of its own identification and a totally order is defined on the set of all identifications. P P P P P P Applications Token ring One and only one leader Others. The Network Model Complete Network

2 The Network Model (Cont.) Synchronous Network There is a global clock. In every even pulse, every node sends a message, In every odd pulse, every node receives all messages sent to it in last pulse, performs some local computation to process these messages, and then it may (not ) send a message to another node. The Network Model (Cont.) Undirected graph (bi-directional channels) FIFO No Error The Basic Ideas and the Algorithm. The Basic Ideas Naive solution: Every node sends its identification to all other nodes at pulse 0 Every node receives all identifications of other nodes, and then computes the maximum identification at pulse. The leader is decided as the node with the maximum identification. The approach is simple, and its time complexity is O(). However, its message complexity is O( V ), where V is the set of nodes. In order to reduce the message complexity: Outline of the algorithm A candidate sends capture message(s) A node replies an ack to only one candidate (may receiving more captures but only reply to one) A candidate will send more captures if it received enough acks

3

4 . The Formal Description of the Algorithm See P and P of Introduction to distributed Algorithms Outline Variable: Initialization for all nodes (.) pulse s = 0, Initialization for initial actively (.) pulse s = odd, receiving messages, comparing of identifications and deciding whether it sends an ack or not. (.) pulse s = even, to proceed further, if receiving enough ack messages.. The Correctness of the Algorithm The attempt to capture more nodes in (.) is conditioned upon having received as many ack s as needed for the last attempt. In (.) n i decides whether to change its owner or not depending on the comparison of identifiers received and the owner s. The Correctness (Cont.) After all log n + pulses have elapsed. Every n i s owner is the node with greatest identification. From every node s point of view, the elected leader is the same. The Correctness (Cont.) Because of the total order, the node with the greatest id must have captured all nodes after log n + pulses, and All others must have sent ack message to the node and changed their owner to the node.. The Complexity of the Algorithm The time complexity is O(log n) since it requires log n + pulses. The message complexity is O(n log n) The bit message complexity is O(n (log n))

5 The Message Complexity Theorem.: For k log n -, the maximum number of nodes to reach pulse s = k as candidates in Algorithm S_Elect_Leader_C is n/k- At pulse s = k, a node must have captured k- nodes to be still a candidate. Every node can be captured by only one node (has only one owner). Every node captures at least k- nodes. There are n nodes in total. Thus, at most n/ k- nodes are still candidates. Any of the n nodes may only be captured by at most one candidate at any odd pulse. Corollary.: Algorithm S_Elect_Leader_C employs at most n log n -n capture messages and at most n log n ack messages. By (.), a node sends at most one ack per odd pulse, so that the total number of ack s is no more than n log n. The initial number of candidates is at most n, so by (.) at pulse s = 0 at most n capture s are sent. For k log n -, by (.) at pulse s = k a candidate sends at most k capture's. by Theorem., the number of candidates at this pulse in no larger than n/k- And then the total number of capture s is at most n + n/k- k n + n( log n - ) = n log n -n The message complexity of the algorithm is O(n log n) The bit message complexity of the algorithm is O(n (log n)), since a capture message carries a node s identification. Summary Leader Election Traditional distributed problem (algorithm) Many applications The techniques for reducing messages To whom and when to send messages Local decision Extensions

6.852 Lecture 10. Minimum spanning tree. Reading: Chapter 15.5, Gallager-Humblet-Spira paper. Gallager-Humblet-Spira algorithm

6.852 Lecture 10. Minimum spanning tree. Reading: Chapter 15.5, Gallager-Humblet-Spira paper. Gallager-Humblet-Spira algorithm 6.852 Lecture 10 Gallager-Humblet-Spira algorithm Reading: Chapter 15.5, Gallager-Humblet-Spira paper Assume undirected graph (i.e., bidirectional communication) distinct edge weights size and diameter

More information

Several of these problems are motivated by trying to use solutiions used in `centralized computing to distributed computing

Several of these problems are motivated by trying to use solutiions used in `centralized computing to distributed computing Studying Different Problems from Distributed Computing Several of these problems are motivated by trying to use solutiions used in `centralized computing to distributed computing Problem statement: Mutual

More information

Introduction to Distributed Systems Seif Haridi

Introduction to Distributed Systems Seif Haridi Introduction to Distributed Systems Seif Haridi haridi@kth.se What is a distributed system? A set of nodes, connected by a network, which appear to its users as a single coherent system p1 p2. pn send

More information

Distributed Computing over Communication Networks: Leader Election

Distributed Computing over Communication Networks: Leader Election Distributed Computing over Communication Networks: Leader Election Motivation Reasons for electing a leader? Reasons for not electing a leader? Motivation Reasons for electing a leader? Once elected, coordination

