Expected Capacity Guaranteed Routing based on Dynamic Link Failure Prediction

Size: px
Start display at page:

Download "Expected Capacity Guaranteed Routing based on Dynamic Link Failure Prediction"

Transcription

1 Expected Capacity Guaranteed Routing based on Dynamic Link Failure Prediction Shu Sekigawa, Satoru Okamoto, and Naoaki Yamanaka Department of Information and Computer Science, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, , Japan Eiji Oki Graduate School of Informatics, Kyoto University Yoshida-honmachi, Sakyo-ku, Kyoto, , Japan Abstract In a high-speed backbone network, the failure of network links may cause large data losses, so it is necessary to reserve spare network resources for faster recovery. The conventional protection methods that reserve backup paths do not consider the failure probability of each network link and allocate same amount of network resources for the backup paths regardless of the failure rate of network links. This leads to the excessive or insufficient capacity allocation. This paper proposes the routing method that guarantees the expected value of the allocated capacity based on dynamically changed link failure rate. We formulate a Mixed Integer Liner Programming (MILP) model for the proposed method. We conduct simulations to investigate the effect of the expected capacity guaranteed routing over the conventional routing method in terms of bandwidth blocking probability, transmitted capacity achieved ratio, and the ratio of total transmitted capacity to total requested capacity. The results show that our proposed method marks higher transmitted capacity achieved ratio compared to conventional routing methods. We also find the transmitted capacity achieved ratio of the proposed method maintains 90% under high failure rate. I. INTRODUCTION Total Internet traffic has been rapidly increasing in the past two decades and annual global IP traffic is expected to reach 3.3 EB by 2021 [1]. To meet this requirement, a high-speed backbone network whose transmission capacity is exceeding 100 Gbps has been introduced [2]. However, a lot of data may be lost even when a single failure occurs in a network link and it may have a huge influence on various services. In order to prevent such a situation, the path protection method is widely used for recovering from link failures. The path protection method prepares a backup path for each path before configuring the network [3]. When a failure occurs, a connection is switched to the backup path to prevent the interruption of communication. Since it is unnecessary to perform routing processing and route securing again when a failure occurs, the path protection enables to shorten the time before resuming the communication [4]. With the spread of high-speed networks, many devices are connected to the Internet and the Internet of things (IoT) system is attracting a lot of attention. Based on analyzing the collected data from IoT systems and network equipment, the failure prediction of a network system is being studied [5], [6]. The conventional protection methods do not take of the failure probability of each link and the backup path is prepared uniformly for all working paths. The same link capacity is reserved for backup paths no matter how low the failure possibility of the link is. If the amount of network resources secured for backup paths are decided based on the link failure probability, network resources can be used more efficiently. The routing method in data center with awareness on link failure probability is presented in [7]. The method selects the optimal route with minimum failure probability, however it does not ensure the performance of the allocated route. In order to achieve the path allocation with performance assurance according to the failure probability, this paper proposes a routing method that guarantees the expected value of allocated capacity considering to dynamic link failure rate environment. The proposed method is called an expected capacity guaranteed routing method (ECGR). The basic idea of ECGR was introduced in [8]; only the static failure rate scenario is considered. We formulate a Mixed Integer Liner Programming (MILP) model for ECGR. We conduct simulations to study the advantage of the expected capacity guaranteed routing over the conventional protection method in terms of bandwidth blocking probability, transmitted capacity achieved ratio, and the ratio of total transmitted capacity to total requested capacity. We evaluate two scenarios with different link lifetime to confirm the effect by corresponding to the dynamic link failure rate. The rest of the paper is organized as follows. Section II presents detailed operation of the expected capacity guaranteed routing. Section III explains the MILP model for the expected capacity guaranteed routing. Section IV shows the variable capacity allocation that is the method to reduce total allocated resources under high failure rate. In Section V, we show the performance evaluation. Finally, we conclude the paper in Section VI. II. EXPECTED CAPACITY GUARANTEED ROUTING The basic idea of ECGR is calculating the expected value of usable capacity on the allocated paths based on the link failure

2 probability and selecting the multiple paths that the total expected value of allocated capacity exceeds the requested capacity. The expected value of capacity is calculated as the product of the allocated capacity on the path and the path available probability that can be obtained from the link failure rate. The path available probability means the probability that the link does not experience failure during communication. In order to correspond to dynamical failure rate change, it is necessary to calculate how much probability the path is available during connection holding time. We first derive the link reliability from the link failure rate. The link failure rate, λ ij (t), is defined as the probability that the link (i, j) fails next unit time when there is no failure before time t. Here, time t is equivalent to the age of link. The link reliability, R ij (t) is defined as the probability that the link experiences no failure during the time interval 0 to t. There is a relationship such as (1) between the link failure rate and the link available probability. R ij (t) = exp{ t 0 λ ij (x)dx} (1) Next, we calculate the link available probability from the link reliability. Assuming that the communication starts at T and ends at T + t, the link available probability A ij (T, T + t) is presented as (2). A ij (T, T + t) = P (No failure before t = T + t No failure before t = T ) = R ij(t + t) R ij (T ) Since a path can be considered as serial system composed of links, the path available probability is denoted by the product of the available probability of all links. Thus, we can find how much probability the path is available during communication by the failure rate function of links. We assume a connection request has a capacity requirement, an expected capacity quality and connection holding time. A request is represented by r = p, q, B req, t, where p and q are the source and destination nodes, B req is the capacity requirement, and t is the connection holding time. When a connection request r = p, q, B req, t is given, ECGR selects K paths between p and q with total expected capacity on the paths is at least B req. To increase the number of connections that can be accommodated in the network, ECGR selects the route with the lowest cost; cost is defined as the product of link distance and traffic capacity flowing on the link. Figure 1 shows an example solution of the minimum cost flow problem and ECGR. Figure 1(a) shows a topology with connection request r = 1, 4, 12, 1. Numbers next to each link indicate length, capacity, and link failure rate from the left. Figure 1(b) shows the solution by the minimum-cost flow problem (MCFP), which finds the paths that can send requested amount of flow with the minimum cost. Figure 1(c) (2) Fig. 1. Example solutions of the minimum cost flow problem and the expected capacity guaranteed routing. shows the solution by ECGR. Arrows in Figure 1(b), (c) represent the link on which the selected paths flowing on by each method. The numbers next to the arrow shows the allocated capacity on the path. We can find that the solution by ECGR allocates more capacity on the long links with lower failure probability like link (1, 3) and (2, 4) than that by MCFP. ECGR provides additional capacity allocation to achieve the requested expected capacity value, while the solution by MCFP reserves the capacity as requested. We develop the MILP model for ECGR presented in next Section III. III. MILP MODEL FOR THE EXPECTED CAPACITY GUARANTEED ROUTING We present the MILP model for the expected capacity guaranteed routing. First, we describe the definition of each constant and variable used in the MILP model. Given parameters: E A set of links. V A set of nodes. K A set of path number k. (i, j) A link between node i and j. (i, j) E. d ij Length of (i, j). A ij Available probability of (i, j). c ij Total capacity of (i, j). B req Requested capacity. T ij Age of (i, j). t Connection holding time. p Source node. p V. q Destination node. q V. Variables: x k ij Boolean variable that equals 1 if kth path uses (i, j) and 0 otherwise. b k Traffic capacity that can flow through kth path. Next, the objective and constraints of the MILP model are described in the following. The objective minimizes the sum of the products of the traffic capacity and the length of each link used for each path. Objective: minimize x k ij d ij b k k K

