AppART + Growing Neural Gas = high performance hybrid neural network for function approximation

Size: px
Start display at page:

Download "AppART + Growing Neural Gas = high performance hybrid neural network for function approximation"

Transcription

1 1 AppART + Growing Neural Gas = high performance hybrid neural network for function approximation Luis Martí Ý Þ, Alberto Policriti Ý, Luciano García Þ and Raynel Lazo Þ Ý DIMI, Università degli Studi di Udine, Italy. Þ Fac. de Mat. y Comp., Universidad de La Habana, Cuba. Abstract. We combine two notable streams of neural networks research: Adaptive Resonance Theory (ART) and Growing Neural Gas (GNG) networks. In particular we modify the AppART neural network formulation by introducing GNG based training features. The resulting neural network outperforms its original version as well as other neural models while maintaining the functional approximation properties and hybrid system conception. 1 Introduction In this work we propose a neural model that combines two streams of connectionist research that has been recognized as notable achievements of modern artificial neural network theory: Adaptive Resonance Theory and Growing Neural Gas networks. Adaptive Resonance Theory (ART) [1] is a theory of human cognition. ART networks have some features, such as match-based stable learning and intrinsic self-organization, that are appealing for constructing a hybrid (symbolic+connectionist) neural system. The search process involved in the production of a network output in ART networks is also of interest as it is a sort of hypothesis testing mechanism. Some of these features can also sensibly improve the high parameterization problem associated to Multi-Layer Perceptron (MLP) and Radial Basis Functions (RBF) networks [2]. Growing Neural Gas (GNG) [3] networks are intrinsic (growing) self-organizing RBF neural networks based on the Neural Gas [4] model. This models use cumulative errors associated to the input classes to determine where new classes should be inserted. AppART [5] is an ART low parameterized neural model that incrementally approximates continuous-valued multidimensional functions from noisy data using biologically plausible processes. AppART performs a higher-order Nadaraya-Watson [6] regression and can be interpreted as an extension of the fuzzy logic s Standard Additive Model [7]. AppART allows the on-line insertion and extraction of fuzzy if-then rules. It also provides way of justifying network responses. AppART have been proved to have the universal and best approximation properties shared by RBF networks [2]. In this work we modify the original AppART formulation by introducing some GNG based training characteristics. The resulting neural network, which we named GasART, builds classes of similar inputs that have similar outputs. Each class has a desired output value assigned. The output of the network to a given input is the weighted mean of the degree of membership of the input to the classes stored and the desired output values assigned to each class. A match tracking mechanism induces the creation of more specific classes when the prediction of the network differs from the expected output at some degree. GasART keeps the general input propagation dynamics of AppART, while modifies the way new classes are The authors wish to thank the Dipartimento di Matematica e Informatica of the Università degli Studi di Udine for its support on the elaboration of this work. Corr. author: L. M., DIMI, Univ. Udine. v. delle Scienze 208, Udine (UD) Italy; marti@dimi.uniud.it

2 2 L. Martí, A. Policriti, L. García and R. Lazo / AppART+GNG=high performance neural network inserted and the laws that control the way these classes are modified to fit the complexity of the training data. GasART will be described in the next section. After that, we show the results yielded when solving a well-known functional approximation benchmark problem: the approximation of the Mackey-Glass equation. 2 GasART dynamics and training GasART has a layer of afferent or input nodes, F1, a classification layer, F2, a prediction layer, P, and an output layer O. The F2 layer stores classes of inputs. Its activation is a combined measure of the similarity of the input and the prototype of each class, and the size of the given class. Each class is represented by a Gaussian receptive field. The network output is obtained by propagating the output of the F2 layer through the P and O layers. 2.1 Equations When an input Ü ¾ Ê Ò is presented to the input layer it is propagated to the F2 layer. F2 has Æ nodes, with Æ of them committed. Each committed node models a local density of the input space using Gaussian receptive fields with mean and standard deviation and has an associated cumulative error,. A node is activated if it satisfies the match criterion. That means that the match function, ÜÔ ÈÒ ½ Ü ¾ ¾ µ ¾ ½ Æ (1) must be greater than the F2 vigilance parameter, ¾; according to this, the input strength of a node is computed as ¾ ¼ ÓØÖÛ ¾ ¼ (2) where is a measure of the node a priori activation probability. The activation of each node is then calculated normalizing the node s input strength, Ú ÈÆ (3) н Ð The prediction and output layers conjointly calculate the prediction of the network. The P layer contains two types of nodes: A and B. There are as many A nodes as features are in the output vector Ý ¾ Ê Ñ and only one B node. A and B nodes calculate its activations, and respectively, as weighted sums of the F2 activation vector Æ «Ú ½ Ñ (4) ½ Æ Ú ½ Nodes on the output layer are connected with one-to-one connections to a corresponding A node and to the B node. Their outputs, Ó ¼ ¼ ÓØÖÛ (5) represent the most probable output value, Ó Üµ, expected after an input Ü have been presented.