More information

Distributed Synchronization. EECS 591 Farnam Jahanian University of Michigan

Distributed Synchronization. EECS 591 Farnam Jahanian University of Michigan Distributed Synchronization EECS 591 Farnam Jahanian University of Michigan Reading List Tanenbaum Chapter 5.1, 5.4 and 5.5 Clock Synchronization Distributed Election Mutual Exclusion Clock Synchronization

More information

Proseminar Distributed Systems Summer Semester Paxos algorithm. Stefan Resmerita

Proseminar Distributed Systems Summer Semester Paxos algorithm. Stefan Resmerita Proseminar Distributed Systems Summer Semester 2016 Paxos algorithm stefan.resmerita@cs.uni-salzburg.at The Paxos algorithm Family of protocols for reaching consensus among distributed agents Agents may

More information

Leader Election in Rings

Leader Election in Rings Leader Election Arvind Krishnamurthy Fall 2003 Leader Election in Rings Under different models: Synchronous vs. asynchronous Anonymous vs. non-anonymous (knowledge of unique id) Knowledge of n (non-uniform)

More information

Distributed Systems Leader election & Failure detection

Distributed Systems Leader election & Failure detection Distributed Systems Leader election & Failure detection He Sun School of Informatics University of Edinburgh Leader of a computation Many distributed computations need a coordinator of server processors

More information

Distributed Systems. coordination Johan Montelius ID2201. Distributed Systems ID2201

Distributed Systems. coordination Johan Montelius ID2201. Distributed Systems ID2201 Distributed Systems ID2201 coordination Johan Montelius 1 Coordination Coordinating several threads in one node is a problem, coordination in a network is of course worse: failure of nodes and networks

More information

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf Distributed systems Lecture 6: distributed transactions, elections, consensus and replication Malte Schwarzkopf Last time Saw how we can build ordered multicast Messages between processes in a group Need

More information

Last Class: Clock Synchronization. Today: More Canonical Problems

Last Class: Clock Synchronization. Today: More Canonical Problems Last Class: Clock Synchronization Logical clocks Vector clocks Global state Lecture 12, page 1 Today: More Canonical Problems Distributed snapshot and termination detection Election algorithms Bully algorithm

More information

Distributed Leader Election Algorithms in Synchronous Networks

Distributed Leader Election Algorithms in Synchronous Networks Distributed Leader Election Algorithms in Synchronous Networks Mitsou Valia National Technical University of Athens School of Applied Mathematics and Physics 1/66 Distributed Computing Distributed computing

More information

Mutual Exclusion. A Centralized Algorithm

Mutual Exclusion. A Centralized Algorithm Mutual Exclusion Processes in a distributed system may need to simultaneously access the same resource Mutual exclusion is required to prevent interference and ensure consistency We will study three algorithms

More information

Accurate Time Synchronization for IEEE Based Wireless Networks

Accurate Time Synchronization for IEEE Based Wireless Networks Accurate Time Synchronization for IEEE 802.11-Based Wireless Networks Jui-Hao Chiang Advised by Prof. Tzi-cker Chiueh Stony Brook University, USA ICNP 2009 Outline Motivation IEEE 802.11 TSF Clock-Jumping

More information

CSc Leader Election

CSc Leader Election CSc72010 Leader Election Reading Skim 3.5 Read 3.6, General synchronous networks Read 4.1 Leader election algorithms Lelann/Chang/Roberts: O(n) time complexity O(n 2 ) message complexity Hirschberg/Sinclair

More information

Telematics. 5th Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments

Telematics. 5th Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments 19531 - Telematics 5th Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments Bastian Blywis Department of Mathematics and Computer Science Institute of Computer Science 18. November, 2010 Institute

More information

Process Synchroniztion Mutual Exclusion & Election Algorithms

Process Synchroniztion Mutual Exclusion & Election Algorithms Process Synchroniztion Mutual Exclusion & Election Algorithms Paul Krzyzanowski Rutgers University November 2, 2017 1 Introduction Process synchronization is the set of techniques that are used to coordinate

More information

OPTIMAL CONSTRUCTION OF SENSE OF DIRECTION IN A TORUS BY A MOBILE AGENT. and. 1. Introduction

OPTIMAL CONSTRUCTION OF SENSE OF DIRECTION IN A TORUS BY A MOBILE AGENT. and. 1. Introduction International Journal of Foundations of Computer Science c World Scientific Publishing Company OPTIMAL CONSTRUCTION OF SENSE OF DIRECTION IN A TORUS BY A MOBILE AGENT HANANE BECHA University of Ottawa,

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.6 Indirect Argument: Contradiction and Contraposition Copyright Cengage Learning. All

More information

Coordination 1. To do. Mutual exclusion Election algorithms Next time: Global state. q q q

Coordination 1. To do. Mutual exclusion Election algorithms Next time: Global state. q q q Coordination 1 To do q q q Mutual exclusion Election algorithms Next time: Global state Coordination and agreement in US Congress 1798-2015 Process coordination How can processes coordinate their action?