3 Constraints: Flow conservation constraint x k ij { x k 0, k K, i p, q V ji = 1, k K, i = p j: j:(j,i) E (3) Equation (3) ensures that the number of input links and output links of all nodes excluding for the source and destination node is the same, and the number of output links of source node is one more than that of input links. Link capacity constraint 0 k K x k ij b k min(b req, c ij ), (i, j) E (4) Equation (4) ensures that the maximum traffic capacity which can flow through (i, j) is c ij. To prevent deviation of the allocated capacity on each path, the maximum capacity flowed on a single link is also limited to B req. Expected capacity requirement constraint {b k k K A xk ij ij } B req (5) Equation (5) ensures that the total expected value of capacity is equal to or larger than requested expected capacity B req. The expected capacity of kth path is expressed as, A k = Axk ij ij. A k is the product of the available probability of all links which used by the kth path, because if one of the link used by the path fails, the path can not be used for communication anymore. It is not easy to find a solution directly from the above optimization problem, since the product x k ij b k is nonlinear. We first transform it into a linear form by using a lineartransformation idea presented in [9]. New variables y k ij satisfying the following constraints are introduced. y k ij b k + U(x k ij 1), k K, (i, j) E (6) y k ij Ux k ij, k K, (i, j) E (7) y k ij 0, k K, (i, j) E (8) In (6) (8), U is a sufficiently large number to satisfy U max c ij. By the limitation of (6), if x k ij = 0, then yk ij b k U, and if x k ij = 1, then yk ij b k. Equation (7) forces yij k 0 if xk ij = 0, and yk ij U if xk ij = 1. Finally, (8) ensures that yij k is not a nonnegative variable. Overall, if xk ij = 0, then yij k = 0 and if xk ij = 1, then b k yij k U. xk ij b k can be replaced with yij k, because yk ij is minimized by the objective function and it matches b k in the optimal solution. Next, we use F ij = 1 A ij to linearize (5). Here, we use Bernoulli s inequality for an approximate calculation of path available probability. F ij means the probability of failure of Fig. 2. Example of Variable capacity allocation. (i, j) from time T ij to time T ij + t. Equations (9) (11) show the rewriting of (5) with F ij. A k = (1 F ij ) xk ij (9) A k = (1 F 11 ) xk 11 (1 F12 ) xk 12 (1 F13 ) xk 13 (10) A k = 1 F ij x k ij + (higher order terms) (11) Assuming F ij 1, we can ignore the second and higher terms on F ij, so (11) can be rewritten as (12). A k 1 F ij x k ij = 1 (1 A ij ) x k ij (12) Available probability calculated by (12) is approximated to be smaller than the exact value. From the above, (5) can be linearized and represented as (13). b k (1 A ij ) b k x k ij B req (13) k K k K IV. VARIABLE CAPACITY ALLOCATION The higher the link failure rate is, the larger capacity ECGR tries to allocate, compared to that requested in order to meet the expected capacity requirement. This leads to increasing the blocking probability of connection requests. We introduce the variable capacity allocation (VCA) to deal with this problem. VCA allows to change the allocated capacity and the connection holding time while keeping the total transmitted capacity during the connection. In general, it costs more when allocating higher capacity for a connection. However, allocating larger capacity and reducing the connection holding time in ECGR may reduce the total allocated resources. According to (2), the available probability increases when the connection holding time is reduced. VCA shorten the connection holding time to reduce spare capacity for guaranteeing expected capacity under high link failure rate environment. Figure 2 shows the example of VCA. Given the requested capacity 15 MB/s, the holding time 4s, and the path available probability 0.6, ECGR allocates 25MB/s on the path. The capacity is 1.7 times higher than that of requested. When VCA is applied, the connection holding time is shortened by half and requested capacity is doubled for maintaining the total

4 Fig. 3. NSFNET topology used in the simulation. transmitted capacity. As a result, the ECGR allocates 34 MB/s that is only 1.2 times higher than that of requested. Fig. 4. Bandwidth blocking probability performance of expected capacity guaranteed routing, minimum cost flow routing and conventional protection method. V. SIMULATION AND DISCUSSION We evaluate the performance of ECGR. We measure the bandwidth blocking probability (BBP), the transmitted capacity achieved ratio (TCAR), and the ratio of total transmitted capacity to total requested capacity. BBP is defined as the total requested capacity of rejected connections divided by the total requested capacity of all connections. Lower BBP means that more connections can be accepted into the network. TCAR is defined as the number of connections, each of which total transmitted capacity along the allocated path is more than the product of the allocated capacity and the connection holding time, divided by the number of accepted connections. TCAR expresses the proportion of accepted connections that are successfully transmitted. To confirm the effect of guaranteeing the expected capacity, we show the ratio of total transmitted capacity to total requested capacity. Unlike TCAR, the ratio of total transmitted capacity to total requested capacity takes account of the transmitted capacity of the connections that fail to meet the capacity requirement. We use two conventional routing methods to compare with. One is the routing by MCFP that shows the conventional method without using backup path. The other is the link disjoint two-path routing, which represents the conventional protection method. We used NSFNET with 14 nodes and 21 links as a topology shown in Figure 3. The number in each node indicates the node number and the number beside each link shows the length of the link. The arrival of connections follows a Poisson distribution and the connection holding time is geometrically distributed with a mean of 4 seconds. We conduct simulations for different number of demands. In each simulation, 5,000 demands are generated randomly, and, source and destination nodes for each demand are randomly selected. The requested capacity B req is randomly chosen from 2, 4, 8, and 16. The maximum number of paths is set to 3. The initial capacity of each link is set to 100 and the available link capacity decreases with requests accepted into the network. The failure rate of each link is dynamically changed according to the Weibull distribution [10], which is commonly used for modeling system failure rates. The failure rate function λ(t) of the Weibull distribution is represented by, λ(t) = m η m tm 1. (14) The shape parameter m is set to 5 to simulate the wear-out failures. The scale parameter η, which indicates the average lifetime, is 10 and 20. The recovery time of links is geometric distributed with mean of 5 seconds and, after recovery, the age of link is reset to 0. A. Comparison in bandwidth blocking probability Figure 4 shows the BBP performance of the expected capacity guaranteed routing, minimum-cost flow routing, and the conventional protection method at the different numbers of the arrival connections and the scale parameter η = 10, 20. In both of η = 10 and 20 cases, the BBP of ECGR without VCA is the highest and that of the minimum cost flow routing is the lowest. This is because that, in minimum cost flow routing, the connection is accepted as long as the available capacity is equal to or larger than the requested capacity, whereas, in ECGR, blocking occurs when there is no sufficient capacity to satisfy the requested expected capacity. Comparing the BBPs of η = 10 and 20, the difference in BBP of ECGR is larger than that of MCFP and the protection method. This means the BBP of ECGR increases as the average failure rate becomes high. By applying VCA, we can find that the BBP of ECGR is reduced by 27% in average at η = 10 and 21% at η = 20. B. Comparison in transmitted capacity achieved ratio Figure 5 shows the TCAR of the expected capacity guaranteed routing, minimum cost flow routing and the conventional protection method at the different numbers of the arrival connections and the scale parameter η = 10, 20. ECGR achieves higher TCAR than MCFP and the protection method, and keeps about 90% of TCAR regardless of the average failure rate and with or without VCA. In contrast, TCARs of both MCFP and the protection method, fall sharply when the average failure rate is increased. The results indicate that most of the accepted connections transmitted successfully without being affected by link failures by ensuring the expected value of allocated capacity.

