Leader election. message passing asynchronous. motivation who starts? Leader election, maximum finding, spanning tree.

Size: px
Start display at page:

Download "Leader election. message passing asynchronous. motivation who starts? Leader election, maximum finding, spanning tree."

Transcription

1 eader election message passing asynchronous? 9 (eader election) motivation who starts? eader election, maximum finding, spanning tree

2 (eader election) Unidirectional ring Bidirectional rings Complete networks General networks (eader election) Unidirectional ring phases, unique execution (eader election) Bidirectional ring sense of direction

3 (eader election) Bidirectional ring no sense of direction Sense of Direction: For each process p in a bidirectional ring, its left and right neighbors are termed and respectively. If for every, then there is a sense of direction (otherwise no sense of direction) eann s algorithm! " # $ "! # "

4 (eann s algorithm) messages: time: % (eann s algorithm) Theorem: eann s algorithm terminates, and exactly one processor is in! " Chang and oberts algorithm! " # $ "! # "

5 (Chang and oberts algorithm) or: "! # $ " # " (Chang and oberts algorithm) messages: = 0 time: (Chang and oberts algorithm) Theorem: Chang and oberts s algorithm terminates, and exactly one processor is in (worst) "

6 (Chang and oberts algorithm) Theorem: The average message complexity of Chang and oberts s algorithm is assume all rings equally probably (for the proof assume ids are,,, n) (Chang and oberts algorithm) i i k n i P( i, k) = n n k k K P(i,k) probability that id i makes exactly k steps (Chang and oberts algorithm) n i n n n + k p( i, k) = n + = i= k = k = k + n( ) 0.9n log n + O() n

7 (Chang and oberts algorithm) or: Consider all n! rings Each id makes step n! times Identity of P i : makes nd step iff it is largest n! among Pi, Pi+, which happens times Identity of Pi: makes rd step iff it is largest among n! Pi, Pi+,Pi+, which happens times, etc Bidirectional rings messages:? time:? Hirschberg and Sinclair s algorithm Phases,, active k processors start phase k active = n activek activek no. of phases log n messages n log n time =

8 Franklin s algorithm messages:? time:? (Franklin s algorithm) messages:? (Franklin s algorithm) no. of phases log n messages n log n time = &""& #!#"#"'

9 Peterson s st Algorithms P DK This algorithm is a modification of Franklin s algorithm for unidirectional ring. The basic idea is, during a phase, each active process receives the temporary identifier of its nearest active neighbor and that neighbor s nearest active neighbor s temporary identifier, then applies Franklin s strategy. (Peterson s st Algorithms) Each node maintains four variables: { # # $ temporary identity first id received second id received := ; := ; while do begin [start phase] send( ); receive( ); if = then := ; if > then send( ); else send( ); receive( ); if = then := ; if max(, ) then := else := ; end; (now = ) 9

10 (now = ) while do begin receive( ); if = then := ; send( ); end tid ntid nntid tid:=id; [start phase] : send(tid); receive(ntid); % tid ntid nntid if tid > ntid then send(tid); else send(ntid); receive(nntid); %& 0

11 tid ntid nntid if ntid max(tid, nntid) then tid:=ntid else state := relay; % tid ntid nntid [start phase] : send(tid); receive(ntid); ' tid ntid nntid & if tid > ntid then send(tid); else send(ntid); receive(nntid); '

12 tid ntid nntid if ntid max(tid, nntid) then tid:=ntid else state := relay; ' tid ntid nntid ( [start phase] : send(tid); receive(ntid); ' &(" &) * +' ""#',""#('

13 ) processor holding * ) %##' + &+, - # &!&,.!# ( /% 0 ( %"!! ) ) # ) #) /% #'#) +% * % # * Theorem: -.( " /0 " " " %& & ( &"&# ## #

14 Peterson s nd Algorithm improvement of Peterson s st algorithm Instead of comparing its id with both neighbors in the same time, a process first compares itself with its left neighbor, then its right neighbor. (Peterson s nd Algorithms) Each node maintains four variables: { # # $ temporary identity id received := ; := ; while do begin [compare to left, odd phase] send( ); receive( ); if = then := ; if < then := ; end; begin [compare to right, even phase] send( ); receive( ); if = then := ; if > then := else := ; end; (now = )

15 (now = ) while do begin receive( ); if = then := ; send( ); end tid ntid &! % tid ntid &! $ ; ' %&

16 tid ntid &! "-. " / %& ( &"&" " " *(* ( +% ( ( (

17 & /% -# ""#""!#" " " " ( "!" #"( p #"( #" p #" p -!! " #"( #" q p? #" q p $/

18 9#"#"(# " q #"( #" p " "!* & /% ( ( + : ( k + + O() ( : + p+ + O() #" ( & (

19 eferences E. Chang and. oberts, An improved algorithm for decentralized extrema-finding in circular configurations of processes, Communications of the ACM},,, 99, pp. -. eferences D. Dolev, M. Klawe and M. odeh, An O(n log n) unidirectional distributed algorithm for extrema finding in a circle, Journal of Algorithms,, 9, pp. -0. eferences W.. Franklin, On an improved algorithm for decentralized extrema finding in circular configurations of processors, Communication of the ACM,, 9, pp. -. 9