More information

1 extrema notebook. November 25, 2012

1 extrema notebook. November 25, 2012 Do now as a warm up: Suppose this graph is a function f, defined on [a,b]. What would you say about the value of f at each of these x values: a, x 1, x 2, x 3, x 4, x 5, x 6, and b? What would you say

More information

Coordination and Agreement

Coordination and Agreement Coordination and Agreement Nicola Dragoni Embedded Systems Engineering DTU Informatics 1. Introduction 2. Distributed Mutual Exclusion 3. Elections 4. Multicast Communication 5. Consensus and related problems

More information

PROCESS SYNCHRONIZATION

PROCESS SYNCHRONIZATION DISTRIBUTED COMPUTER SYSTEMS PROCESS SYNCHRONIZATION Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Process Synchronization Mutual Exclusion Algorithms Permission Based Centralized

More information

殷亚凤. Consistency and Replication. Distributed Systems [7]

殷亚凤. Consistency and Replication. Distributed Systems [7] Consistency and Replication Distributed Systems [7] 殷亚凤 Email: yafeng@nju.edu.cn Homepage: http://cs.nju.edu.cn/yafeng/ Room 301, Building of Computer Science and Technology Review Clock synchronization

More information

Last Class: Clock Synchronization. Today: More Canonical Problems

Last Class: Clock Synchronization. Today: More Canonical Problems Last Class: Clock Synchronization Logical clocks Vector clocks Global state Lecture 11, page 1 Today: More Canonical Problems Distributed snapshot and termination detection Election algorithms Bully algorithm

More information

Synchronization Part 2. REK s adaptation of Claypool s adaptation oftanenbaum s Distributed Systems Chapter 5 and Silberschatz Chapter 17

Synchronization Part 2. REK s adaptation of Claypool s adaptation oftanenbaum s Distributed Systems Chapter 5 and Silberschatz Chapter 17 Synchronization Part 2 REK s adaptation of Claypool s adaptation oftanenbaum s Distributed Systems Chapter 5 and Silberschatz Chapter 17 1 Outline Part 2! Clock Synchronization! Clock Synchronization Algorithms!

More information

Consistency and Replication. Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary

Consistency and Replication. Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary Consistency and Replication Some slides are from Prof. Jalal Y. Kawash at Univ. of Calgary Reasons for Replication Reliability/Availability : Mask failures Mask corrupted data Performance: Scalability

More information

Algorithms and protocols for distributed systems

Algorithms and protocols for distributed systems Algorithms and protocols for distributed systems We have defined process groups as having peer or hierarchical structure and have seen that a coordinator may be needed to run a protocol such as 2PC. With

More information

Advanced Topics in Distributed Systems. Dr. Ayman A. Abdel-Hamid. Computer Science Department Virginia Tech

Advanced Topics in Distributed Systems. Dr. Ayman A. Abdel-Hamid. Computer Science Department Virginia Tech Advanced Topics in Distributed Systems Dr. Ayman A. Abdel-Hamid Computer Science Department Virginia Tech Synchronization (Based on Ch6 in Distributed Systems: Principles and Paradigms, 2/E) Synchronization

More information

OUTLINE. Introduction Clock synchronization Logical clocks Global state Mutual exclusion Election algorithms Deadlocks in distributed systems

OUTLINE. Introduction Clock synchronization Logical clocks Global state Mutual exclusion Election algorithms Deadlocks in distributed systems Chapter 5 Synchronization OUTLINE Introduction Clock synchronization Logical clocks Global state Mutual exclusion Election algorithms Deadlocks in distributed systems Concurrent Processes Cooperating processes

More information

Can t you hear me knocking

Can t you hear me knocking Can t you hear me knocking Identification of user actions on Android apps via traffic analysis Candidate: Supervisor: Prof. Mauro Conti Riccardo Spolaor Co-Supervisor: Dr. Nino V. Verde April 17, 2014

More information

Clock Synchronization. Synchronization. Clock Synchronization Algorithms. Physical Clock Synchronization. Tanenbaum Chapter 6 plus additional papers

Clock Synchronization. Synchronization. Clock Synchronization Algorithms. Physical Clock Synchronization. Tanenbaum Chapter 6 plus additional papers Clock Synchronization Synchronization Tanenbaum Chapter 6 plus additional papers Fig 6-1. In a distributed system, each machine has its own clock. When this is the case, an event that occurred after another

More information

Synchronous Bus. Bus Topics

Synchronous Bus. Bus Topics Bus Topics You should be familiar by now with the basic operation of the MPC823 bus. In this section, we will discuss alternative bus structures and advanced bus operation. Synchronization styles Arbitration:

More information

A synchronizer generates sequences of clock pulses at each node of the network satisfying the condition given by the following definition.