3 L. Martí, A. Policriti, L. García and R. Lazo / AppART+GNG=high performance neural network Error handling and match tracking After the presentation of an input, if no F2 node is active an uncommitted node must be committed. The task of detecting when an input is not sufficiently coded in F2 is accomplished by the F2 gain control, ¾, that fires if no committed nodes are active. The signal ¾ ½ ÑÜ½Æ Ú ¼ ¼ ÓØÖÛ (6) is used to commit an uncommitted node. It can also be used to offer an I don t know answer during the non-adaptive use of a network. The E node computes the prediction error,, measuring it as an absolute error, Ó Ý (7) Incorrect predictions are detected by the output gain control, Ç. Ç compares the error measurement produced by the E node with a output error vigilance parameter, Ó, Ç ½ Ó ¼ ÓØÖÛ Ó ¼ (8) If Ç remains inactive learning takes place in F2 and P. If Ç fires then a match tracking mechanism takes care of rising the F2 vigilance from its base value ¾ that is the minimum vigilance accepted. The purpose is to reset currently active categories that might be interfering in the calculation of an accurate prediction. A straight through approach could consist in raising the vigilance value as the minimum activation, ¾ therefore deactivating the less active F2 node. 2.3 Learning ÑÒ Ú (9) ½Æ The learning rule used in F2 is based on the gated steepest descent learning rule [1]. First, the prediction errors obtained in this input presentation are added to the cumulative error of the nodes that had interfered in the production of the prediction. The amount of error added is modulated by the node activation, Ú, Ø ½µ ص Ú (10) After this, the cumulative category activation,, is updated as Ø ½µ ص Ú (11) in order to represent the amount of training that has taken place in the th node. The use of equally weights inputs over time with the intention to measure their sample statistics. Among all active nodes the best-matching node (BMN) is determined as the one with maximum activation, Ú A second best-matching node (SBMN) is selected, if its not bound with the BMN a link between them is established with ¼ If the link already exists its age is reset to zero. The center of the BMN receptive field is updated by allowing ÅÆ Ø ½µ ½ ½ ÅÆ Ú ÅÆ ÅÆ Øµ ½ ÅÆ Ú ÅÆ Ü (12)

4 4 L. Martí, A. Policriti, L. García and R. Lazo / AppART+GNG=high performance neural network All nodes bound to the BMN also modify their centers Ø ½µ ½ ½ Ú Øµ ½ Ú Ü (13) but with a rate, ¼ ½ that controls the amount of change. After this, the age of the links emanating from the BMN is incremented. When a node is committed and after a training iteration, the standard deviations should be recomputed. They are set to the mean distance between the center of the node and the centers of the nodes bound it [3]. In the P layer «is adapted to represent the corresponding cumulative expected output learned by each A node: «Ø ½µ «Øµ ½ Ú Ý (14) where ¼ is a small constant. The weights of the B node, are updated in a similar way but tracking the amount of learning that have taken place in each F2 node. Ø ½µ ص ½ Ú (15) 2.4 Creation of input classes GasART is initialized with two nodes committed Æ ¾µ. The centers of these nodes could be either initialized to the first two inputs in the training set or to random values. Each node is bounded with each other with a link that indicates its topological vicinity. This bind has an age,, that is initialized to ¼ when a new bind is set up. A link between two nodes is removed if its age, is bigger than a certain ÑÜ. If the signal ¾ fires, then an uncommitted node is committed and Æ is incremented. The newly committed node is indexed by Æ and initialized with Ú Æ ½, Æ ¼ and Æ ¼. The two units with larger accumulated error are binded to the node Æ. Subsequently learning will proceed as normal. 3 Mackey-Glass equation approximation We now focus on the problem of approximation the Mackey-Glass equation. We aim to study GasART performance as a function approximating algorithm and comparing it with other neural models like MLP, RBF and the original AppART. The Mackey-Glass equation, Ü Ø Ü Ø µ ½ Ü Ø µ Ü Øµ (16) is a time-delay differential equation that has been proposed as a model of white blood cell production [8]. The constant values are commonly set to ¼¾, ¼½ and ½¼. The delay parameter determines the behavior of the system. For ½ the system produces a chaotic attractor. For our simulations we have chosen ¼ and an input window of 6 time steps elements. A set of 4000 items was generated, 3200 were used as training set and the remaining 800 we used as test set. When applying AppART and GasART a voting strategy is used, with the number of voting networks was set to a 10 per cent of the size of the training set. In the case of MLP a backpropagation algorithm was used for fitting the network. For RBF network a hybrid training method (unsupervised in the hidden layer and supervised in the output layer) was used 1. 1 Both of these training techniques are broadly discussed else where, c.f. [2])

5 L. Martí, A. Policriti, L. García and R. Lazo / AppART+GNG=high performance neural network 5 Table 1: Mean square errors of the predictions of the Multi-Layer Perceptron (MLP), Radial Basis Functions network (RBF), AppART and GasART using the Mackey-Glass problem test set. Neural model Mean Square Error Nodes needed MLP RBF AppART GasART The results obtained 2 in table 1 clearly show that GasART not only makes a more accurate prediction by two orders of magnitude than AppART but also commits fewer nodes thus creating a more compact input space representation. 4 Concluding remarks We have presented GasART. GasART combines ART and GNG networks. It modifies the learning laws of AppART to improve its accuracy and performance while keeping its main characteristics. Therefore, GasART incrementally approximates any function with any degree of accuracy from noisy training samples. In the benchmark tests carried out AppART outperformed neural models tested, generating compact knowledge representations. Because of the briefness of this communication we did not extended ourselves into solving more problems or testing other models, however more tests are needed. We are currently studying alternative ways of for making the merging of ART and GNG models even tighter and starting to apply GasART in bioinformatics problems. References [1] S. Grossberg, Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition, and Motor Control. Boston: Reidel, [2] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford: Clarendon Press, [3] B. Fritzke, Fast learning with incremental RBF networks, Neural Processing Letters, vol. 1, pp. 2 5, [4] T. M. Martinetz, S. G. Berkovich, and K. J. Shulten, Neural-Gas network for vector quantization and its application to time-series prediction, IEEE Transactions on Neural Networks, vol. 4, pp , [5] L. Martí, A. Policriti, and L. García, AppART: An ART hybrid stable learning neural network for universal function approximation, in Hybrid Information Systems (A. Abraham and M. Koeppen, eds.), (Heidelberg), pp , Physica Verlag, [6] E. A. Nadaraya, On estimating regression, Theory of Probability and Its Application, vol. 10, pp , [7] B. Kosko, Fuzzy Engineering. New York: Prentice Hall, [8] M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science, pp , The results that do not have to deal with GasART are taken from [5]. In this work other neural networks were applied, GasART outperforms all of them.