20 eferences D. S. Hirschberg and J. B. Sinclair, Decentralized extrema-finding in circular configuration of processors, Communications of the ACM,, 90, pp. -. eferences G. eann, Distributed systems - towards a formal approach, Information Processing etters, 9, pp. -0. eferences G.. Peterson An O(nlogn) unidirectional algorithm for the circular extrema problem. ACM Trans. Program. ang. Syst., (Oct. 9), -. 0

21 eferences N. Santoro, Sense of direction, topological awareness and communication complexity, SIGACT News,,, Summer 9, pp. 0-.

Algorithms for COOPERATIVE DS: Leader Election in the MPS model

Algorithms for COOPERATIVE DS: Leader Election in the MPS model Algorithms for COOPERATIVE DS: Leader Election in the MPS model 1 Leader Election (LE) problem In a DS, it is often needed to designate a single processor (i.e., a leader) as the coordinator of some forthcoming

More information

Distributed Systems Leader election & Failure detection

Distributed Systems Leader election & Failure detection Distributed Systems Leader election & Failure detection He Sun School of Informatics University of Edinburgh Leader of a computation Many distributed computations need a coordinator of server processors

More information

Simplifying Itai-Rodeh Leader Election for Anonymous Rings

Simplifying Itai-Rodeh Leader Election for Anonymous Rings AVoCS 04 Preliminary Version Simplifying Itai-Rodeh Leader Election for Anonymous Rings Wan Fokkink 1 Department of Software Engineering, CWI, Amsterdam, The Netherlands Department of Computer Science,

More information

A Hierarchical Leader Election Protocol for Mobile Ad Hoc Networks

A Hierarchical Leader Election Protocol for Mobile Ad Hoc Networks A Hierarchical Leader Election Protocol for Mobile Ad Hoc Networks Orhan Dagdeviren 1 and Kayhan Erciyes 2 1 Izmir Institute of Technology Computer Eng. Dept. Urla, Izmir TR-35340, Turkey orhandagdeviren@iyte.edu.tr

More information

Cost distribution of the Chang Roberts leader election algorithm and related problems

Cost distribution of the Chang Roberts leader election algorithm and related problems Theoretical Computer Science 369 (2006) 442 447 www.elsevier.com/locate/tcs Note Cost distribution of the Chang Roberts leader election algorithm and related problems Wei-Mei Chen,1 Department of Electronic

More information

Sorting Multisets in Anonymous Rings Λ

Sorting Multisets in Anonymous Rings Λ Sorting Multisets in Anonymous Rings Λ P. Flocchini University of Ottawa, Canada flocchin@site.uottawa.ca Flaminia L. Luccio Università degli Studi di Trieste, Italy luccio@mathsun.univ.trieste.it E. Kranakis

More information

A Modular Technique for the Design of Efficient Distributed Leader Finding Algorithms

A Modular Technique for the Design of Efficient Distributed Leader Finding Algorithms A Modular Technique for the Design of Efficient Distributed Leader Finding Algorithms E. KORACH, S. KUTTEN, and S. MORAN Technion, Israel Institute of Technology A general, modular technique for designing

More information

ADVANCE COURSE IN DISTRIBUTED COMPUTING Spring 2012 (Academic year 2011/2012). Prof. Y. Afek (afek at tau.ac...).

ADVANCE COURSE IN DISTRIBUTED COMPUTING Spring 2012 (Academic year 2011/2012). Prof. Y. Afek (afek at tau.ac...). ADVANCE COURSE IN DISTRIBUTED COMPUTING Spring 2012 (Academic year 2011/2012). Prof. Y. Afek (afek at tau.ac...). Course Home Page www.cs.tau.ac.il/ afek/dc12.html A graduate course exploring current topics

More information

Leader Election in Rings

Leader Election in Rings Leader Election Arvind Krishnamurthy Fall 2003 Leader Election in Rings Under different models: Synchronous vs. asynchronous Anonymous vs. non-anonymous (knowledge of unique id) Knowledge of n (non-uniform)

More information

Verification of Peterson s Algorithm for Leader Election in a Unidirectional Asynchronous Ring Using NuSMV

Verification of Peterson s Algorithm for Leader Election in a Unidirectional Asynchronous Ring Using NuSMV Verification of Peterson s Algorithm for Leader Election in a Unidirectional Asynchronous Ring Using NuSMV Amin Ansari Electrical Engineering and Computer Science Department University of Michigan, Ann