A synchronizer generates sequences of clock pulses at each node of the network satisfying the condition given by the following definition. Chapter 8 Synchronizers So far, we have mainly studied synchronous algorithms because generally, asynchronous algorithms are often more di cult to obtain and it is substantially harder to reason about

More information

21. Distributed Algorithms

21. Distributed Algorithms 21. Distributed Algorithms We dene a distributed system as a collection of individual computing devices that can communicate with each other [2]. This denition is very broad, it includes anything, from

More information

Event Ordering Silberschatz, Galvin and Gagne. Operating System Concepts

Event Ordering Silberschatz, Galvin and Gagne. Operating System Concepts Event Ordering Happened-before relation (denoted by ) If A and B are events in the same process, and A was executed before B, then A B If A is the event of sending a message by one process and B is the

More information

How to Utilize the Provider Portal

How to Utilize the Provider Portal How to Utilize the Provider Portal TO REGISTER: please go to: www.memberbenefitsonline.com New Provider registration: Please click on the Sign Up. This is required for all new Users. This is a one time

More information

Paths, Circuits, and Connected Graphs

Paths, Circuits, and Connected Graphs Paths, Circuits, and Connected Graphs Paths and Circuits Definition: Let G = (V, E) be an undirected graph, vertices u, v V A path of length n from u to v is a sequence of edges e i = {u i 1, u i} E for

More information

Exam Principles of Distributed Computing

Exam Principles of Distributed Computing Distributed Computing FS 2015 Prof. Dr. Roger Wattenhofer P. Bissig, P. Brandes, S. Brandt, K.T. Förster, B. Keller, M. König, L. Peer, J. Seidel, D. Stolz, J. Uitto Exam Principles of Distributed Computing

More information

CHAPTER 4: INTERPROCESS COMMUNICATION AND COORDINATION

CHAPTER 4: INTERPROCESS COMMUNICATION AND COORDINATION CHAPTER 4: INTERPROCESS COMMUNICATION AND COORDINATION Chapter outline Discuss three levels of communication: basic message passing, request/reply and transaction communication based on message passing

More information

CSE 486/586 Distributed Systems

CSE 486/586 Distributed Systems CSE 486/586 Distributed Systems Mutual Exclusion Steve Ko Computer Sciences and Engineering University at Buffalo CSE 486/586 Recap: Consensus On a synchronous system There s an algorithm that works. On

More information

Majority and Friendship Paradoxes

Majority and Friendship Paradoxes Majority and Friendship Paradoxes Majority Paradox Example: Small town is considering a bond initiative in an upcoming election. Some residents are in favor, some are against. Consider a poll asking the

More information

Avigilon Control Center System Integration Guide

Avigilon Control Center System Integration Guide Avigilon Control Center System Integration Guide with S2 NetBox INT-S2-A-Rev4 Copyright 2013 Avigilon. All rights reserved. No copying, distribution, publication, modification, or incorporation of this

More information

Distributed Mutual Exclusion

Distributed Mutual Exclusion Distributed Mutual Exclusion Mutual Exclusion Well-understood in shared memory systems Requirements: at most one process in critical section (safety) if more than one requesting process, someone enters

More information

Lesson 1 4. Prefix Sum Definitions. Scans. Parallel Scans. A Naive Parallel Scans

Lesson 1 4. Prefix Sum Definitions. Scans. Parallel Scans. A Naive Parallel Scans Lesson 1 4 Prefix Sum Definitions Prefix sum given an array...the prefix sum is the sum of all the elements in the array from the beginning to the position, including the value at the position. The sequential

More information

Distributed Systems - I

Distributed Systems - I CSE 421/521 - Operating Systems Fall 2011 Lecture - XXIII Distributed Systems - I Tevfik Koşar University at Buffalo November 22 nd, 2011 1 Motivation Distributed system is collection of loosely coupled

More information

A Reliable Multicast Framework for Light-weight Sessions. and Application Level Framing. Sally Floyd, Van Jacobson, Steve McCanne.