5 Fig. 5. Transmitted capacity achieved ratio performance of expected capacity guaranteed routing, minimum cost flow routing, and conventional protection method. allocation causes a reduction in the number of connections that can be accepted into the network and lower the performance quality. This paper proposed the routing method that guarantees the expected value of the allocated capacity based on link failure rate which is dynamically changed. We developed the MILP model for ECGR, and introduced VCA method to improve the bandwidth blocking probability. The simulation results showed that ECGR marks higher TCAR compared to conventional methods and keeps 90% of TCAR regardless of how high the average failure rate is. The results presented that the BBP of ECGR gets high under high failure rate. We confirmed that VCA method reduces BBP of ECGR approximately 20 30% and BBP of ECGR with VCA at η = 20 is lower than that of the protection method when the average number of arrival connection is more than 25. We measured the ratio of total transmitted capacity to total requested capacity and confirmed that ECGR allocates the sufficient capacity to transmit the requested capacity. ACKNOWLEDGMENT This work is partly supported by the R&D of innovative optical network technologies for supporting new social infrastructure project funded by the Ministry of Internal Affairs and Communications Japan. Fig. 6. Ratio of total transmitted capacity to total requested capacity of expected capacity guaranteed routing, minimum cost flow routing, and conventional protection method. C. Comparison in ratio of total transmitted capacity to total requested capacity Figure 6 shows the ratio of total transmitted capacity to total requested capacity of the expected capacity guaranteed routing, minimum cost flow routing and the conventional protection method at the different number of the arrival connections and the scale parameter η = 10. The ratio of total transmitted capacity to total requested capacity of ECGR is higher than 1. This means that ECGR surely allocates plenty of capacity to guarantee the expected capacity and the route selected by ECGR can transmit the requested capacity on average. The ratio of total transmitted capacity to total requested capacity of conventional methods is below 1. This means that those methods can not secure sufficient capacity to meet the requirements. We observe 20% difference between the ratio of total transmitted capacity to total requested capacity of ECGR with and without VCA. It is considered the difference is caused by the error in an approximate calculation in (9) (11). VI. CONCLUSION The conventional path protection method does not consider the failure probability of network links. This leads to the excessive or insufficient capacity allocation. An irrelevant capacity REFERENCES [1] Cisco, The zettabyte era: Trends and analysis, (Date last accessed 9-Aug-2018). [Online]. Available: Toc [2] K. A. Tse, AT&Ts photonic backbone design options, in 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference, March 2010, pp [3] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, Survivable wdm mesh networks, Journal of Lightwave Technology, vol. 21, no. 4, pp , April [4] S. S. Lumetta, M. Medard, and Y.-C. Tseng, Capacity versus robustness: a tradeoff for link restoration in mesh networks, Journal of Lightwave Technology, vol. 18, no. 12, pp , December [5] J. Zhong, W. Guo, and Z. Wang, Study on network failure prediction based on alarm logs, in rd MEC International Conference on Big Data and Smart City (ICBDSC), March 2016, pp [6] K. Ishibashi, T. Hayashi, and K. Shiomoto, Advanced network design and operation by machine learning and data analysis, (written in Japanese) NTT Technical Journal, vol. 27, no. 12, pp , December [7] Y. Zhang, Y. Shi, C. Li, J. Xiao, B. Wu, H. Wen, and X. Jiang, Cloud service routing in wdm networks with awareness on delay and link failure probability, in th International Conference on Optical Communications and Networks (ICOCN), Nov 2014, pp [8] S. Sekigawa, E. Oki, T. Sato, S. Okamoto, and N. Yamanaka, Expected capacity guaranteed routing method based on failure probability of links, in 2017 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), June 2017, pp [9] M. Johnston, H. W. Lee, and E. Modiano, A robust optimization approach to backup network design with random failures, IEEE/ACM Transactions on Networking, vol. 23, no. 4, pp , August [10] G. S. Mudholkar and D. K. Srivastava, Exponentiated weibull family for analyzing bathtub failure-rate data, IEEE Transactions on Reliability, vol. 42, no. 2, pp , June 1993.

Recover-Forwarding Method in Link Failure with Pre-established Recovery Table for Wide Area Ethernet

Recover-Forwarding Method in Link Failure with Pre-established Recovery Table for Wide Area Ethernet Recover-Forwarding Method in Link Failure with Pre-established Recovery Table for Wide Area Ethernet Midori Terasawa, Masahiro Nishida, Sho Shimizu, Yutaka Arakawa, Satoru Okamoto and Naoaki Yamanaka Department

More information

Experimental evaluation of fault recovery methods in Elastic Lambda Aggregation Network

Experimental evaluation of fault recovery methods in Elastic Lambda Aggregation Network Experimental evaluation of fault recovery methods in Elastic Lambda Aggregation Network Takehiro Sato a), Yoshihiro Isaji, Yusuke Nakajima, Satoru Okamoto, and Naoaki Yamanaka Graduate School of Science

More information

Network Topology Control and Routing under Interface Constraints by Link Evaluation

Network Topology Control and Routing under Interface Constraints by Link Evaluation Network Topology Control and Routing under Interface Constraints by Link Evaluation Mehdi Kalantari Phone: 301 405 8841, Email: mehkalan@eng.umd.edu Abhishek Kashyap Phone: 301 405 8843, Email: kashyap@eng.umd.edu

More information

Analysis and Algorithms for Partial Protection in Mesh Networks

Analysis and Algorithms for Partial Protection in Mesh Networks Analysis and Algorithms for Partial Protection in Mesh Networks Greg uperman MIT LIDS Cambridge, MA 02139 gregk@mit.edu Eytan Modiano MIT LIDS Cambridge, MA 02139 modiano@mit.edu Aradhana Narula-Tam MIT

More information

DYNAMIC RECONFIGURATION OF LOGICAL TOPOLOGIES IN WDM-BASED MESH NETWORKS

DYNAMIC RECONFIGURATION OF LOGICAL TOPOLOGIES IN WDM-BASED MESH NETWORKS DYNAMIC RECONFIGURATION OF LOGICAL TOPOLOGIES IN WDM-BASED MESH NETWORKS Shinya Ishida Graduate School of Information Science and Technology, Osaka University Machikaneyama 1-32, Toyonaka, Osaka, 0-0043

More information

New QoS Measures for Routing and Wavelength Assignment in WDM Networks

New QoS Measures for Routing and Wavelength Assignment in WDM Networks New QoS Measures for Routing and Wavelength Assignment in WDM Networks Shi Zhong Xu and Kwan L. Yeung Department of Electrical & Electronic Engineering The University of Hong Kong Pokfulam, Hong Kong Abstract-A

More information

A Novel Class-based Protection Algorithm Providing Fast Service Recovery in IP/WDM Networks

A Novel Class-based Protection Algorithm Providing Fast Service Recovery in IP/WDM Networks A Novel Class-based Protection Algorithm Providing Fast Service Recovery in IP/WDM Networks Wojciech Molisz and Jacek Rak Gdansk University of Technology, G. Narutowicza 11/12, Pl-8-952 Gdansk, Poland

More information

A Modified Heuristic Approach of Logical Topology Design in WDM Optical Networks

A Modified Heuristic Approach of Logical Topology Design in WDM Optical Networks Proceedings of the International Conference on Computer and Communication Engineering 008 May 3-5, 008 Kuala Lumpur, Malaysia A Modified Heuristic Approach of Logical Topology Design in WDM Optical Networks

More information

Multi-layer Network Recovery: Avoiding Traffic Disruptions Against Fiber Failures