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

For Monday. Read chapter 18, sections Homework:

For Monday. Read chapter 18, sections Homework: For Monday Read chapter 18, sections 10-12 The material in section 8 and 9 is interesting, but we won t take time to cover it this semester Homework: Chapter 18, exercise 25 a-b Program 4 Model Neuron

More information

TWRBF Transductive RBF Neural Network with Weighted Data Normalization

TWRBF Transductive RBF Neural Network with Weighted Data Normalization TWRBF Transductive RBF eural etwork with Weighted Data ormalization Qun Song and ikola Kasabov Knowledge Engineering & Discovery Research Institute Auckland University of Technology Private Bag 9006, Auckland

More information

A General Greedy Approximation Algorithm with Applications

A General Greedy Approximation Algorithm with Applications A General Greedy Approximation Algorithm with Applications Tong Zhang IBM T.J. Watson Research Center Yorktown Heights, NY 10598 tzhang@watson.ibm.com Abstract Greedy approximation algorithms have been

More information

Computational Intelligence Meets the NetFlix Prize

Computational Intelligence Meets the NetFlix Prize Computational Intelligence Meets the NetFlix Prize Ryan J. Meuth, Paul Robinette, Donald C. Wunsch II Abstract The NetFlix Prize is a research contest that will award $1 Million to the first group to improve

More information

ECM A Novel On-line, Evolving Clustering Method and Its Applications

ECM A Novel On-line, Evolving Clustering Method and Its Applications ECM A Novel On-line, Evolving Clustering Method and Its Applications Qun Song 1 and Nikola Kasabov 2 1, 2 Department of Information Science, University of Otago P.O Box 56, Dunedin, New Zealand (E-mail:

More information

Data Mining. Neural Networks

Data Mining. Neural Networks Data Mining Neural Networks Goals for this Unit Basic understanding of Neural Networks and how they work Ability to use Neural Networks to solve real problems Understand when neural networks may be most

More information

The rest of the paper is organized as follows: we rst shortly describe the \growing neural gas" method which we have proposed earlier [3]. Then the co

The rest of the paper is organized as follows: we rst shortly describe the \growing neural gas method which we have proposed earlier [3]. Then the co In: F. Fogelman and P. Gallinari, editors, ICANN'95: International Conference on Artificial Neural Networks, pages 217-222, Paris, France, 1995. EC2 & Cie. Incremental Learning of Local Linear Mappings

More information

Neuro-Fuzzy Inverse Forward Models

Neuro-Fuzzy Inverse Forward Models CS9 Autumn Neuro-Fuzzy Inverse Forward Models Brian Highfill Stanford University Department of Computer Science Abstract- Internal cognitive models are useful methods for the implementation of motor control

More information

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation Learning Learning agents Inductive learning Different Learning Scenarios Evaluation Slides based on Slides by Russell/Norvig, Ronald Williams, and Torsten Reil Material from Russell & Norvig, chapters

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Simplest

More information

Representation of 2D objects with a topology preserving network

Representation of 2D objects with a topology preserving network Representation of 2D objects with a topology preserving network Francisco Flórez, Juan Manuel García, José García, Antonio Hernández, Departamento de Tecnología Informática y Computación. Universidad de

More information

Adaptive Regularization. in Neural Network Filters

Adaptive Regularization. in Neural Network Filters Adaptive Regularization in Neural Network Filters Course 0455 Advanced Digital Signal Processing May 3 rd, 00 Fares El-Azm Michael Vinther d97058 s97397 Introduction The bulk of theoretical results and

More information

Probabilistic analysis of algorithms: What s it good for?

Probabilistic analysis of algorithms: What s it good for? Probabilistic analysis of algorithms: What s it good for? Conrado Martínez Univ. Politècnica de Catalunya, Spain February 2008 The goal Given some algorithm taking inputs from some set Á, we would like

More information

This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 3.0.