More information

Leader Election in Anonymous Rings: Franklin Goes Probabilistic

Leader Election in Anonymous Rings: Franklin Goes Probabilistic Leader Election in Anonymous Rings: Franklin Goes Probabilistic Rena Bakhshi 1, Wan Fokkink 1,2, Jun Pang 3, and Jaco van de Pol 4 1 Vrije Universiteit Amsterdam, Department of Computer Science rbakhshi@few.vu.nl,wanf@cs.vu.nl

More information

6.852: Distributed Algorithms Fall, Instructor: Nancy Lynch TAs: Cameron Musco, Katerina Sotiraki Course Secretary: Joanne Hanley

6.852: Distributed Algorithms Fall, Instructor: Nancy Lynch TAs: Cameron Musco, Katerina Sotiraki Course Secretary: Joanne Hanley 6.852: Distributed Algorithms Fall, 2015 Instructor: Nancy Lynch TAs: Cameron Musco, Katerina Sotiraki Course Secretary: Joanne Hanley What are Distributed Algorithms? Algorithms that run on networked

More information

Distributed Leader Election Algorithms in Synchronous Networks

Distributed Leader Election Algorithms in Synchronous Networks Distributed Leader Election Algorithms in Synchronous Networks Mitsou Valia National Technical University of Athens School of Applied Mathematics and Physics 1/66 Distributed Computing Distributed computing

More information

Leader Election in Anonymous Rings: Franklin Goes Probabilistic

Leader Election in Anonymous Rings: Franklin Goes Probabilistic Leader Election in Anonymous Rings: Franklin Goes Probabilistic Rena Bakhshi 1, Wan Fokkink 1,2, Jun Pang 3,andJacovandePol 4 1 Vrije Universiteit Amsterdam, Department of Computer Science rbakhshi@few.vu.nl,wanf@cs.vu.nl

More information

Eulerian Paths and Cycles

Eulerian Paths and Cycles Eulerian Paths and Cycles What is a Eulerian Path Given an graph. Find a path which uses every edge exactly once. This path is called an Eulerian Path. If the path begins and ends at the same vertex, it

More information

Distributed Algorithms. The Leader Election Problem. 1.2 The Network Model. Applications. 1 The Problem and the Model. Lesson two Leader Election

Distributed Algorithms. The Leader Election Problem. 1.2 The Network Model. Applications. 1 The Problem and the Model. Lesson two Leader Election The Problem and the Model Distributed Algorithms Lesson two Leader Election. The problem What is a leader A leader is a member that all other nodes acknowledge as being distinguished to perform some special

More information

Initial Assumptions. Modern Distributed Computing. Network Topology. Initial Input

Initial Assumptions. Modern Distributed Computing. Network Topology. Initial Input Initial Assumptions Modern Distributed Computing Theory and Applications Ioannis Chatzigiannakis Sapienza University of Rome Lecture 4 Tuesday, March 6, 03 Exercises correspond to problems studied during

More information

THE FIRST APPROXIMATED DISTRIBUTED ALGORITHM FOR THE MINIMUM DEGREE SPANNING TREE PROBLEM ON GENERAL GRAPHS. and

THE FIRST APPROXIMATED DISTRIBUTED ALGORITHM FOR THE MINIMUM DEGREE SPANNING TREE PROBLEM ON GENERAL GRAPHS. and International Journal of Foundations of Computer Science c World Scientific Publishing Company THE FIRST APPROXIMATED DISTRIBUTED ALGORITHM FOR THE MINIMUM DEGREE SPANNING TREE PROBLEM ON GENERAL GRAPHS

More information

Distributed Objects with Sense of Direction

Distributed Objects with Sense of Direction Distributed Objects with Sense of Direction G. V. BOCHMANN University of Ottawa P. FLOCCHINI Université de Montréal D. RAMAZANI Université de Montréal Introduction An object system consists of a collection

More information

An Optimal Algorithm for the Euclidean Bottleneck Full Steiner Tree Problem

An Optimal Algorithm for the Euclidean Bottleneck Full Steiner Tree Problem An Optimal Algorithm for the Euclidean Bottleneck Full Steiner Tree Problem Ahmad Biniaz Anil Maheshwari Michiel Smid September 30, 2013 Abstract Let P and S be two disjoint sets of n and m points in the

More information

Lecture 2: Leader election algorithms.

Lecture 2: Leader election algorithms. Distributed Algorithms M.Tech., CSE, 0 Lecture : Leader election algorithms. Faculty: K.R. Chowdhary : Professor of CS Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

Announcements. Late homework policy

Announcements. Late homework policy Announcements Late homework policy n Updated on course website n Up to 1 HW can be late for up to 5 days without penalty n After that, late HW accepted and graded with discount of 10%/day for up to 5 days

More information

Fault-tolerant Power-aware Topology Control for Ad-hoc Wireless Networks

Fault-tolerant Power-aware Topology Control for Ad-hoc Wireless Networks Fault-tolerant Power-aware Topology Control for Ad-hoc Wireless Networks Harichandan Roy, Shuvo Kumar De, Md.Maniruzzaman, and Ashikur Rahman Department of Computer Science and Engineering Bangladesh University