Multi-layer Network Recovery: Avoiding Traffic Disruptions Against Fiber Failures Multi-layer Network Recovery: Avoiding Traffic Disruptions Against Fiber Failures Anna Urra, Eusebi Calle, and Jose L. Marzo Institute of Informatics and Applications (IIiA), University of Girona, Girona

More information

A NEW APPROACH FOR BROADBAND BACKUP LINK TO INTERNET IN CAMPUS NETWORK ENVIRONMENT

A NEW APPROACH FOR BROADBAND BACKUP LINK TO INTERNET IN CAMPUS NETWORK ENVIRONMENT A NEW APPROACH FOR BROADBAND BACKUP LINK TO INTERNET IN CAMPUS NETWORK ENVIRONMENT Mohd Nazri Ismail Faculty of MIIT, University of Kuala Lumpur (UniKL), MALAYSIA, mnazrii@miit.unikl.edu.my Abstract Most

More information

Report on the successful demonstration of innovative basic technologies for future optical access network Elastic Lambda Aggregation Network

Report on the successful demonstration of innovative basic technologies for future optical access network Elastic Lambda Aggregation Network April 25, 2017 Nippon Telegraph and Telephone Corporation Hitachi, Ltd. Oki Electric Industry Co., Ltd. Keio University KDDI Research, Inc. Furukawa Electric Co., Ltd. Report on the successful demonstration

More information

ADAPTIVE LINK WEIGHT ASSIGNMENT AND RANDOM EARLY BLOCKING ALGORITHM FOR DYNAMIC ROUTING IN WDM NETWORKS

ADAPTIVE LINK WEIGHT ASSIGNMENT AND RANDOM EARLY BLOCKING ALGORITHM FOR DYNAMIC ROUTING IN WDM NETWORKS ADAPTIVE LINK WEIGHT ASSIGNMENT AND RANDOM EARLY BLOCKING ALGORITHM FOR DYNAMIC ROUTING IN WDM NETWORKS Ching-Lung Chang, Yan-Ying, Lee, and Steven S. W. Lee* Department of Electronic Engineering, National

More information

OPTICAL NETWORKS. Virtual Topology Design. A. Gençata İTÜ, Dept. Computer Engineering 2005

OPTICAL NETWORKS. Virtual Topology Design. A. Gençata İTÜ, Dept. Computer Engineering 2005 OPTICAL NETWORKS Virtual Topology Design A. Gençata İTÜ, Dept. Computer Engineering 2005 Virtual Topology A lightpath provides single-hop communication between any two nodes, which could be far apart in

More information

Progress Report No. 15. Shared Segments Protection

Progress Report No. 15. Shared Segments Protection NEXT GENERATION NETWORK (NGN) AVAILABILITY & RESILIENCE RESEARCH Progress Report No. 15 Shared Segments Protection The University of Canterbury Team 18 April 2006 Abstract As a complement to the Canterbury

More information

Analysis and Algorithms for Partial Protection in Mesh Networks

Analysis and Algorithms for Partial Protection in Mesh Networks Technical Report, April 2011 Analysis and Algorithms for Partial Protection in Mesh Networks Greg uperman MIT LIDS Cambridge, MA 02139 gregk@mit.edu Eytan Modiano MIT LIDS Cambridge, MA 02139 modiano@mit.edu

More information

REDUCTION OF BLOCKING PROBABILITY IN SHARED PROTECTED OPTICAL NETWORK

REDUCTION OF BLOCKING PROBABILITY IN SHARED PROTECTED OPTICAL NETWORK REDUCTION OF BLOCKING PROBABILITY IN SHARED PROTECTED OPTICAL NETWORK Nirmala L Devi 1, V M Pandharipande 2, 1 Department of Electronics and Communications Engineering, Osmania University, Hyderabad, India-500007.

More information

Analysis and Algorithms for Partial Protection in Mesh Networks

Analysis and Algorithms for Partial Protection in Mesh Networks 1 Analysis and Algorithms for Partial Protection in Mesh Networks Greg uperman, Student Member, IEEE, Eytan Modiano, Fellow, IEEE, and Aradhana Narula-Tam, Member, IEEE Abstract This paper develops a novel

More information

A Novel Optimization Method of Optical Network Planning. Wu CHEN 1, a

A Novel Optimization Method of Optical Network Planning. Wu CHEN 1, a A Novel Optimization Method of Optical Network Planning Wu CHEN 1, a 1 The engineering & technical college of chengdu university of technology, leshan, 614000,china; a wchen_leshan@126.com Keywords:wavelength

More information

Performance Analysis of Storage-Based Routing for Circuit-Switched Networks [1]

Performance Analysis of Storage-Based Routing for Circuit-Switched Networks [1] Performance Analysis of Storage-Based Routing for Circuit-Switched Networks [1] Presenter: Yongcheng (Jeremy) Li PhD student, School of Electronic and Information Engineering, Soochow University, China

More information

Efficient path protection using Bi-directional WDM transmission technology. Title

Efficient path protection using Bi-directional WDM transmission technology. Title Title Efficient path protection using Bi-directional WDM transmission technology Author(s) Li, J; Yeung, KL Citation Globecom - Ieee Global Telecommunications Conference, 2005, v. 4, p. 1910-1914 Issued

More information

Adaptive Weight Functions for Shortest Path Routing Algorithms for Multi-Wavelength Optical WDM Networks

Adaptive Weight Functions for Shortest Path Routing Algorithms for Multi-Wavelength Optical WDM Networks Adaptive Weight Functions for Shortest Path Routing Algorithms for Multi-Wavelength Optical WDM Networks Tibor Fabry-Asztalos, Nilesh Bhide and Krishna M. Sivalingam School of Electrical Engineering &

More information

Simulation Analysis of Linear Programming Based Load Balancing Algorithms for Routers

Simulation Analysis of Linear Programming Based Load Balancing Algorithms for Routers Simulation Analysis of Linear Programming Based Load Balancing Algorithms for Routers School of Computer Science & IT Devi Ahilya University, Indore ABSTRACT The work in this paper is the extension of

More information

A priority based dynamic bandwidth scheduling in SDN networks 1

A priority based dynamic bandwidth scheduling in SDN networks 1 Acta Technica 62 No. 2A/2017, 445 454 c 2017 Institute of Thermomechanics CAS, v.v.i. A priority based dynamic bandwidth scheduling in SDN networks 1 Zun Wang 2 Abstract. In order to solve the problems

More information

Efficient Singlecast / Multicast Method For Active Optical Access Network Using PLZT High-speed Optical Switches

Efficient Singlecast / Multicast Method For Active Optical Access Network Using PLZT High-speed Optical Switches Efficient Singlecast / Multicast Method For Active Optical Access Network Using PLZT High-speed Optical Switches Kunitaka Ashizawa, Kazumasa Tokuhashi, Daisuke Ishii, Satoru Okamoto, Naoaki Yamanaka and

More information

Design Methodologies and Algorithms for Survivable C-RAN

Design Methodologies and Algorithms for Survivable C-RAN 16 Regular papers ONDM 218 Design Methodologies and Algorithms for Survivable C-RAN Bahare M. Khorsandi, Federico Tonini, Carla Raffaelli DEI, University of Bologna Viale Risorgimento 2, 4136 Bologna,

More information

Candidate-Cycle-based Heuristic Algorithm for Node-and-Link Protection of Dynamic Multicast Traffic in Optical DWDM Networks

Candidate-Cycle-based Heuristic Algorithm for Node-and-Link Protection of Dynamic Multicast Traffic in Optical DWDM Networks Candidate-Cycle-based Heuristic Algorithm for Node-and-Link Protection of Dynamic Multicast Traffic in Optical DWDM Networks Ahmed Frikha, Samer Lahoud, and Bernard Cousin University of Rennes 1, IRISA,

