Prototyping and Evaluation of Mobility First Architecture

Size: px
Start display at page:

Download "Prototyping and Evaluation of Mobility First Architecture"

Transcription

1 Prototyping and Evaluation of Mobility First Architecture Kiran Nagaraja, Ivan Seskar Rutgers, The State University of New Jersey Contact: nkiran (at) winlab (dot) rutgers (dot) edu NSF FIA MobilityFirst Project - EAB Meeting Feb 28, 2011

2 Goals Prototype and demonstrate the working of the Mobility First architecture at Internet scale Focus on application scenarios and solutions that address mobility challenges Identify evaluation and deployment options for overall architecture as well as those to evaluate sub components Address challenges of large scale deployment Emulating realistic topologies and data traffic Target production quality software for live deployment Span multiple campus/testbed sites Opt in users and real applications Feb 28, 2011 Page: 2

3 Phased Approach Context Addressi ng Stack Content Addressi ng Stack Host/Devic e Addressing Stack Encoding/Certifying Layer Global Name Resolution Service (GNRS) Storage Aware Routing Locator X Routing (e.g., GUID based) Context Aware / Late bind Routing Simulation/Emulation Standalone Components Emulation/Limited Testbed Evaluation Platform Cross Layer Integration Prototyping Status Testbed/ Live Deployment Production, Hardware Ready Feb 28, 2011 Page: 3

4 Simulation Emulation More Realism Custom ns 2, ns 3 ONE simulator Click Quagga XORP VDE/Virtual Square Netkit network emulator Openflow Feb 28, 2011 Page: 4

5 Prototype Framework Portable implementation for multiple emulated and real open platforms Initial target: software router with well understood 2 level emulation Routing and other services implemented as user level processes MF Naming, Context OpenFlow Controller MF Routing User Level Control Plane Forwarding Engine Quagga Linux Routing XORP Click OpenFlow software switch/router Commodity Hardware NetFPGA Feb 28, 2011 Page: 5

6 Testbed Deployment Options ORBIT Grid and Outdoor (GENI) Wireless and mobile focus; wired infrastructure significant as well DOME/DieselNet (GENI) Mobile, wireless focus ProtoGENI L2 Gigabit interconnection to GENI core core nodes interconnected by Internet2 backbone ORBIT, DOME, GpENI, Emulab PrimoGENI Large scale network simulator embeddable into GENI PlanetLab + VINI Emulab Pure wired network emulation, most widely distributed Mostly wired with flexible topology and delay/bandwidth control GpENI + VINI 4+ clusters of nodes, with L1 Midwest optical backbone between clusters Feb 28, 2011 Page: 6

7 Evaluation Scenario 1 Core Network Domain 1 Domain 2 Domain 3 Testbeds: PlanetLab VINI ProtoGENI Emulab Multiple domains, core + edge routers, reliable connectivity with redundant paths Explore inter domain routing, global services e.g., GNRS Feb 28, 2011 Page: 7

8 Example Mapping PlanetLab, VINI, I2 Map real topologies onto testbed topology Emulate real network delay, bandwidth using delay nodes, etc. Feb 28, 2011 Page: 8

9 Scenario 2 Edge Only Single Domain Cell tower Handoff WiMAX AP WiFi BTS Testbeds: ORBIT DieselNET Multi homed device Movement Ad hoc network Ad hoc, multiple wireless technologies WiFi, 3G, WiMAX Explore routing with mobility, handoff, multi homing within single domain Feb 28, 2011 Page: 9

10 Sample Mapping: GENI (ORBIT) Feb 28, 2011 Page: 10

11 Scenario 3 Core + Edge Similar to 2, except edge network access services within core. Explore: core edge routing cross layer interaction between global naming and routing services in core storage resources Testbed candidates: ORBIT GENI (outdoor + indoor), ORBIT GENI + ProtoGENI Feb 28, 2011 Page: 11