More information

21. Distributed Algorithms

21. Distributed Algorithms 21. Distributed Algorithms We dene a distributed system as a collection of individual computing devices that can communicate with each other [2]. This denition is very broad, it includes anything, from

More information

Optimum Alphabetic Binary Trees T. C. Hu and J. D. Morgenthaler Department of Computer Science and Engineering, School of Engineering, University of C

Optimum Alphabetic Binary Trees T. C. Hu and J. D. Morgenthaler Department of Computer Science and Engineering, School of Engineering, University of C Optimum Alphabetic Binary Trees T. C. Hu and J. D. Morgenthaler Department of Computer Science and Engineering, School of Engineering, University of California, San Diego CA 92093{0114, USA Abstract. We

More information

Algorithmic Aspects of Communication Networks

Algorithmic Aspects of Communication Networks Algorithmic Aspects of Communication Networks Chapter 5 Network Resilience Algorithmic Aspects of ComNets (WS 16/17): 05 Network Resilience 1 Introduction and Motivation Network resilience denotes the

More information

Chapter 14 Section 3 - Slide 1

Chapter 14 Section 3 - Slide 1 AND Chapter 14 Section 3 - Slide 1 Chapter 14 Graph Theory Chapter 14 Section 3 - Slide WHAT YOU WILL LEARN Graphs, paths and circuits The Königsberg bridge problem Euler paths and Euler circuits Hamilton

More information

Leader Election in Hyper-Butterfly Graphs

Leader Election in Hyper-Butterfly Graphs Leader Election in Hyper-Butterfly Graphs Wei Shi 1 and Pradip K Srimani 1 Department of Computer Science Clemson University Clemson, SC 29634 USA Abstract. Leader election in a network is one of the most

More information

Assignment # 4 Selected Solutions

Assignment # 4 Selected Solutions Assignment # 4 Selected Solutions Problem 2.3.3 Let G be a connected graph which is not a tree (did you notice this is redundant?) and let C be a cycle in G. Prove that the complement of any spanning tree

More information

A Synchronous Self-Stabilizing Minimal Domination Protocol in an Arbitrary Network Graph

A Synchronous Self-Stabilizing Minimal Domination Protocol in an Arbitrary Network Graph A Synchronous Self-Stabilizing Minimal Domination Protocol in an Arbitrary Network Graph Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani Department of Computer Science Clemson University Clemson,

More information

Perfect matchings in O(nlogn) time in regular bipartite graph

Perfect matchings in O(nlogn) time in regular bipartite graph Perfect matchings in O(nlogn) time in regular bipartite graphs Research project for computational optimization Presented by:qing Li April 26, 2011 Outline i.. ii.. iii.. iv.. What is d regular bipartite

More information

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia)

Crossing bridges. Crossing bridges Great Ideas in Theoretical Computer Science. Lecture 12: Graphs I: The Basics. Königsberg (Prussia) 15-251 Great Ideas in Theoretical Computer Science Lecture 12: Graphs I: The Basics February 22nd, 2018 Crossing bridges Königsberg (Prussia) Now Kaliningrad (Russia) Is there a way to walk through the

More information

An Efficient Decoding Technique for Huffman Codes Abstract 1. Introduction

An Efficient Decoding Technique for Huffman Codes Abstract 1. Introduction An Efficient Decoding Technique for Huffman Codes Rezaul Alam Chowdhury and M. Kaykobad Department of Computer Science and Engineering Bangladesh University of Engineering and Technology Dhaka-1000, Bangladesh,

More information

1 Random Walks on Graphs

1 Random Walks on Graphs Lecture 7 Com S 633: Randomness in Computation Scribe: Ankit Agrawal In the last lecture, we looked at random walks on line and used them to devise randomized algorithms for 2-SAT and 3-SAT For 2-SAT we

More information

Counting the number of spanning tree. Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University

Counting the number of spanning tree. Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University Counting the number of spanning tree Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University 目录 Contents 1 Complete Graph 2 Proof of the Lemma 3 Arbitrary Graph 4 Proof

More information

1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible.

1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible. 1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible. A graph is Eulerian if it has an Eulerian circuit, which occurs if the graph is connected and

More information

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25 Curve and Surface Reconstruction Kurt Mehlhorn MPI für Informatik Curve and Surface Reconstruction p.1/25 Curve Reconstruction: An Example probably, you see more than a set of points Curve and Surface

More information

Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks

Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks Peng-Jun Wan Khaled M. Alzoubi Ophir Frieder Abstract Connected dominating set (CDS) has been proposed as virtual backbone

More information

Byzantine Consensus in Directed Graphs

Byzantine Consensus in Directed Graphs Byzantine Consensus in Directed Graphs Lewis Tseng 1,3, and Nitin Vaidya 2,3 1 Department of Computer Science, 2 Department of Electrical and Computer Engineering, and 3 Coordinated Science Laboratory