More information

A New Pool Control Method for Boolean Compressed Sensing Based Adaptive Group Testing

A New Pool Control Method for Boolean Compressed Sensing Based Adaptive Group Testing Proceedings of APSIPA Annual Summit and Conference 27 2-5 December 27, Malaysia A New Pool Control Method for Boolean Compressed Sensing Based Adaptive roup Testing Yujia Lu and Kazunori Hayashi raduate

More information

PAPER Two-Way Release Message Transmission and Its Wavelength Selection Rules for Preemption in OBS Networks

PAPER Two-Way Release Message Transmission and Its Wavelength Selection Rules for Preemption in OBS Networks IEICE TRANS. COMMUN., VOL.E90 B, NO.5 MAY 2007 1079 PAPER Two-Way Release Message Transmission and Its Wavelength Selection Rules for Preemption in OBS Networks Takuji TACHIBANA a) and Shoji KASAHARA b),

More information

Photonic MPLS Network Architecture Based on Hikari-Router [Invited]

Photonic MPLS Network Architecture Based on Hikari-Router [Invited] Photonic MPLS Network Architecture Based on Hikari-Router [Invited] Naoaki Yamanaka, Member, IEEE "IT Network Innovation Laboratories, 3-9-1 1 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan E-mail: yamanaka.naoaki@lab.ntt.co.jp

More information

Diversity Coded 5G Fronthaul Wireless Networks

Diversity Coded 5G Fronthaul Wireless Networks IEEE Wireless Telecommunication Symposium (WTS) 2017 Diversity Coded 5G Fronthaul Wireless Networks Nabeel Sulieman, Kemal Davaslioglu, and Richard D. Gitlin Department of Electrical Engineering University

More information

A Novel Efficient Design of Survivable WDM Mesh Networks

A Novel Efficient Design of Survivable WDM Mesh Networks 1684 JOURNAL OF COMPUTERS, VOL. 9, NO. 7, JULY 2014 A Novel Efficient Design of Survivable WDM Mesh Networks HONG HUI LI, XUE LIANG FU College of Computer and Information Engineering Inner Mongolia Agricultural

More information

Fast Link-Disjoint Path Algorithm on Parallel Reconfigurable Processor DAPDNA-2

Fast Link-Disjoint Path Algorithm on Parallel Reconfigurable Processor DAPDNA-2 Fast Link-Disjoint Path Algorithm on Parallel Reconfigurable Processor DAPDNA-2 Taku KIHARA, Sho SHIMIZU, Yutaka ARAKAWA, Naoaki YAMANAKA, Kosuke SHIBA Department of Information and Computer Science, Faculty

More information

Automatic Service and Protection Path Computation - A Multiplexing Approach

Automatic Service and Protection Path Computation - A Multiplexing Approach Automatic Service and Protection Path Computation - A Multiplexing Approach Loay Alzubaidi 1, Ammar El Hassan 2, Jaafar Al Ghazo 3 1 Department of Computer Engineering & Science, Prince Muhammad bin Fahd

More information

Optical Communications and Networking 朱祖勍. Nov. 27, 2017

Optical Communications and Networking 朱祖勍. Nov. 27, 2017 Optical Communications and Networking Nov. 27, 2017 1 What is a Core Network? A core network is the central part of a telecommunication network that provides services to customers who are connected by

More information

Cost-based Pricing for Multicast Streaming Services

Cost-based Pricing for Multicast Streaming Services Cost-based Pricing for Multicast Streaming Services Eiji TAKAHASHI, Takaaki OHARA, Takumi MIYOSHI,, and Yoshiaki TANAKA Global Information and Telecommunication Institute, Waseda Unviersity 29-7 Bldg.,

More information

A Power Route Reservation System toward Energy-on-Demand Home Networking

A Power Route Reservation System toward Energy-on-Demand Home Networking A Power Route Reservation System toward Energy-on-Demand Home Networking work-in-progress Youichi Koyama Trans New Technology, inc Kyoto Laboratory Tukihoko-cho, Shimogyo-ku Kyoto, 6008492, Japan koyama@trans-nt.com

More information

On Efficient Protection Design for Dynamic Multipath Provisioning in Elastic Optical Networks

On Efficient Protection Design for Dynamic Multipath Provisioning in Elastic Optical Networks On Efficient Protection Design for Dynamic Multipath Provisioning in Elastic Optical Networks Xiaoliang Chen, Shilin Zhu,DiChen, Shuguang Hu, Chang Li, Zuqing Zhu School of Information Science and Technology,

More information

A robust optimization approach to backup network design with random failures

A robust optimization approach to backup network design with random failures A robust optimization approach to backup network design with random failures The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

PAPER Performance Evaluation of Dynamic Multi-Layer Routing Schemes in Optical IP Networks

PAPER Performance Evaluation of Dynamic Multi-Layer Routing Schemes in Optical IP Networks 1577 PAPER Performance Evaluation of Dynamic Multi-Layer Routing Schemes in Optical IP Networks Eiji OKI a),koheishiomoto, Masaru KATAYAMA, Wataru IMAJUKU, Naoaki YAMANAKA, and Yoshihiro TAKIGAWA, Members

More information

Distributed Traffic Adaptive Wavelength Routing in IP-Over- WDM networks

Distributed Traffic Adaptive Wavelength Routing in IP-Over- WDM networks Distributed Traffic Adaptive Wavelength Routing in IP-Over- WDM networks Balaji Palanisamy, T. Siva Prasad, N.Sreenath 1 Department of Computer Science & Engineering and Information technology Pondicherry

More information

TRAFFIC GROOMING WITH BLOCKING PROBABILITY REDUCTION IN DYNAMIC OPTICAL WDM NETWORKS

TRAFFIC GROOMING WITH BLOCKING PROBABILITY REDUCTION IN DYNAMIC OPTICAL WDM NETWORKS TRAFFIC GROOMING WITH BLOCKING PROBABILITY REDUCTION IN DYNAMIC OPTICAL WDM NETWORKS K.Pushpanathan 1, Dr.A.Sivasubramanian 2 1 Asst Prof, Anand Institute of Higher Technology, Chennai-603103 2 Prof &

More information

Multi-layer Restoration in Hierarchical IP/MPLS over WSON Networks

Multi-layer Restoration in Hierarchical IP/MPLS over WSON Networks Multi-layer Restoration in Hierarchical IP/MPLS over WSON Networks F. Muñoz, V. Lopez, O. González de Dios, J.P. Fernández-Palacios. Telefónica I+D c/ Don Ramón de la Cruz, 84. 286, Spain Abstract Network

More information

254 IEEE TRANSACTIONS ON RELIABILITY, VOL. 56, NO. 2, JUNE 2007

254 IEEE TRANSACTIONS ON RELIABILITY, VOL. 56, NO. 2, JUNE 2007 254 IEEE TRANSACTIONS ON RELIABILITY, VOL. 56, NO. 2, JUNE 2007 A Scalable Path Protection Mechanism for Guaranteed Network Reliability Under Multiple Failures Changcheng Huang, Senior Member, IEEE, Minzhe

More information

Dynamic service Allocation with Protection Path

Dynamic service Allocation with Protection Path www.ijcsi.org 115 Dynamic service Allocation with Protection Path Loay Alzubaidi Department of Computer Engineering & Science, Prince Muhammad bin Fahd University AL-Khobar, Saudi Arabia Abstract Path