A Reliable Multicast Framework for Light-weight Sessions. and Application Level Framing. Sally Floyd, Van Jacobson, Steve McCanne. A Reliable Multicast Framework for Light-weight Sessions and Application Level Framing Sally Floyd, Van Jacobson, Steve McCanne Lawrence Berkeley National Laboratory Ching-Gung Liu University of Southern

More information

Last time. Distributed systems Lecture 6: Elections, distributed transactions, and replication. DrRobert N. M. Watson

Last time. Distributed systems Lecture 6: Elections, distributed transactions, and replication. DrRobert N. M. Watson Distributed systems Lecture 6: Elections, distributed transactions, and replication DrRobert N. M. Watson 1 Last time Saw how we can build ordered multicast Messages between processes in a group Need to

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #4 1/24/2018 Xuehai Qian xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 Announcements PA #1

More information

DD2451 Parallel and Distributed Computing --- FDD3008 Distributed Algorithms

DD2451 Parallel and Distributed Computing --- FDD3008 Distributed Algorithms DD2451 Parallel and Distributed Computing --- FDD3008 Distributed Algorithms Lecture 8 Leader Election Mads Dam Autumn/Winter 2011 Previously... Consensus for message passing concurrency Crash failures,

More information

Michel Raynal. Distributed Algorithms for Message-Passing Systems

Michel Raynal. Distributed Algorithms for Message-Passing Systems Michel Raynal Distributed Algorithms for Message-Passing Systems Contents Part I Distributed Graph Algorithms 1 Basic Definitions and Network Traversal Algorithms... 3 1.1 DistributedAlgorithms... 3 1.1.1

More information

Distributed Operating Systems. Distributed Synchronization

Distributed Operating Systems. Distributed Synchronization 2 Distributed Operating Systems Distributed Synchronization Steve Goddard goddard@cse.unl.edu http://www.cse.unl.edu/~goddard/courses/csce855 1 Synchronization Coordinating processes to achieve common

More information

Model-based Prototyping of an Interoperability Protocol for Mobile Ad-hoc Networks

Model-based Prototyping of an Interoperability Protocol for Mobile Ad-hoc Networks Model-based Prototyping of an Interoperability Protocol for Mobile Ad-hoc s L.M. Kristensen, M. Westergaard, and P.C. Nørgaard 2 Department of Computer Science, University of Aarhus, Denmark 2Ericsson

More information

Operating Systems. Mutual Exclusion in Distributed Systems. Lecturer: William Fornaciari

Operating Systems. Mutual Exclusion in Distributed Systems. Lecturer: William Fornaciari Politecnico di Milano Operating Systems Mutual Exclusion in Distributed Systems Lecturer: William Fornaciari Politecnico di Milano fornacia@elet.polimi.it www.elet.polimi.it/~fornacia William Fornaciari

More information

Initial Assumptions. Modern Distributed Computing. Network Topology. Initial Input

Initial Assumptions. Modern Distributed Computing. Network Topology. Initial Input Initial Assumptions Modern Distributed Computing Theory and Applications Ioannis Chatzigiannakis Sapienza University of Rome Lecture 4 Tuesday, March 6, 03 Exercises correspond to problems studied during

More information

Paxos Made Simple. Leslie Lamport, 2001

Paxos Made Simple. Leslie Lamport, 2001 Paxos Made Simple Leslie Lamport, 2001 The Problem Reaching consensus on a proposed value, among a collection of processes Safety requirements: Only a value that has been proposed may be chosen Only a

More information

Self Stabilization. CS553 Distributed Algorithms Prof. Ajay Kshemkalyani. by Islam Ismailov & Mohamed M. Ali

Self Stabilization. CS553 Distributed Algorithms Prof. Ajay Kshemkalyani. by Islam Ismailov & Mohamed M. Ali Self Stabilization CS553 Distributed Algorithms Prof. Ajay Kshemkalyani by Islam Ismailov & Mohamed M. Ali Introduction There is a possibility for a distributed system to go into an illegitimate state,

More information

Chapter 6 Synchronization

Chapter 6 Synchronization DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 6 Synchronization Clock Synchronization Figure 6-1. When each machine has its own clock, an event

More information

Distributed Computing

Distributed Computing Principles of Distributed Computing Roger Wattenhofer wattenhofer@tik.ee.ethz.ch Assistant: Christoph Lenzen (lenzen@tik.ee.ethz.ch) Spring 2010 2 Introduction What is Distributed Computing? In the last

More information

Relationships Between Broadcast and Shared Memory in Reliable Anonymous Distributed Systems