More information

1 extrema notebook. November 25, 2012

1 extrema notebook. November 25, 2012 Do now as a warm up: Suppose this graph is a function f, defined on [a,b]. What would you say about the value of f at each of these x values: a, x 1, x 2, x 3, x 4, x 5, x 6, and b? What would you say

More information

A Distributed Backbone Formation Algorithm for Mobile Ad Hoc Networks

A Distributed Backbone Formation Algorithm for Mobile Ad Hoc Networks A Distributed Backbone Formation Algorithm for Mobile Ad Hoc Networks Orhan Dagdeviren and Kayhan Erciyes Izmir Institute of Technology Computer Eng. Dept., Urla, Izmir 35340, Turkey {orhandagdeviren,

More information

Algorithm 23 works. Instead of a spanning tree, one can use routing.

Algorithm 23 works. Instead of a spanning tree, one can use routing. Chapter 5 Shared Objects 5.1 Introduction Assume that there is a common resource (e.g. a common variable or data structure), which different nodes in a network need to access from time to time. If the

More information

Embedded Subgraph Isomorphism and Related Problems

Embedded Subgraph Isomorphism and Related Problems Embedded Subgraph Isomorphism and Related Problems Graph isomorphism, subgraph isomorphism, and maximum common subgraph can be solved in polynomial time when constrained by geometrical information, in

More information

II (Sorting and) Order Statistics

II (Sorting and) Order Statistics II (Sorting and) Order Statistics Heapsort Quicksort Sorting in Linear Time Medians and Order Statistics 8 Sorting in Linear Time The sorting algorithms introduced thus far are comparison sorts Any comparison

More information

Interleaving Schemes on Circulant Graphs with Two Offsets

Interleaving Schemes on Circulant Graphs with Two Offsets Interleaving Schemes on Circulant raphs with Two Offsets Aleksandrs Slivkins Department of Computer Science Cornell University Ithaca, NY 14853 slivkins@cs.cornell.edu Jehoshua Bruck Department of Electrical

More information

Static Interconnection Networks Prof. Kasim M. Al-Aubidy Computer Eng. Dept.

Static Interconnection Networks Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Advanced Computer Architecture (0630561) Lecture 17 Static Interconnection Networks Prof. Kasim M. Al-Aubidy Computer Eng. Dept. INs Taxonomy: An IN could be either static or dynamic. Connections in a

More information

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points

Voronoi Diagrams. A Voronoi diagram records everything one would ever want to know about proximity to a set of points Voronoi Diagrams Voronoi Diagrams A Voronoi diagram records everything one would ever want to know about proximity to a set of points Who is closest to whom? Who is furthest? We will start with a series

More information

(IVl -1) messages. In [3], both the time and com-

(IVl -1) messages. In [3], both the time and com- AN OPTIMAL DISTRIBUTED DEPTH-FIRST-SEARCH ALGORITHM Mohan B. Sharma 38, Sitharama S. Iyengar 38 $ Department of Computer Science Louisiana 6tate University Baton Rouge, LA 70803. Narasimha K. Mandyam t

More information

Solution to Graded Problem Set 4

Solution to Graded Problem Set 4 Graph Theory Applications EPFL, Spring 2014 Solution to Graded Problem Set 4 Date: 13.03.2014 Due by 18:00 20.03.2014 Problem 1. Let V be the set of vertices, x be the number of leaves in the tree and

More information

Prefix Computation and Sorting in Dual-Cube

Prefix Computation and Sorting in Dual-Cube Prefix Computation and Sorting in Dual-Cube Yamin Li and Shietung Peng Department of Computer Science Hosei University Tokyo - Japan {yamin, speng}@k.hosei.ac.jp Wanming Chu Department of Computer Hardware

More information

Distributed Computing over Communication Networks: Leader Election

Distributed Computing over Communication Networks: Leader Election Distributed Computing over Communication Networks: Leader Election Motivation Reasons for electing a leader? Reasons for not electing a leader? Motivation Reasons for electing a leader? Once elected, coordination

More information

An algorithm for Performance Analysis of Single-Source Acyclic graphs

An algorithm for Performance Analysis of Single-Source Acyclic graphs An algorithm for Performance Analysis of Single-Source Acyclic graphs Gabriele Mencagli September 26, 2011 In this document we face with the problem of exploiting the performance analysis of acyclic graphs

More information

Network Definition A network can be defined as two or more computers connected together in such a way that they can share resources.

Network Definition A network can be defined as two or more computers connected together in such a way that they can share resources. Networks, telecommunications and the Internet Network Definition A network can be defined as two or more computers connected together in such a way that they can share resources. The purpose of a network

More information

Graph Algorithms. Many problems in networks can be modeled as graph problems.