More information

A Network Optimization Model for Multi-Layer IP/MPLS over OTN/DWDM Networks

A Network Optimization Model for Multi-Layer IP/MPLS over OTN/DWDM Networks A Network Optimization Model for Multi-Layer IP/MPLS over OTN/DWDM Networks Iyad Katib and Deep Medhi Computer Science & Electrical Engineering Department University of Missouri-Kansas City, USA {IyadKatib,

More information

Design and Implementation of GMPLS-basd Optical Slot Switching Network with PLZT High-speed Optical Switch

Design and Implementation of GMPLS-basd Optical Slot Switching Network with PLZT High-speed Optical Switch Design and Implementation of GMPLS-basd Optical Switching Network with PLZT High-speed Optical Switch Teruo Kasahara, Masahiro Hayashitani, Yutaka rakawa, Satoru Okamoto and Naoaki Yamanaka Dept. of Information

More information

Delayed reservation decision in optical burst switching networks with optical buffers

Delayed reservation decision in optical burst switching networks with optical buffers Delayed reservation decision in optical burst switching networks with optical buffers G.M. Li *, Victor O.K. Li + *School of Information Engineering SHANDONG University at WEIHAI, China + Department of

More information

LSP placement in an MPLS-TP mesh network with shared mesh protection mechanism

LSP placement in an MPLS-TP mesh network with shared mesh protection mechanism LSP placement in an MPLS-TP mesh network with shared mesh protection mechanism CLÁUDIO ROBERTO FERREIRA COSTA, WAGNER LUIZ ZUCCHI Escola Politécnica Departamento de Engenharia de Sistemas Eletrônicos Universidade

More information

RWA on Scheduled Lightpath Demands in WDM Optical Transport Networks with Time Disjoint Paths

RWA on Scheduled Lightpath Demands in WDM Optical Transport Networks with Time Disjoint Paths RWA on Scheduled Lightpath Demands in WDM Optical Transport Networks with Time Disjoint Paths Hyun Gi Ahn, Tae-Jin Lee, Min Young Chung, and Hyunseung Choo Lambda Networking Center School of Information

More information

PATH SPLITTING FOR VIRTUAL NETWORK EMBEDDING IN ELASTIC OPTICAL NETWORKS

PATH SPLITTING FOR VIRTUAL NETWORK EMBEDDING IN ELASTIC OPTICAL NETWORKS PATH SPLITTING FOR VIRTUAL NETWORK EMBEDDING IN ELASTIC OPTICAL NETWORKS Badr Oulad Nassar and Takuji Tachibana Graduate School of Engineering, University of Fukui, Fukui City, Japan ABSTRACT In elastic

More information

Fault Tolerant System for Sparse Traffic Grooming in Optical WDM Mesh Networks Using Combiner Queue

Fault Tolerant System for Sparse Traffic Grooming in Optical WDM Mesh Networks Using Combiner Queue Fault Tolerant System for Sparse Traffic Grooming in Optical WDM Mesh Networks Using Combiner Queue Sandip R. Shinde Research Scholar, Sathyabama University, Chennai & Assistant Professor, Vishwakarma

More information

A Medium Access Control Protocol with Retransmission using NACK and Directional Antennas for Broadcasting in Wireless Ad-Hoc Networks

A Medium Access Control Protocol with Retransmission using NACK and Directional Antennas for Broadcasting in Wireless Ad-Hoc Networks A Medium Access Control Protocol with Retransmission using NACK and Directional Antennas for Broadcasting in Wireless Ad-Hoc Networks Yoriko Utsunomiya, Michito Takahashi, Masaki Bandai, and Iwao Sasase

More information

Splitter Placement in All-Optical WDM Networks

Splitter Placement in All-Optical WDM Networks plitter Placement in All-Optical WDM Networks Hwa-Chun Lin Department of Computer cience National Tsing Hua University Hsinchu 3003, TAIWAN heng-wei Wang Institute of Communications Engineering National

More information

Available online at ScienceDirect

Available online at   ScienceDirect Available online at www.sciencedirect.com ScienceDirect Procedia Technology 0 ( 0 ) 900 909 International Conference on Computational Intelligence: Modeling, Techniques and Applications (CIMTA-0) Multicast

More information

Incorporating Protection Mechanisms in the Dynamic Multi-Layer Routing Schemes

Incorporating Protection Mechanisms in the Dynamic Multi-Layer Routing Schemes Incorporating Protection Mechanisms in the Dynamic Multi-Layer Routing Schemes Anna Urra, Eusebi Calle, Jose L. Marzo and Pere Vila Institute of Informatics and Applications (IIiA), University of Girona,

More information

Design of Hierarchical Crossconnect WDM Networks Employing a Two-Stage Multiplexing Scheme of Waveband and Wavelength

Design of Hierarchical Crossconnect WDM Networks Employing a Two-Stage Multiplexing Scheme of Waveband and Wavelength 166 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 1, JANUARY 2002 Design of Hierarchical Crossconnect WDM Networks Employing a Two-Stage Multiplexing Scheme of Waveband and Wavelength

More information

Survivable Multipath Provisioning in OFDM-Based Flexible Optical Networks

Survivable Multipath Provisioning in OFDM-Based Flexible Optical Networks Survivable Multipath Provisioning in OFDM-Based Flexible Optical Networks Nan Xiao and Lu Ruan Department of Computer Science Iowa Stat University, Ames, IA 11 Email: {nxiao, ruanlu}@iastate.edu Abstract

More information

Improving User Capacity and Disaster Recovery Time in IP Telephone Service Systems

Improving User Capacity and Disaster Recovery Time in IP Telephone Service Systems Improving Capacity and Disaster Recovery Time in IP Telephone Service Systems Hiroshi Shibata, Kouki Minamida, Hiroshi Miyao, Takashi Nambu, and Toru Takahashi Abstract The NTT Group is working on improving

More information

Basic Concepts And Future Directions Of Road Network Reliability Analysis

Basic Concepts And Future Directions Of Road Network Reliability Analysis Journal of Advanced Transportarion, Vol. 33, No. 2, pp. 12.5-134 Basic Concepts And Future Directions Of Road Network Reliability Analysis Yasunori Iida Background The stability of road networks has become

More information

The Design and Performance Analysis of QoS-Aware Edge-Router for High-Speed IP Optical Networks

The Design and Performance Analysis of QoS-Aware Edge-Router for High-Speed IP Optical Networks The Design and Performance Analysis of QoS-Aware Edge-Router for High-Speed IP Optical Networks E. Kozlovski, M. Düser, R. I. Killey, and P. Bayvel Department of and Electrical Engineering, University

More information

WDM Network Provisioning

WDM Network Provisioning IO2654 Optical Networking WDM Network Provisioning Paolo Monti Optical Networks Lab (ONLab), Communication Systems Department (COS) http://web.it.kth.se/~pmonti/ Some of the material is taken from the

More information

Toward the joint design of electronic and optical layer protection

Toward the joint design of electronic and optical layer protection Toward the joint design of electronic and optical layer protection Massachusetts Institute of Technology Slide 1 Slide 2 CHALLENGES: - SEAMLESS CONNECTIVITY - MULTI-MEDIA (FIBER,SATCOM,WIRELESS) - HETEROGENEOUS

More information

Evaluating multicast routing algorithms performance and execution time

Evaluating multicast routing algorithms performance and execution time Evaluating multicast routing algorithms performance and execution time DAN MANCAS ECATERINA - IRINA MANOLE NICU ENESCU Computer and Communication Engineering Department Faculty of Automation, Computers