Relationships Between Broadcast and Shared Memory in Reliable Anonymous Distributed Systems Relationships Between Broadcast and Shared Memory in Reliable Anonymous Distributed Systems James Aspnes, Yale University Faith Ellen Fich, University of Toronto Eric Ruppert, York University Anonymity

More information

Workspace Desktop Edition User's Guide. Transfer An SMS or MMS Interaction

Workspace Desktop Edition User's Guide. Transfer An SMS or MMS Interaction Workspace Desktop Edition User's Guide Transfer An SMS or MMS Interaction 11/30/2017 Transfer An SMS or MMS Interaction [Modified: 8.5.110.13] In this lesson, you will learn how to transfer SMS or MMS

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.2 Direct Proof and Counterexample II: Rational Numbers Copyright Cengage Learning. All

More information

Mutual Exclusion in DS

Mutual Exclusion in DS Mutual Exclusion in DS Event Ordering Mutual Exclusion Election Algorithms Reaching Agreement Event Ordering Happened-before relation (denoted by ). If A and B are events in the same process, and A was

More information

Lecture 6 Consistency and Replication

Lecture 6 Consistency and Replication Lecture 6 Consistency and Replication Prof. Wilson Rivera University of Puerto Rico at Mayaguez Electrical and Computer Engineering Department Outline Data-centric consistency Client-centric consistency

More information

CRC. Implementation. Error control. Software schemes. Packet errors. Types of packet errors

CRC. Implementation. Error control. Software schemes. Packet errors. Types of packet errors CRC Implementation Error control An Engineering Approach to Computer Networking Detects all single bit errors almost all 2-bit errors any odd number of errors all bursts up to M, where generator length

More information

Distributed Algorithms 6.046J, Spring, 2015 Part 2. Nancy Lynch

Distributed Algorithms 6.046J, Spring, 2015 Part 2. Nancy Lynch Distributed Algorithms 6.046J, Spring, 2015 Part 2 Nancy Lynch 1 This Week Synchronous distributed algorithms: Leader Election Maximal Independent Set Breadth-First Spanning Trees Shortest Paths Trees

More information

Formal Verification of Synchronizers in Multi-Clock Domain SoCs. Tsachy Kapschitz and Ran Ginosar Technion, Israel

Formal Verification of Synchronizers in Multi-Clock Domain SoCs. Tsachy Kapschitz and Ran Ginosar Technion, Israel Formal Verification of Synchronizers in Multi-Clock Domain SoCs Tsachy Kapschitz and Ran Ginosar Technion, Israel Outline The problem Structural verification 1CD control functional verification MCD control

More information

Computer Architecture and Organization: L10: I/O Organization

Computer Architecture and Organization: L10: I/O Organization Computer Architecture and Organization: L10: I/O Organization By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, ah.abdulhafez@gmail.com, hafez@research.iiit.ac.in 1 CAO, by Dr. A.H. Abdul Hafez, CE Dept. HKU

More information

Distributed Algorithmic

Distributed Algorithmic Distributed Algorithmic Master 2 IFI, CSSR + Ubinet Françoise Baude Université de Nice Sophia-Antipolis UFR Sciences Département Informatique baude@unice.fr web site : deptinfo.unice.fr/~baude/algodist

More information

Interfacing the Extended Capabilities Port. Table of Contents

Interfacing the Extended Capabilities Port. Table of Contents Interfacing the Extended Capabilities Port Table of Contents Introduction to the Extended Capabilities Port Page 1 ECP Hardware Properties Page 1 The ECP Handshake Page 2 ECP Forward Data Cycle Page 3

More information

DISTRIBUTED MUTEX. EE324 Lecture 11

DISTRIBUTED MUTEX. EE324 Lecture 11 DISTRIBUTED MUTEX EE324 Lecture 11 Vector Clocks Vector clocks overcome the shortcoming of Lamport logical clocks L(e) < L(e ) does not imply e happened before e Goal Want ordering that matches causality

More information

Throughout this course, we use the terms vertex and node interchangeably.