Graph Algorithms. Many problems in networks can be modeled as graph problems. Graph Algorithms Graph Algorithms Many problems in networks can be modeled as graph problems. - The topology of a distributed system is a graph. - Routing table computation uses the shortest path algorithm

More information

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff Institute of Operating Systems and Computer Networks Algorithms Group Network Algorithms Tutorial 4: Matching and other stuff Christian Rieck Matching 2 Matching A matching M in a graph is a set of pairwise

More information

A distributed algorithm for minimum weight spanning trees

A distributed algorithm for minimum weight spanning trees A distributed algorithm for minimum weight spanning trees R. G. Gallager, P. A. Humblet and P. M. Spira Prepared by: Guy Flysher and Amir Rubinshtein Preface In this document we will review Gallager,

More information

Efficient Universal Recovery in Broadcast Networks

Efficient Universal Recovery in Broadcast Networks Efficient Universal Recovery in Broadcast Networks Thomas Courtade and Rick Wesel UCLA September 30, 2010 Courtade and Wesel (UCLA) Efficient Universal Recovery Allerton 2010 1 / 19 System Model and Problem

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/11cs8 Homework problem sessions are in CSB 601, 6:1-7:1pm on Oct. (Wednesday), Oct. 1 (Wednesday), and on Oct. 19 (Wednesday);

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/10cs8 1 Schedule Homework is due Thursday, Oct 1. The QUIZ will be on Tuesday, Oct. 6. List of algorithms covered in the

More information

Coordination and Agreement

Coordination and Agreement Coordination and Agreement Nicola Dragoni Embedded Systems Engineering DTU Informatics 1. Introduction 2. Distributed Mutual Exclusion 3. Elections 4. Multicast Communication 5. Consensus and related problems

More information

Implementation of an Algorithmic To Improve MCDS Based Routing In Mobile Ad-Hoc Network By Using Articulation Point

Implementation of an Algorithmic To Improve MCDS Based Routing In Mobile Ad-Hoc Network By Using Articulation Point International Journal of Computational Engineering Research Vol, 03 Issue5 Implementation of an Algorithmic To Improve MCDS Based Routing In Mobile Ad-Hoc Network By Using Articulation Point Shalu Singh

More information

Graph Theory Day Four

Graph Theory Day Four Graph Theory Day Four February 8, 018 1 Connected Recall from last class, we discussed methods for proving a graph was connected. Our two methods were 1) Based on the definition, given any u, v V(G), there

More information

Approximation Algorithms for Geometric Intersection Graphs

Approximation Algorithms for Geometric Intersection Graphs Approximation Algorithms for Geometric Intersection Graphs Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Outline

More information

Last Class: Clock Synchronization. Today: More Canonical Problems

Last Class: Clock Synchronization. Today: More Canonical Problems Last Class: Clock Synchronization Logical clocks Vector clocks Global state Lecture 11, page 1 Today: More Canonical Problems Distributed snapshot and termination detection Election algorithms Bully algorithm

More information

CSc Leader Election

CSc Leader Election CSc72010 Leader Election Reading Skim 3.5 Read 3.6, General synchronous networks Read 4.1 Leader election algorithms Lelann/Chang/Roberts: O(n) time complexity O(n 2 ) message complexity Hirschberg/Sinclair

More information

SEVENTH EDITION and EXPANDED SEVENTH EDITION

SEVENTH EDITION and EXPANDED SEVENTH EDITION SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide 14-1 Chapter 14 Graph Theory 14.1 Graphs, Paths and Circuits Definitions A graph is a finite set of points called vertices (singular form is vertex) connected

More information

A Fault-Tolerant P2P-based Protocol for Logical Networks Interconnection

A Fault-Tolerant P2P-based Protocol for Logical Networks Interconnection A Fault-Tolerant P2P-based Protocol for Logical Networks Interconnection Jaime Lloret 1, Juan R. Diaz 2, Fernando Boronat 3 and Jose M. Jiménez 4 Department of Communications, Polytechnic University of

More information

pp Variants of Turing Machines (Sec. 3.2)

pp Variants of Turing Machines (Sec. 3.2) pp. 176-176-182. Variants of Turing Machines (Sec. 3.2) Remember: a language is Turing recognizable if some TM accepts it. Adding features may simplify programmability but DO NOT affect what a TM can compute.

More information

Distributed Protocols for Leader Election: a Game-Theoretic Perspective

Distributed Protocols for Leader Election: a Game-Theoretic Perspective Distributed Protocols for Leader Election: a Game-Theoretic Perspective Ittai Abraham Microsoft Research ittaia@microsoft.com Danny Dolev School of Computer Science and Engineering The Hebrew University

More information

U Commands. udld (configuration mode), page 2 udld (Ethernet), page 4. Cisco Nexus 5600 Series Switches Layer2 Command Reference 1

U Commands. udld (configuration mode), page 2 udld (Ethernet), page 4. Cisco Nexus 5600 Series Switches Layer2 Command Reference 1 udld (configuration mode), page 2 udld (Ethernet), page 4 1 udld (configuration mode) udld (configuration mode) To configure the Unidirectional Link Detection (UDLD) protocol on the switch, use the udld