More information

An Ant Colony Optimization Implementation for Dynamic Routing and Wavelength Assignment in Optical Networks

An Ant Colony Optimization Implementation for Dynamic Routing and Wavelength Assignment in Optical Networks An Ant Colony Optimization Implementation for Dynamic Routing and Wavelength Assignment in Optical Networks Timothy Hahn, Shen Wan March 5, 2008 Montana State University Computer Science Department Bozeman,

More information

SPARE CAPACITY MODELLING AND ITS APPLICATIONS IN SURVIVABLE IP-OVER-OPTICAL NETWORKS

SPARE CAPACITY MODELLING AND ITS APPLICATIONS IN SURVIVABLE IP-OVER-OPTICAL NETWORKS SPARE CAPACITY MODELLING AND ITS APPLICATIONS IN SURVIVABLE IP-OVER-OPTICAL NETWORKS D. Harle, S. Albarrak, F. Ali Department of Electrical and Electronic Engineering, University of Strathclyde, U. K {d.harle,sbarrak,

More information

Synchronous Stream Optical Burst Switching

Synchronous Stream Optical Burst Switching Synchronous Stream Optical Burst Switching Oliver Yu, Ming Liao, and Yuan Cao Department of ECE, University of Illinois at Chicago 851 S. Morgan Street, Chicago, Illinois 60607 oyu@ece.uic.edu Abstract

More information

Sparse Converter Placement in WDM Networks and their Dynamic Operation Using Path-Metric Based Algorithms

Sparse Converter Placement in WDM Networks and their Dynamic Operation Using Path-Metric Based Algorithms Sparse Converter Placement in WDM Networks and their Dynamic Operation Using Path-Metric Based Algorithms Sanjay K. Bose, SMIEEE, Y.N. Singh, MIEEE A.N.V.B. Raju Bhoomika Popat Department of Electrical

More information

Layer-Wise Topology Design for Cost Effective IP-Optical Networks

Layer-Wise Topology Design for Cost Effective IP-Optical Networks Communications and Networ, 2012, 4, 88-92 http://dx.doi.org/10.4236/cn.2012.41012 Published Online February 2012 (http://www.scirp.org/journal/cn) Layer-Wise Topology Design for Cost Effective IP-Optical

More information

Improving the Data Scheduling Efficiency of the IEEE (d) Mesh Network

Improving the Data Scheduling Efficiency of the IEEE (d) Mesh Network Improving the Data Scheduling Efficiency of the IEEE 802.16(d) Mesh Network Shie-Yuan Wang Email: shieyuan@csie.nctu.edu.tw Chih-Che Lin Email: jclin@csie.nctu.edu.tw Ku-Han Fang Email: khfang@csie.nctu.edu.tw

More information

IO2654 Optical Networking. WDM network design. Lena Wosinska KTH/ICT. The aim of the next two lectures. To introduce some new definitions

IO2654 Optical Networking. WDM network design. Lena Wosinska KTH/ICT. The aim of the next two lectures. To introduce some new definitions IO2654 Optical Networking WDM network design Lena Wosinska KTH/ICT 1 The aim of the next two lectures To introduce some new definitions To make you aware about the trade-offs for WDM network design To

More information

PAPER A Disjoint Path Selection Scheme with Shared Risk Link Group Constraints in GMPLS Networks

PAPER A Disjoint Path Selection Scheme with Shared Risk Link Group Constraints in GMPLS Networks IEICE TRANS. COMMUN., VOL.E86 B, NO.8 AUGUST 2003 2455 PAPER A Disjoint Path Selection Scheme with Shared Risk Link Group Constraints in GMPLS Networks Eiji OKI a), Nobuaki MATSUURA,KoheiSHIOMOTO, and

More information

Network Protection Design for MPLS Networks

Network Protection Design for MPLS Networks Network Protection Design for MPLS Networks Gaurav Agrawal, Dijiang Huang, Deep Medhi Computer Science and Electrical Engineering Department University of Missouri-Kansas City, MO 64110, USA Computer Science

More information

DYNAMIC ROUTING WITH PARTIAL INFORMATION IN MESH-RESTORABLE OPTICAL NETWORKS *

DYNAMIC ROUTING WITH PARTIAL INFORMATION IN MESH-RESTORABLE OPTICAL NETWORKS * DYNAMIC ROUTING WITH PARTIAL INFORMATION IN MESH-RESTORABLE OPTICAL NETWORKS * Murari Sridharan, R. Srinivasan and Arun K. Somani Dependable Computing & Networking Laboratory Department of Electrical and

More information

Unavoidable Constraints and Collision Avoidance Techniques in Performance Evaluation of Asynchronous Transmission WDMA Protocols

Unavoidable Constraints and Collision Avoidance Techniques in Performance Evaluation of Asynchronous Transmission WDMA Protocols 1th WEA International Conference on COMMUICATIO, Heraklion, reece, July 3-5, 8 Unavoidable Constraints and Collision Avoidance Techniques in Performance Evaluation of Asynchronous Transmission WDMA Protocols

More information

Modification of an energy-efficient virtual network mapping method for a load-dependent power consumption model

Modification of an energy-efficient virtual network mapping method for a load-dependent power consumption model Modification of an energy-efficient virtual network mapping method for a load-dependent power consumption model HIROMICHI SUGIYAMA YUKINOBU FUKUSHIMA TOKUMI YOKOHIRA The Graduate School of Natural Science

More information

A Route Selection Scheme for Multi-Route Coding in Multihop Cellular Networks

A Route Selection Scheme for Multi-Route Coding in Multihop Cellular Networks A Route Selection Scheme for Multi-Route Coding in Multihop Cellular Networks Hiraku Okada,HitoshiImai, Takaya Yamazato, Masaaki Katayama, Kenichi Mase Center for Transdisciplinary Research, Niigata University,

More information

Risk-Aware Rapid Data Evacuation for Large- Scale Disasters in Optical Cloud Networks

Risk-Aware Rapid Data Evacuation for Large- Scale Disasters in Optical Cloud Networks Risk-Aware Rapid Data Evacuation for Large- Scale Disasters in Optical Cloud Networks Presenter: Yongcheng (Jeremy) Li PhD student, School of Electronic and Information Engineering, Soochow University,

More information

Network Survivability Performance Evaluation with Applications in WDM Networks with Wavelength Conversion

Network Survivability Performance Evaluation with Applications in WDM Networks with Wavelength Conversion Network Survivability Performance Evaluation with Applications in WDM Networks with Wavelength Conversion Manijeh Keshtgary, Fahad A. Al-Zahrani, Anura P. Jayasumana Electrical and Computer Engineering

More information

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks Internet Traffic Characteristics Bursty Internet Traffic Statistical aggregation of the bursty data leads to the efficiency of the Internet. Large Variation in Source Bandwidth 10BaseT (10Mb/s), 100BaseT(100Mb/s),

More information

Enhanced Broadcasting and Code Assignment in Mobile Ad Hoc Networks

Enhanced Broadcasting and Code Assignment in Mobile Ad Hoc Networks Enhanced Broadcasting and Code Assignment in Mobile Ad Hoc Networks Jinfang Zhang, Zbigniew Dziong, Francois Gagnon and Michel Kadoch Department of Electrical Engineering, Ecole de Technologie Superieure

More information

Inconsistency of Logical and Physical Topologies for Overlay Networks and Its Effect on File Transfer Delay