Throughout this course, we use the terms vertex and node interchangeably. Chapter Vertex Coloring. Introduction Vertex coloring is an infamous graph theory problem. It is also a useful toy example to see the style of this course already in the first lecture. Vertex coloring

More information

NetWare Link-Services Protocol

NetWare Link-Services Protocol 44 CHAPTER Chapter Goals Describe the Network Link-Service Protocol. Describe routing with NLSP. Describe the data packet used by NLSP. Background The (NLSP) is a link-state routing protocol from Novell

More information

The I2C BUS Interface

The I2C BUS Interface The I 2 C BUS Interface ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it L.S.M. 1 Course What is I 2 C? I

More information

Last Class: Naming. Today: Classical Problems in Distributed Systems. Naming. Time ordering and clock synchronization (today)

Last Class: Naming. Today: Classical Problems in Distributed Systems. Naming. Time ordering and clock synchronization (today) Last Class: Naming Naming Distributed naming DNS LDAP Lecture 12, page 1 Today: Classical Problems in Distributed Systems Time ordering and clock synchronization (today) Next few classes: Leader election

More information

Chapter 16 Networking

Chapter 16 Networking Chapter 16 Networking Outline 16.1 Introduction 16.2 Network Topology 16.3 Network Types 16.4 TCP/IP Protocol Stack 16.5 Application Layer 16.5.1 Hypertext Transfer Protocol (HTTP) 16.5.2 File Transfer

More information

Digraph Complexity Measures and Applications in Formal Language Theory

Digraph Complexity Measures and Applications in Formal Language Theory Digraph Complexity Measures and by Hermann Gruber Institut für Informatik Justus-Liebig-Universität Giessen Germany November 14, 2008 Overview 1 Introduction and Motivation 2 3 4 5 Outline Introduction

More information

Distributed Systems. replication Johan Montelius ID2201. Distributed Systems ID2201

Distributed Systems. replication Johan Montelius ID2201. Distributed Systems ID2201 Distributed Systems ID2201 replication Johan Montelius 1 The problem The problem we have: servers might be unavailable The solution: keep duplicates at different servers 2 Building a fault-tolerant service

More information

Toward the joint design of electronic and optical layer protection

Toward the joint design of electronic and optical layer protection Toward the joint design of electronic and optical layer protection Massachusetts Institute of Technology Slide 1 Slide 2 CHALLENGES: - SEAMLESS CONNECTIVITY - MULTI-MEDIA (FIBER,SATCOM,WIRELESS) - HETEROGENEOUS

More information

Paxos Replicated State Machines as the Basis of a High- Performance Data Store

Paxos Replicated State Machines as the Basis of a High- Performance Data Store Paxos Replicated State Machines as the Basis of a High- Performance Data Store William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters and Peng Li March 30, 2011 Q: How to build a

More information

Failures, Elections, and Raft

Failures, Elections, and Raft Failures, Elections, and Raft CS 8 XI Copyright 06 Thomas W. Doeppner, Rodrigo Fonseca. All rights reserved. Distributed Banking SFO add interest based on current balance PVD deposit $000 CS 8 XI Copyright

More information

CS603: Distributed Systems

CS603: Distributed Systems CS603: Distributed Systems Lecture 2: Client-Server Architecture, RPC, Corba Cristina Nita-Rotaru Lecture 2/ Spring 2006 1 ATC Architecture NETWORK INFRASTRUCTURE DATABASE HOW WOULD YOU START BUILDING

More information

Chapter 16: Distributed Synchronization

Chapter 16: Distributed Synchronization Chapter 16: Distributed Synchronization Chapter 16 Distributed Synchronization Event Ordering Mutual Exclusion Atomicity Concurrency Control Deadlock Handling Election Algorithms Reaching Agreement 18.2

More information

Multiple Access Channels

Multiple Access Channels Multiple Access Channels Some Queuing Theory MAC: Aloha, ethernet Exponential backoff & friends LANs: Local Area Networks Goal: extend benefits of simple connection as far as possible Means: Share medium

More information

A Partition Method for Graph Isomorphism

A Partition Method for Graph Isomorphism Available online at www.sciencedirect.com Physics Procedia ( ) 6 68 International Conference on Solid State Devices and Materials Science A Partition Method for Graph Isomorphism Lijun Tian, Chaoqun Liu

More information

More on IO: The Universal Serial Bus (USB)

More on IO: The Universal Serial Bus (USB) ecture 37 Computer Science 61C Spring 2017 April 21st, 2017 More on IO: The Universal Serial Bus (USB) 1 Administrivia Project 5 is: USB Programming (read from a mouse) Optional (helps you to catch up

More information

A Distributed Algorithm to Find k-dominating Sets

A Distributed Algorithm to Find k-dominating Sets A Distributed Algorithm to Find k-dominating Sets Lucia D. Penso a,1 Valmir C. Barbosa a, arxiv:cs/0309040v1 [cs.dc] 23 Sep 2003 Abstract a Programa de Engenharia de Sistemas e Computação, COPPE, Universidade

More information

CSE 5306 Distributed Systems. Synchronization

CSE 5306 Distributed Systems. Synchronization CSE 5306 Distributed Systems Synchronization 1 Synchronization An important issue in distributed system is how processes cooperate and synchronize with one another Cooperation is partially supported by

More information

Graph Connectivity in MapReduce...How Hard Could it Be?