More information

MANY experimental, and commercial multicomputers

MANY experimental, and commercial multicomputers 402 IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 3, SEPTEMBER 2005 Optimal, and Reliable Communication in Hypercubes Using Extended Safety Vectors Jie Wu, Feng Gao, Zhongcheng Li, and Yinghua Min, Fellow,

More information

Combinational Logic & Circuits

Combinational Logic & Circuits Week-I Combinational Logic & Circuits Spring' 232 - Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Designing Efficient Distributed Algorithms Using Sampling Techniques S. Rajasekaran and D.S.L. Wei University of Florida and University of Aizu Abstract In this paper we show the power of sampling techniques

More information

GATEWAY MULTIPOINT RELAYS AN MPR-BASED BROADCAST ALGORITHM FOR AD HOC NETWORKS. Ou Liang, Y. Ahmet Şekercioğlu, Nallasamy Mani

GATEWAY MULTIPOINT RELAYS AN MPR-BASED BROADCAST ALGORITHM FOR AD HOC NETWORKS. Ou Liang, Y. Ahmet Şekercioğlu, Nallasamy Mani GATEWAY MULTIPOINT RELAYS AN MPR-BASED BROADCAST ALGORITHM FOR AD HOC NETWORKS Ou Liang, Y. Ahmet Şekercioğlu, Nallasamy Mani Centre for Telecommunication and Information Engineering Monash University,

More information

A DISTRIBUTED SYNCHRONOUS ALGORITHM FOR MINIMUM-WEIGHT SPANNING TREES

A DISTRIBUTED SYNCHRONOUS ALGORITHM FOR MINIMUM-WEIGHT SPANNING TREES ISSN: 2778-5795 A DISTRIBUTED SYNCHRONOUS ALGORITHM FOR MINIMUM-WEIGHT SPANNING TREES Md. Mohsin Ali 1, Mst. Shakila Khan Rumi 2 1 Department of Computer Science, The University of Western Ontario, Canada

More information

An efficient implementation of the greedy forwarding strategy

An efficient implementation of the greedy forwarding strategy An efficient implementation of the greedy forwarding strategy Hannes Stratil Embedded Computing Systems Group E182/2 Technische Universität Wien Treitlstraße 3 A-1040 Vienna Email: hannes@ecs.tuwien.ac.at

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

Paths, Circuits, and Connected Graphs

Paths, Circuits, and Connected Graphs Paths, Circuits, and Connected Graphs Paths and Circuits Definition: Let G = (V, E) be an undirected graph, vertices u, v V A path of length n from u to v is a sequence of edges e i = {u i 1, u i} E for

More information

arxiv: v2 [cs.ds] 25 Jan 2017

arxiv: v2 [cs.ds] 25 Jan 2017 d-hop Dominating Set for Directed Graph with in-degree Bounded by One arxiv:1404.6890v2 [cs.ds] 25 Jan 2017 Joydeep Banerjee, Arun Das, and Arunabha Sen School of Computing, Informatics and Decision System

More information

CS583 Lecture 01. Jana Kosecka. some materials here are based on Profs. E. Demaine, D. Luebke A.Shehu, J-M. Lien and Prof. Wang s past lecture notes

CS583 Lecture 01. Jana Kosecka. some materials here are based on Profs. E. Demaine, D. Luebke A.Shehu, J-M. Lien and Prof. Wang s past lecture notes CS583 Lecture 01 Jana Kosecka some materials here are based on Profs. E. Demaine, D. Luebke A.Shehu, J-M. Lien and Prof. Wang s past lecture notes Course Info course webpage: - from the syllabus on http://cs.gmu.edu/

More information

Chapter 8 DOMINATING SETS

Chapter 8 DOMINATING SETS Chapter 8 DOMINATING SETS Distributed Computing Group Mobile Computing Summer 2004 Overview Motivation Dominating Set Connected Dominating Set The Greedy Algorithm The Tree Growing Algorithm The Marking

More information

Michel Raynal. Distributed Algorithms for Message-Passing Systems

Michel Raynal. Distributed Algorithms for Message-Passing Systems Michel Raynal Distributed Algorithms for Message-Passing Systems Contents Part I Distributed Graph Algorithms 1 Basic Definitions and Network Traversal Algorithms... 3 1.1 DistributedAlgorithms... 3 1.1.1

More information

Chapter 8 DOMINATING SETS

Chapter 8 DOMINATING SETS Distributed Computing Group Chapter 8 DOMINATING SETS Mobile Computing Summer 2004 Overview Motivation Dominating Set Connected Dominating Set The Greedy Algorithm The Tree Growing Algorithm The Marking

More information

[Ba] Bykat, A., Convex hull of a finite set of points in two dimensions, Info. Proc. Lett. 7 (1978),