This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 3.0. Range: This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version.. isclaimer The shapes of the reference glyphs used in these code charts

More information

Unsupervised learning

Unsupervised learning Unsupervised learning Enrique Muñoz Ballester Dipartimento di Informatica via Bramante 65, 26013 Crema (CR), Italy enrique.munoz@unimi.it Enrique Muñoz Ballester 2017 1 Download slides data and scripts:

More information

A Simple Additive Re-weighting Strategy for Improving Margins

A Simple Additive Re-weighting Strategy for Improving Margins A Simple Additive Re-weighting Strategy for Improving Margins Fabio Aiolli and Alessandro Sperduti Department of Computer Science, Corso Italia 4, Pisa, Italy e-mail: aiolli, perso@di.unipi.it Abstract

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

Exponentiated Gradient Algorithms for Large-margin Structured Classification

Exponentiated Gradient Algorithms for Large-margin Structured Classification Exponentiated Gradient Algorithms for Large-margin Structured Classification Peter L. Bartlett U.C.Berkeley bartlett@stat.berkeley.edu Ben Taskar Stanford University btaskar@cs.stanford.edu Michael Collins

More information

Accelerating the convergence speed of neural networks learning methods using least squares

Accelerating the convergence speed of neural networks learning methods using least squares Bruges (Belgium), 23-25 April 2003, d-side publi, ISBN 2-930307-03-X, pp 255-260 Accelerating the convergence speed of neural networks learning methods using least squares Oscar Fontenla-Romero 1, Deniz

More information

Approximation by NURBS curves with free knots

Approximation by NURBS curves with free knots Approximation by NURBS curves with free knots M Randrianarivony G Brunnett Technical University of Chemnitz, Faculty of Computer Science Computer Graphics and Visualization Straße der Nationen 6, 97 Chemnitz,

More information

Dynamic Analysis of Structures Using Neural Networks

Dynamic Analysis of Structures Using Neural Networks Dynamic Analysis of Structures Using Neural Networks Alireza Lavaei Academic member, Islamic Azad University, Boroujerd Branch, Iran Alireza Lohrasbi Academic member, Islamic Azad University, Boroujerd

More information

Supervised Learning in Neural Networks (Part 2)

Supervised Learning in Neural Networks (Part 2) Supervised Learning in Neural Networks (Part 2) Multilayer neural networks (back-propagation training algorithm) The input signals are propagated in a forward direction on a layer-bylayer basis. Learning

More information

SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION FOR REAL-TIME OPTIMIZATION OF MODEL PREDICTIVE CONTROL

SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION FOR REAL-TIME OPTIMIZATION OF MODEL PREDICTIVE CONTROL SIMULTANEOUS PERTURBATION STOCHASTIC APPROXIMATION FOR REAL-TIME OPTIMIZATION OF MODEL PREDICTIVE CONTROL Irina Baltcheva Felisa J.Vázquez-Abad ½ (member of GERAD) Université de Montréal DIRO, CP 6128

More information

Response Time Analysis of Asynchronous Real-Time Systems

Response Time Analysis of Asynchronous Real-Time Systems Response Time Analysis of Asynchronous Real-Time Systems Guillem Bernat Real-Time Systems Research Group Department of Computer Science University of York York, YO10 5DD, UK Technical Report: YCS-2002-340

More information

Machine Learning in Biology

Machine Learning in Biology Università degli studi di Padova Machine Learning in Biology Luca Silvestrin (Dottorando, XXIII ciclo) Supervised learning Contents Class-conditional probability density Linear and quadratic discriminant

More information

Artificial neural networks are the paradigm of connectionist systems (connectionism vs. symbolism)

Artificial neural networks are the paradigm of connectionist systems (connectionism vs. symbolism) Artificial Neural Networks Analogy to biological neural systems, the most robust learning systems we know. Attempt to: Understand natural biological systems through computational modeling. Model intelligent

More information

A Dynamic HMM for On line Segmentation of Sequential Data

A Dynamic HMM for On line Segmentation of Sequential Data A Dynamic HMM for On line Segmentation of Sequential Data Jens Kohlmorgen Fraunhofer FIRST.IDA Kekuléstr. 7 12489 Berlin, Germany jek@first.fraunhofer.de Steven Lemm Fraunhofer FIRST.IDA Kekuléstr. 7 12489

More information

Traffic Signs Recognition using HP and HOG Descriptors Combined to MLP and SVM Classifiers

Traffic Signs Recognition using HP and HOG Descriptors Combined to MLP and SVM Classifiers Traffic Signs Recognition using HP and HOG Descriptors Combined to MLP and SVM Classifiers A. Salhi, B. Minaoui, M. Fakir, H. Chakib, H. Grimech Faculty of science and Technology Sultan Moulay Slimane

More information

Fuzzy Hamming Distance in a Content-Based Image Retrieval System

Fuzzy Hamming Distance in a Content-Based Image Retrieval System Fuzzy Hamming Distance in a Content-Based Image Retrieval System Mircea Ionescu Department of ECECS, University of Cincinnati, Cincinnati, OH 51-3, USA ionescmm@ececs.uc.edu Anca Ralescu Department of

More information

Fuzzy Modeling using Vector Quantization with Supervised Learning

Fuzzy Modeling using Vector Quantization with Supervised Learning Fuzzy Modeling using Vector Quantization with Supervised Learning Hirofumi Miyajima, Noritaka Shigei, and Hiromi Miyajima Abstract It is known that learning methods of fuzzy modeling using vector quantization

More information

Adaptation Of Vigilance Factor And Choice Parameter In Fuzzy ART System

Adaptation Of Vigilance Factor And Choice Parameter In Fuzzy ART System Adaptation Of Vigilance Factor And Choice Parameter In Fuzzy ART System M. R. Meybodi P. Bahri Soft Computing Laboratory Department of Computer Engineering Amirkabir University of Technology Tehran, Iran