Inconsistency of Logical and Physical Topologies for Overlay Networks and Its Effect on File Transfer Delay Inconsistency of Logical and Physical Topologies for Overlay Networks and Its Effect on File Transfer Delay Yasuo Tamura a, Shoji Kasahara a,, Yutaka Takahashi a, Satoshi Kamei b, and Ryoichi Kawahara

More information

Design of Optical Aggregation Network with Carrier Edge Functions Virtualization

Design of Optical Aggregation Network with Carrier Edge Functions Virtualization Design of Optical Aggregation Network with Carrier Edge Functions Virtualization September 28, 2017 APNOMS2017@Seoul Takashi Miyamura 1, Akira Misawa 2, Jun-ichi Kani 1 1 NTT Laboratories 2 Chitose Institute

More information

WDM Network Provisioning

WDM Network Provisioning IO2654 Optical Networking WDM Network Provisioning Paolo Monti Optical Networks Lab (ONLab), Communication Systems Department (COS) http://web.it.kth.se/~pmonti/ Some of the material is taken from the

More information

On the Role of Weibull-type Distributions in NHPP-based Software Reliability Modeling

On the Role of Weibull-type Distributions in NHPP-based Software Reliability Modeling International Journal of Performability Engineering Vol. 9, No. 2, March 2013, pp. 123-132. RAMS Consultants Printed in India On the Role of Weibull-type Distributions in NHPP-based Software Reliability

More information

Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees

Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees Pouya Ostovari Department of Computer and Information Siences Temple University Philadelphia, Pennsylvania, USA Email: ostovari@temple.edu

More information

Master s Thesis. Title. Supervisor Professor Masayuki Murata. Author Yuki Koizumi. February 15th, 2006

Master s Thesis. Title. Supervisor Professor Masayuki Murata. Author Yuki Koizumi. February 15th, 2006 Master s Thesis Title Cross-Layer Traffic Engineering in IP over WDM Networks Supervisor Professor Masayuki Murata Author Yuki Koizumi February 15th, 2006 Graduate School of Information Science and Technology

More information

Research on Heterogeneous Communication Network for Power Distribution Automation

Research on Heterogeneous Communication Network for Power Distribution Automation 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015) Research on Heterogeneous Communication Network for Power Distribution Automation Qiang YU 1,a*, Hui HUANG

More information

Route Partitioning Scheme for Elastic Optical Networks With Hitless Defragmentation

Route Partitioning Scheme for Elastic Optical Networks With Hitless Defragmentation 356 J. OPT. COMMUN. NETW./VOL. 8, NO. 6/JUNE 2016 Ba et al. Route Partitioning Scheme for Elastic Optical Networks With Hitless Defragmentation Seydou Ba, Bijoy Chand Chatterjee, Satoru Okamoto, Naoaki

More information

WAVELENGTH-DIVISION multiplexed (WDM) optical

WAVELENGTH-DIVISION multiplexed (WDM) optical IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 9, NOVEMBER 2004 1823 A Dynamic Routing Algorithm With Load Balancing Heuristics for Restorable Connections in WDM Networks Lu Ruan, Member,

More information

Performance Evaluation of Various Routing Protocols in MANET

Performance Evaluation of Various Routing Protocols in MANET 208 Performance Evaluation of Various Routing Protocols in MANET Jaya Jacob 1,V.Seethalakshmi 2 1 II MECS,Sri Shakthi Institute of Science and Technology, Coimbatore, India 2 Associate Professor-ECE, Sri

More information

Succeeded: World's fastest 600Gbps per lambda optical. transmission with 587Gbps data transfer

Succeeded: World's fastest 600Gbps per lambda optical. transmission with 587Gbps data transfer (Press release) December 11, 2018 National Institute of Informatics, Research Organization of Information and Systems Nippon Telegraph and Telephone East Corporation Nippon Telegraph and Telephone Corporation

More information

Energy-Efficient Traffic GroominginWDM Networks With Scheduled Time Traffic

Energy-Efficient Traffic GroominginWDM Networks With Scheduled Time Traffic JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 29, NO. 17, SEPTEMBER 1, 2011 2577 Energy-Efficient Traffic GroominginWDM Networks With Scheduled Time Traffic Shuqiang Zhang, Student Member, IEEE, Dong Shen, Student

More information

Shared Protection by Concatenated Rings in Optical WDM Networks

Shared Protection by Concatenated Rings in Optical WDM Networks Shared Protection by Concatenated Rings in Optical WDM Networks Hyunseung Choo, Minhan Son, Min Young Chung, and Tae-Jin Lee School of Information and Communication Engineering Sungkyunkwan University

More information

GA-Based Hybrid Algorithm for MBR Problem of FIPP p-cycles for Node Failure on Survivable WDM Networks

GA-Based Hybrid Algorithm for MBR Problem of FIPP p-cycles for Node Failure on Survivable WDM Networks GA-Based Hybrid Algorithm for MBR Problem of FIPP p-cycles for Node Failure on Survivable WDM Networks Der-Rong Din Department of Computer Science and Information Engineering, National Changhua University

More information

Application-Aware Protection in DWDM Optical Networks

Application-Aware Protection in DWDM Optical Networks Application-Aware Protection in DWDM Optical Networks Hamza Drid, Nasir Ghani, Bernard Cousin To cite this version: Hamza Drid, Nasir Ghani, Bernard Cousin. Application-Aware Protection in DWDM Optical

More information

Performance of Optical Burst Switching Techniques in Multi-Hop Networks

Performance of Optical Burst Switching Techniques in Multi-Hop Networks Performance of Optical Switching Techniques in Multi-Hop Networks Byung-Chul Kim *, You-Ze Cho *, Jong-Hyup Lee **, Young-Soo Choi **, and oug Montgomery * * National Institute of Standards and Technology,

More information

Establishment of Survivable Connections in WDM Networks using Partial Path Protection

Establishment of Survivable Connections in WDM Networks using Partial Path Protection Establishment of Survivable Connections in WDM Networks using Partial Path Protection G. Xue 1, Senior Member, IEEE, W. Zhang 1,J.Tang 1, and K. Thulasiraman 2, Fellow, IEEE Abstract As a generalization

More information

Network Protection with Guaranteed Recovery Times using Recovery Domains

Network Protection with Guaranteed Recovery Times using Recovery Domains Technical Report, July 2012 Network Protection with Guaranteed Recovery Times using Recovery Domains Greg Kuperman MIT LIDS Cambridge, MA 02139 gregk@mit.edu Eytan Modiano MIT LIDS Cambridge, MA 02139

More information

MULTICAST CONNECTION CAPACITY OF WDM SWITCHING NETWORKS WITHOUT WAVELENGTH CONVERSION

MULTICAST CONNECTION CAPACITY OF WDM SWITCHING NETWORKS WITHOUT WAVELENGTH CONVERSION MULTICAST CONNECTION CAPACITY OF WDM SWITCHING NETWORKS WITHOUT WAVELENGTH CONVERSION B. CHIDHAMBARARAJAN a,1 K.KALAMANI a,2 N. NAGARAJAN b,2 S.K.SRIVATSA a,3 Department of Electronics and Communication

More information

A Prototype of a Dynamically Reconfigurable Processor Based Off-loading Engine for Accelerating the Shortest Path Calculation with GNU Zebra

A Prototype of a Dynamically Reconfigurable Processor Based Off-loading Engine for Accelerating the Shortest Path Calculation with GNU Zebra A Prototype of a Dynamically Reconfigurable Processor Based Off-loading Engine for Accelerating the Shortest Path Calculation with GNU Zebra Sho SHIMIZU, Taku KIHARA, Yutaka ARAKAWA, Naoaki YAMANAKA Keio

More information