[Ba] Bykat, A., Convex hull of a finite set of points in two dimensions, Info. Proc. Lett. 7 (1978), [Ba] Bykat, A., Convex hull of a finite set of points in two dimensions, Info. Proc. Lett. 7 (1978), 296-298. [Ch] [CI] [EET] [ET] [FM] [GJPT] [Gr] [HM] [KKT] Chazelle, B., A theorem on polygon cutting

More information

Available online at ScienceDirect. Procedia Computer Science 89 (2016 )

Available online at  ScienceDirect. Procedia Computer Science 89 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 89 (2016 ) 162 169 Twelfth International Multi-Conference on Information Processing-2016 (IMCIP-2016) A Distributed Minimum

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Graphs : Shortest Paths Marius Kloft Content of this Lecture Single-Source-Shortest-Paths: Dijkstra s Algorithm Single-Source-Single-Target All-Pairs Shortest Paths Transitive

More information

On the Complexity of Multi-Dimensional Interval Routing Schemes

On the Complexity of Multi-Dimensional Interval Routing Schemes On the Complexity of Multi-Dimensional Interval Routing Schemes Abstract Multi-dimensional interval routing schemes (MIRS) introduced in [4] are an extension of interval routing schemes (IRS). We give

More information

Mutual Exclusion in DS

Mutual Exclusion in DS Mutual Exclusion in DS Event Ordering Mutual Exclusion Election Algorithms Reaching Agreement Event Ordering Happened-before relation (denoted by ). If A and B are events in the same process, and A was

More information

f x How can we determine algebraically where f is concave up and where f is concave down?

f x How can we determine algebraically where f is concave up and where f is concave down? Concavity - 3.5 1. Concave up and concave down Definition For a function f that is differentiable on an interval I, the graph of f is a. If f is concave up on a, b, then the secant line passing through

More information

Movement Problems. CMSC 858F Network Design. December 2015

Movement Problems. CMSC 858F Network Design. December 2015 Movement Problems CMSC 858F Network Design Alejandro Flores Saurabh Kumar December 2015 1 Introduction Movement Problems were introduced by [DHM + 09], as a general framework that deals with the movement

More information

Throughout this course, we use the terms vertex and node interchangeably.

Throughout this course, we use the terms vertex and node interchangeably. Chapter Vertex Coloring. Introduction Vertex coloring is an infamous graph theory problem. It is also a useful toy example to see the style of this course already in the first lecture. Vertex coloring

More information

Graph Algorithms. Many problems in networks can be modeled as graph problems.

Graph Algorithms. Many problems in networks can be modeled as graph problems. Graph Algorithms Many problems in networks can be modeled as graph problems. - The topology of a distributed system is a graph. - Routing table computation uses the shortest path algorithm - Efficient

More information

Math 15 - Spring Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so:

Math 15 - Spring Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so: Math 15 - Spring 2017 - Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so: dm = {0: [1,15], 1: [2,16,31], 2: [3,17,32], 3: [4,18,33], 4: [5,19,34],

More information

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS Department of Computer Science University of Babylon LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS By Faculty of Science for Women( SCIW), University of Babylon, Iraq Samaher@uobabylon.edu.iq

More information

Message Complexity Versus Space Complexity in Fault Tolerant Broadcast Protocols

Message Complexity Versus Space Complexity in Fault Tolerant Broadcast Protocols Message Complexity Versus Space Complexity in Fault Tolerant Broadcast Protocols Shlomo Moran Department of Computer Science, the Technion, Haifa 32000, Israel Let N be a network of asynchronous processors,

More information

Problem. Indexing with B-trees. Indexing. Primary Key Indexing. B-trees: Example. B-trees. primary key indexing

Problem. Indexing with B-trees. Indexing. Primary Key Indexing. B-trees: Example. B-trees. primary key indexing 15-82 Advanced Topics in Database Systems Performance Problem Given a large collection of records, Indexing with B-trees find similar/interesting things, i.e., allow fast, approximate queries 2 Indexing

More information

Voronoi diagram and Delaunay triangulation

Voronoi diagram and Delaunay triangulation Voronoi diagram and Delaunay triangulation Ioannis Emiris & Vissarion Fisikopoulos Dept. of Informatics & Telecommunications, University of Athens Computational Geometry, spring 2015 Outline 1 Voronoi

More information

[13] D. Karger, \Using randomized sparsication to approximate minimum cuts" Proc. 5th Annual

[13] D. Karger, \Using randomized sparsication to approximate minimum cuts Proc. 5th Annual [12] F. Harary, \Graph Theory", Addison-Wesley, Reading, MA, 1969. [13] D. Karger, \Using randomized sparsication to approximate minimum cuts" Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms,

More information

The alternator. Mohamed G. Gouda F. Furman Haddix

The alternator. Mohamed G. Gouda F. Furman Haddix Distrib. Comput. (2007) 20:21 28 DOI 10.1007/s00446-007-0033-1 The alternator Mohamed G. Gouda F. Furman Haddix Received: 28 August 1999 / Accepted: 5 July 2000 / Published online: 12 June 2007 Springer-Verlag

More information