More information

IMPLEMENTATION OF RBF TYPE NETWORKS BY SIGMOIDAL FEEDFORWARD NEURAL NETWORKS

IMPLEMENTATION OF RBF TYPE NETWORKS BY SIGMOIDAL FEEDFORWARD NEURAL NETWORKS IMPLEMENTATION OF RBF TYPE NETWORKS BY SIGMOIDAL FEEDFORWARD NEURAL NETWORKS BOGDAN M.WILAMOWSKI University of Wyoming RICHARD C. JAEGER Auburn University ABSTRACT: It is shown that by introducing special

More information

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Regression

More information

Radial Basis Function Networks: Algorithms

Radial Basis Function Networks: Algorithms Radial Basis Function Networks: Algorithms Neural Computation : Lecture 14 John A. Bullinaria, 2015 1. The RBF Mapping 2. The RBF Network Architecture 3. Computational Power of RBF Networks 4. Training

More information

Unit V. Neural Fuzzy System

Unit V. Neural Fuzzy System Unit V Neural Fuzzy System 1 Fuzzy Set In the classical set, its characteristic function assigns a value of either 1 or 0 to each individual in the universal set, There by discriminating between members

More information

Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms

Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms Roni Khardon Tufts University Medford, MA 02155 roni@eecs.tufts.edu Dan Roth University of Illinois Urbana, IL 61801 danr@cs.uiuc.edu

More information

ORT EP R RCH A ESE R P A IDI! " #$$% &' (# $!"

ORT EP R RCH A ESE R P A IDI!  #$$% &' (# $! R E S E A R C H R E P O R T IDIAP A Parallel Mixture of SVMs for Very Large Scale Problems Ronan Collobert a b Yoshua Bengio b IDIAP RR 01-12 April 26, 2002 Samy Bengio a published in Neural Computation,

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Image Data: Classification via Neural Networks Instructor: Yizhou Sun yzsun@ccs.neu.edu November 19, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining

More information

Handwritten Text Recognition

Handwritten Text Recognition Handwritten Text Recognition M.J. Castro-Bleda, Joan Pasto Universidad Politécnica de Valencia Spain Zaragoza, March 2012 Text recognition () TRABHCI Zaragoza, March 2012 1 / 1 The problem: Handwriting

More information

From Cluster Tracking to People Counting

From Cluster Tracking to People Counting From Cluster Tracking to People Counting Arthur E.C. Pece Institute of Computer Science University of Copenhagen Universitetsparken 1 DK-2100 Copenhagen, Denmark aecp@diku.dk Abstract The Cluster Tracker,

More information

Modification of the Growing Neural Gas Algorithm for Cluster Analysis

Modification of the Growing Neural Gas Algorithm for Cluster Analysis Modification of the Growing Neural Gas Algorithm for Cluster Analysis Fernando Canales and Max Chacón Universidad de Santiago de Chile; Depto. de Ingeniería Informática, Avda. Ecuador No 3659 - PoBox 10233;

More information

Comparison of supervised self-organizing maps using Euclidian or Mahalanobis distance in classification context

Comparison of supervised self-organizing maps using Euclidian or Mahalanobis distance in classification context 6 th. International Work Conference on Artificial and Natural Neural Networks (IWANN2001), Granada, June 13-15 2001 Comparison of supervised self-organizing maps using Euclidian or Mahalanobis distance

More information

Lecture #11: The Perceptron

Lecture #11: The Perceptron Lecture #11: The Perceptron Mat Kallada STAT2450 - Introduction to Data Mining Outline for Today Welcome back! Assignment 3 The Perceptron Learning Method Perceptron Learning Rule Assignment 3 Will be

More information

CMPT 882 Week 3 Summary

CMPT 882 Week 3 Summary CMPT 882 Week 3 Summary! Artificial Neural Networks (ANNs) are networks of interconnected simple units that are based on a greatly simplified model of the brain. ANNs are useful learning tools by being

More information

Supervised vs.unsupervised Learning

Supervised vs.unsupervised Learning Supervised vs.unsupervised Learning In supervised learning we train algorithms with predefined concepts and functions based on labeled data D = { ( x, y ) x X, y {yes,no}. In unsupervised learning we are

More information

Neural networks for variable star classification

Neural networks for variable star classification Neural networks for variable star classification Vasily Belokurov, IoA, Cambridge Supervised classification Multi-Layer Perceptron (MLP) Neural Networks for Pattern Recognition by C. Bishop Unsupervised

More information

Artificial Neuron Modelling Based on Wave Shape

Artificial Neuron Modelling Based on Wave Shape Artificial Neuron Modelling Based on Wave Shape Kieran Greer, Distributed Computing Systems, Belfast, UK. http://distributedcomputingsystems.co.uk Version 1.2 Abstract This paper describes a new model

More information

EE 589 INTRODUCTION TO ARTIFICIAL NETWORK REPORT OF THE TERM PROJECT REAL TIME ODOR RECOGNATION SYSTEM FATMA ÖZYURT SANCAR

EE 589 INTRODUCTION TO ARTIFICIAL NETWORK REPORT OF THE TERM PROJECT REAL TIME ODOR RECOGNATION SYSTEM FATMA ÖZYURT SANCAR EE 589 INTRODUCTION TO ARTIFICIAL NETWORK REPORT OF THE TERM PROJECT REAL TIME ODOR RECOGNATION SYSTEM FATMA ÖZYURT SANCAR 1.Introductıon. 2.Multi Layer Perception.. 3.Fuzzy C-Means Clustering.. 4.Real