Graph Connectivity in MapReduce...How Hard Could it Be? Graph Connectivity in MapReduce......How Hard Could it Be? Sergei Vassilvitskii +Karloff, Kumar, Lattanzi, Moseley, Roughgarden, Suri, Vattani, Wang August 28, 2015 Google NYC Maybe Easy...Maybe Hard...

More information

COMP 352 FALL Tutorial 10

COMP 352 FALL Tutorial 10 1 COMP 352 FALL 2016 Tutorial 10 SESSION OUTLINE Divide-and-Conquer Method Sort Algorithm Properties Quick Overview on Sorting Algorithms Merge Sort Quick Sort Bucket Sort Radix Sort Problem Solving 2

More information

Self-stabilizing Population Protocols

Self-stabilizing Population Protocols Self-stabilizing Population Protocols Dana Angluin, James Aspnes, Michael J. Fischer and Hong Jiang Yale University This paper studies self-stabilization in networks of anonymous, asynchronously interacting

More information

Chapter 18: Distributed

Chapter 18: Distributed Chapter 18: Distributed Synchronization, Silberschatz, Galvin and Gagne 2009 Chapter 18: Distributed Synchronization Event Ordering Mutual Exclusion Atomicity Concurrency Control Deadlock Handling Election

More information

THE FIRST APPROXIMATED DISTRIBUTED ALGORITHM FOR THE MINIMUM DEGREE SPANNING TREE PROBLEM ON GENERAL GRAPHS. and

THE FIRST APPROXIMATED DISTRIBUTED ALGORITHM FOR THE MINIMUM DEGREE SPANNING TREE PROBLEM ON GENERAL GRAPHS. and International Journal of Foundations of Computer Science c World Scientific Publishing Company THE FIRST APPROXIMATED DISTRIBUTED ALGORITHM FOR THE MINIMUM DEGREE SPANNING TREE PROBLEM ON GENERAL GRAPHS

More information

Leader election. message passing asynchronous. motivation who starts? Leader election, maximum finding, spanning tree.

Leader election. message passing asynchronous. motivation who starts? Leader election, maximum finding, spanning tree. zaks@cs.technion.ac.il eader election message passing asynchronous? 9 (eader election) motivation who starts? eader election, maximum finding, spanning tree (eader election) Unidirectional ring Bidirectional

More information

User Manual. IP BiSerial BA4. Bidirectional Serial Data Interface IP Module

User Manual. IP BiSerial BA4. Bidirectional Serial Data Interface IP Module DYNAMIC ENGINEERING 435 Park Dr., Ben Lomond, Calif. 95005 831-336-8891 Fax 831-336-3840 sales@dyneng.com www.dyneng.com Est. 1988 User Manual IP BiSerial BA4 Bidirectional Serial Data Interface IP Module

More information

Asynchronous Resource Discovery in Peer to Peer Networks 1

Asynchronous Resource Discovery in Peer to Peer Networks 1 Asynchronous Resource Discovery in Peer to Peer Networks 1 Shay Kutten Faculty of Industrial Eng. & Management The Technion Haifa 32000, Israel kutten@ie.technion.ac.il David Peleg Dept. of Computer Science

More information

Algorithms for COOPERATIVE DS: Leader Election in the MPS model

Algorithms for COOPERATIVE DS: Leader Election in the MPS model Algorithms for COOPERATIVE DS: Leader Election in the MPS model 1 Leader Election (LE) problem In a DS, it is often needed to designate a single processor (i.e., a leader) as the coordinator of some forthcoming

More information

Using AgilePLM in MSI

Using AgilePLM in MSI Using AgilePLM in MSI MANAGING DISCUSSION OBJECTS GNL1147.00E MOTOROLA, MOTO, MOTOROLA SOLUTIONS and the Stylized M Logo are trademarks or registered trademarks of Motorola Trademark GNL1147.00E Holdings,

More information

Minimum spanning trees

Minimum spanning trees Minimum spanning trees [We re following the book very closely.] One of the most famous greedy algorithms (actually rather family of greedy algorithms). Given undirected graph G = (V, E), connected Weight

More information

Why Is Random Testing Effective for Partition Tolerance Bugs?

Why Is Random Testing Effective for Partition Tolerance Bugs? Why Is Random Testing Effective for Partition Tolerance Bugs? Rupak Majumdar, Filip Niksic Max Planck Institute for Software Systems (MPI-SWS) Despite Many Formal Approaches Despite Many Formal Approaches

More information