More information

New wavelet based ART network for texture classification

New wavelet based ART network for texture classification University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 1996 New wavelet based ART network for texture classification Jiazhao

More information

Hierarchical Clustering 4/5/17

Hierarchical Clustering 4/5/17 Hierarchical Clustering 4/5/17 Hypothesis Space Continuous inputs Output is a binary tree with data points as leaves. Useful for explaining the training data. Not useful for making new predictions. Direction

More information

This leads to our algorithm which is outlined in Section III, along with a tabular summary of it's performance on several benchmarks. The last section

This leads to our algorithm which is outlined in Section III, along with a tabular summary of it's performance on several benchmarks. The last section An Algorithm for Incremental Construction of Feedforward Networks of Threshold Units with Real Valued Inputs Dhananjay S. Phatak Electrical Engineering Department State University of New York, Binghamton,

More information

On Non-Decidability of Reachability for Timed-Arc Petri Nets

On Non-Decidability of Reachability for Timed-Arc Petri Nets On Non-Decidability of Reachability for Timed-Arc Petri Nets V. Valero Ruiz D. de Frutos Escrig F. Cuartero Gómez Dpto. Informática Dpto. Sist. Inf. y Programación Dpto. Informática Esc. Politécnica Fac.

More information

^ Springer. Computational Intelligence. A Methodological Introduction. Rudolf Kruse Christian Borgelt. Matthias Steinbrecher Pascal Held

^ Springer. Computational Intelligence. A Methodological Introduction. Rudolf Kruse Christian Borgelt. Matthias Steinbrecher Pascal Held Rudolf Kruse Christian Borgelt Frank Klawonn Christian Moewes Matthias Steinbrecher Pascal Held Computational Intelligence A Methodological Introduction ^ Springer Contents 1 Introduction 1 1.1 Intelligent

More information

Agglomerative Information Bottleneck

Agglomerative Information Bottleneck Agglomerative Information Bottleneck Noam Slonim Naftali Tishby Institute of Computer Science and Center for Neural Computation The Hebrew University Jerusalem, 91904 Israel email: noamm,tishby@cs.huji.ac.il

More information

Assignment # 5. Farrukh Jabeen Due Date: November 2, Neural Networks: Backpropation

Assignment # 5. Farrukh Jabeen Due Date: November 2, Neural Networks: Backpropation Farrukh Jabeen Due Date: November 2, 2009. Neural Networks: Backpropation Assignment # 5 The "Backpropagation" method is one of the most popular methods of "learning" by a neural network. Read the class

More information

Linear Separability. Linear Separability. Capabilities of Threshold Neurons. Capabilities of Threshold Neurons. Capabilities of Threshold Neurons

Linear Separability. Linear Separability. Capabilities of Threshold Neurons. Capabilities of Threshold Neurons. Capabilities of Threshold Neurons Linear Separability Input space in the two-dimensional case (n = ): - - - - - - w =, w =, = - - - - - - w = -, w =, = - - - - - - w = -, w =, = Linear Separability So by varying the weights and the threshold,

More information

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska Classification Lecture Notes cse352 Neural Networks Professor Anita Wasilewska Neural Networks Classification Introduction INPUT: classification data, i.e. it contains an classification (class) attribute

More information

Definition and Instantiation of a Reference Model for Problem Specifications

Definition and Instantiation of a Reference Model for Problem Specifications Definition and Instantiation of a Reference Model for Problem Specifications Martin Kronenburg Christian Peper University of Kaiserslautern, Erwin Schrödinger Straße, D-67663 Kaiserslautern, Germany E-mail:

More information

Geodesic Paths on Triangular Meshes

Geodesic Paths on Triangular Meshes Geodesic Paths on Triangular Meshes Dimas Martínez Luiz Velho Paulo Cezar Carvalho IMPA Instituto Nacional de Matemática Pura e Aplicada Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, RJ, Brasil

More information

An Algorithm For Training Multilayer Perceptron (MLP) For Image Reconstruction Using Neural Network Without Overfitting.

An Algorithm For Training Multilayer Perceptron (MLP) For Image Reconstruction Using Neural Network Without Overfitting. An Algorithm For Training Multilayer Perceptron (MLP) For Image Reconstruction Using Neural Network Without Overfitting. Mohammad Mahmudul Alam Mia, Shovasis Kumar Biswas, Monalisa Chowdhury Urmi, Abubakar

More information

Improving interpretability in approximative fuzzy models via multi-objective evolutionary algorithms.

Improving interpretability in approximative fuzzy models via multi-objective evolutionary algorithms. Improving interpretability in approximative fuzzy models via multi-objective evolutionary algorithms. Gómez-Skarmeta, A.F. University of Murcia skarmeta@dif.um.es Jiménez, F. University of Murcia fernan@dif.um.es

More information

Database Languages and their Compilers

Database Languages and their Compilers Database Languages and their Compilers Prof. Dr. Torsten Grust Database Systems Research Group U Tübingen Winter 2010 2010 T. Grust Database Languages and their Compilers 4 Query Normalization Finally,

More information

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA Predictive Analytics: Demystifying Current and Emerging Methodologies Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA May 18, 2017 About the Presenters Tom Kolde, FCAS, MAAA Consulting Actuary Chicago,

More information

A Comparative Study of Conventional and Neural Network Classification of Multispectral Data

A Comparative Study of Conventional and Neural Network Classification of Multispectral Data A Comparative Study of Conventional and Neural Network Classification of Multispectral Data B.Solaiman & M.C.Mouchot Ecole Nationale Supérieure des Télécommunications de Bretagne B.P. 832, 29285 BREST

More information

Pattern Classification Algorithms for Face Recognition

Pattern Classification Algorithms for Face Recognition Chapter 7 Pattern Classification Algorithms for Face Recognition 7.1 Introduction The best pattern recognizers in most instances are human beings. Yet we do not completely understand how the brain recognize

More information

Optimization Methods for Machine Learning (OMML)

Optimization Methods for Machine Learning (OMML) Optimization Methods for Machine Learning (OMML) 2nd lecture Prof. L. Palagi References: 1. Bishop Pattern Recognition and Machine Learning, Springer, 2006 (Chap 1) 2. V. Cherlassky, F. Mulier - Learning

More information

Fast Fuzzy Clustering of Infrared Images. 2. brfcm

Fast Fuzzy Clustering of Infrared Images. 2. brfcm Fast Fuzzy Clustering of Infrared Images Steven Eschrich, Jingwei Ke, Lawrence O. Hall and Dmitry B. Goldgof Department of Computer Science and Engineering, ENB 118 University of South Florida 4202 E.

More information

Scan Scheduling Specification and Analysis

Scan Scheduling Specification and Analysis Scan Scheduling Specification and Analysis Bruno Dutertre System Design Laboratory SRI International Menlo Park, CA 94025 May 24, 2000 This work was partially funded by DARPA/AFRL under BAE System subcontract

More information

Week 3: Perceptron and Multi-layer Perceptron

Week 3: Perceptron and Multi-layer Perceptron Week 3: Perceptron and Multi-layer Perceptron Phong Le, Willem Zuidema November 12, 2013 Last week we studied two famous biological neuron models, Fitzhugh-Nagumo model and Izhikevich model. This week,

More information

Constructive floorplanning with a yield objective

Constructive floorplanning with a yield objective Constructive floorplanning with a yield objective Rajnish Prasad and Israel Koren Department of Electrical and Computer Engineering University of Massachusetts, Amherst, MA 13 E-mail: rprasad,koren@ecs.umass.edu

More information

In the Name of God. Lecture 17: ANFIS Adaptive Network-Based Fuzzy Inference System

In the Name of God. Lecture 17: ANFIS Adaptive Network-Based Fuzzy Inference System In the Name of God Lecture 17: ANFIS Adaptive Network-Based Fuzzy Inference System Outline ANFIS Architecture Hybrid Learning Algorithm Learning Methods that Cross-Fertilize ANFIS and RBFN ANFIS as a universal

More information

Bayesian source separation with mixture of Gaussians prior for sources and Gaussian prior for mixture coefficients

Bayesian source separation with mixture of Gaussians prior for sources and Gaussian prior for mixture coefficients Bayesian source separation with mixture of Gaussians prior for sources and Gaussian prior for mixture coefficients Hichem Snoussi and Ali Mohammad-Djafari Laboratoire des Signaux et Systèmes (LS), Supélec,

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Seismic regionalization based on an artificial neural network

Seismic regionalization based on an artificial neural network Seismic regionalization based on an artificial neural network *Jaime García-Pérez 1) and René Riaño 2) 1), 2) Instituto de Ingeniería, UNAM, CU, Coyoacán, México D.F., 014510, Mexico 1) jgap@pumas.ii.unam.mx

More information

Alex Waibel

Alex Waibel Alex Waibel 815.11.2011 1 16.11.2011 Organisation Literatur: Introduction to The Theory of Neural Computation Hertz, Krogh, Palmer, Santa Fe Institute Neural Network Architectures An Introduction, Judith

More information

Hybrid PSO-SA algorithm for training a Neural Network for Classification

Hybrid PSO-SA algorithm for training a Neural Network for Classification Hybrid PSO-SA algorithm for training a Neural Network for Classification Sriram G. Sanjeevi 1, A. Naga Nikhila 2,Thaseem Khan 3 and G. Sumathi 4 1 Associate Professor, Dept. of CSE, National Institute

More information

Structure and Complexity in Planning with Unary Operators

Structure and Complexity in Planning with Unary Operators Structure and Complexity in Planning with Unary Operators Carmel Domshlak and Ronen I Brafman ½ Abstract In this paper we study the complexity of STRIPS planning when operators have a single effect In

More information

A Class of Instantaneously Trained Neural Networks

A Class of Instantaneously Trained Neural Networks A Class of Instantaneously Trained Neural Networks Subhash Kak Department of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA 70803-5901 May 7, 2002 Abstract This paper presents

More information

From Static to Dynamic Routing: Efficient Transformations of Store-and-Forward Protocols

From Static to Dynamic Routing: Efficient Transformations of Store-and-Forward Protocols From Static to Dynamic Routing: Efficient Transformations of Store-and-Forward Protocols Christian Scheideler Ý Berthold Vöcking Þ Abstract We investigate how static store-and-forward routing algorithms

More information

A Note on Karr s Algorithm

A Note on Karr s Algorithm A Note on Karr s Algorithm Markus Müller-Olm ½ and Helmut Seidl ¾ ½ FernUniversität Hagen, FB Informatik, LG PI 5, Universitätsstr. 1, 58097 Hagen, Germany mmo@ls5.informatik.uni-dortmund.de ¾ TU München,

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013 Application of Neural Network for Different Learning Parameter in Classification of Local Feature Image Annie anak Joseph, Chong Yung Fook Universiti Malaysia Sarawak, Faculty of Engineering, 94300, Kota

More information

Linear Models. Lecture Outline: Numeric Prediction: Linear Regression. Linear Classification. The Perceptron. Support Vector Machines

Linear Models. Lecture Outline: Numeric Prediction: Linear Regression. Linear Classification. The Perceptron. Support Vector Machines Linear Models Lecture Outline: Numeric Prediction: Linear Regression Linear Classification The Perceptron Support Vector Machines Reading: Chapter 4.6 Witten and Frank, 2nd ed. Chapter 4 of Mitchell Solving

More information

Designing Networks Incrementally

Designing Networks Incrementally Designing Networks Incrementally Adam Meyerson Kamesh Munagala Ý Serge Plotkin Þ Abstract We consider the problem of incrementally designing a network to route demand to a single sink on an underlying

More information

RSA (Rivest Shamir Adleman) public key cryptosystem: Key generation: Pick two large prime Ô Õ ¾ numbers È.

RSA (Rivest Shamir Adleman) public key cryptosystem: Key generation: Pick two large prime Ô Õ ¾ numbers È. RSA (Rivest Shamir Adleman) public key cryptosystem: Key generation: Pick two large prime Ô Õ ¾ numbers È. Let Ò Ô Õ. Pick ¾ ½ ³ Òµ ½ so, that ³ Òµµ ½. Let ½ ÑÓ ³ Òµµ. Public key: Ò µ. Secret key Ò µ.

More information

Online labelling strategies for growing neural gas

Online labelling strategies for growing neural gas Online labelling strategies for growing neural gas Oliver Beyer and Philipp Cimiano Semantic Computing Group, CITEC, Bielefeld University, obeyer@cit-ec.uni-bielefeld.de http://www.sc.cit-ec.uni-bielefeld.de

More information

MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM CHAPTER-7 MODELING FOR RESIDUAL STRESS, SURFACE ROUGHNESS AND TOOL WEAR USING AN ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 7.1 Introduction To improve the overall efficiency of turning, it is necessary to

More information

Efficient Object Extraction Using Fuzzy Cardinality Based Thresholding and Hopfield Network

Efficient Object Extraction Using Fuzzy Cardinality Based Thresholding and Hopfield Network Efficient Object Extraction Using Fuzzy Cardinality Based Thresholding and Hopfield Network S. Bhattacharyya U. Maulik S. Bandyopadhyay Dept. of Information Technology Dept. of Comp. Sc. and Tech. Machine

More information

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used.

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used. 1 4.12 Generalization In back-propagation learning, as many training examples as possible are typically used. It is hoped that the network so designed generalizes well. A network generalizes well when

More information

A Blind Source Separation Approach to Structure From Motion

A Blind Source Separation Approach to Structure From Motion A Blind Source Separation Approach to Structure From Motion Jeff Fortuna and Aleix M. Martinez Department of Electrical & Computer Engineering The Ohio State University Columbus, Ohio, 4321 Abstract We

More information

Graphs (MTAT , 4 AP / 6 ECTS) Lectures: Fri 12-14, hall 405 Exercises: Mon 14-16, hall 315 või N 12-14, aud. 405

Graphs (MTAT , 4 AP / 6 ECTS) Lectures: Fri 12-14, hall 405 Exercises: Mon 14-16, hall 315 või N 12-14, aud. 405 Graphs (MTAT.05.080, 4 AP / 6 ECTS) Lectures: Fri 12-14, hall 405 Exercises: Mon 14-16, hall 315 või N 12-14, aud. 405 homepage: http://www.ut.ee/~peeter_l/teaching/graafid08s (contains slides) For grade:

More information

TreeGNG - Hierarchical Topological Clustering

TreeGNG - Hierarchical Topological Clustering TreeGNG - Hierarchical Topological lustering K..J.Doherty,.G.dams, N.Davey Department of omputer Science, University of Hertfordshire, Hatfield, Hertfordshire, L10 9, United Kingdom {K..J.Doherty,.G.dams,

More information

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra Pattern Recall Analysis of the Hopfield Neural Network with a Genetic Algorithm Susmita Mohapatra Department of Computer Science, Utkal University, India Abstract: This paper is focused on the implementation

More information

Adaptive techniques for spline collocation

Adaptive techniques for spline collocation Adaptive techniques for spline collocation Christina C. Christara and Kit Sun Ng Department of Computer Science University of Toronto Toronto, Ontario M5S 3G4, Canada ccc,ngkit @cs.utoronto.ca July 18,

More information

Artificial Neural Networks MLP, RBF & GMDH

Artificial Neural Networks MLP, RBF & GMDH Artificial Neural Networks MLP, RBF & GMDH Jan Drchal drchajan@fel.cvut.cz Computational Intelligence Group Department of Computer Science and Engineering Faculty of Electrical Engineering Czech Technical

More information

Character Recognition Using Convolutional Neural Networks

Character Recognition Using Convolutional Neural Networks Character Recognition Using Convolutional Neural Networks David Bouchain Seminar Statistical Learning Theory University of Ulm, Germany Institute for Neural Information Processing Winter 2006/2007 Abstract

More information