12 Wireless Edge (4G & WiFI) Goal: Live Edge Core Edge Slice Domain-1 Wireless Edge (4G & WiFI) Domain-2 Inter-domain mobility Domain-3 Entire MobilityFirst stack on network devices Explore inter domain mobility, e.g., emulated as process migration Real traffic through applications: media, social, location, etc. Live slice deployed in multiple sites/campuses with opt in users Feb 28, 2011 Page: 12 Legend Wireless Egde (4G & WiFI) Internet 2 National Lambda Rail OpenFLow Backbones OpenFlow WiMAX ShadowNet Mapping onto GENI Infrastructure (ProtoGENI nodes, Target: OpenFlow large switches, scale GENI Racks, DieselNET busses, WiMAX/outdoor ORBIT nodes) Introduction of End User Services deployments with realistic (throughput, latency) core and multiple edge substrates

13 Work in Progress Evaluation of emulation and testbed options Extraction and mapping of GNRS, Routing algorithms/code from simulation to prototype framework Targeting limited GENI (ORBIT, ProtoGENI) deployment of GNRS by Nov 11 GEC12 Resource investigation on NetFPGA Store/forward scheduling aspects in STAR/CNF routing Feb 28, 2011 Page: 13

MobilityFirst Prototyping and Evaluation. October 6, 2011 WINLAB

MobilityFirst Prototyping and Evaluation. October 6, 2011 WINLAB MobilityFirst Prototyping and Evaluation October 6, 2011 1 Prototyping and Evaluation: Execution Summary Phase 1 Phase 2 Phase 3 Context Addressi ng Stack Content Addressi ng Stack Host/Device Addressing

More information

MobilityFirst Future Internet Architecture. Samuel Nelson

MobilityFirst Future Internet Architecture. Samuel Nelson MobilityFirst Future Internet Architecture Samuel Nelson snelson@winlab.rutgers.edu MobilityFirst Project: Collaborating Institutions (LEA) A. Venkataramani, J. Kurose,. Towsley M. Reiter S. Bannerjee

More information

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NIKSUN WWSMC July 26, 2011

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NIKSUN WWSMC July 26, 2011 MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NIKSUN WWSMC July 26, 2011 Contact: D. Raychaudhuri, Rutgers University Technology Centre of NJ 671 Route 1,

More information

MobilityFirst Architecture and Protocol Evaluation on GENI. November 3, 2011 WINLAB

MobilityFirst Architecture and Protocol Evaluation on GENI. November 3, 2011 WINLAB MobilityFirst Architecture and Protocol Evaluation on GENI November 3, 2011 1 MobilityFirst Project: Collaborating Institutions (LEAD) D. Raychaudhuri, M. Gruteser, W. Trappe, R, Martin, Y. Zhang, I. Seskar,

More information

Introduction. MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet Euroview 2012 July 24,

Introduction. MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet Euroview 2012 July 24, MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet Euroview 2012 July 24, 2012 D. Raychaudhuri, Rutgers University Technology Centre of NJ 671 Route 1, North

More information

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet PIMRC Keynote, Sept 13, 2011

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet PIMRC Keynote, Sept 13, 2011 MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet PIMRC Keynote, Sept 13, 2011 Contact: D. Raychaudhuri, Rutgers University Technology Centre of NJ 671 Route

More information

GENI WiMAX Meso-Scale Deployments and CR-GENI

GENI WiMAX Meso-Scale Deployments and CR-GENI GENI WiMAX Meso-Scale Deployments and CR-GENI Rutgers, The State University of New Jersey www.winlab.rutgers.edu Contact: Ivan Seskar, Associate Director seskar at winlab. rutgers. edu GENI WIMAX KIT AND

More information

Project Title: Open Virtualized WiMAX Base Station Node for GENI Wide-Area Wireless Deployments

Project Title: Open Virtualized WiMAX Base Station Node for GENI Wide-Area Wireless Deployments GENI Project Quarterly Progress Report, Project Title: Open Virtualized WiMAX Base Station Node for GENI Wide-Area Wireless Deployments Principal Investigators: Dipankar Raychaudhuri, WINLAB, Rutgers University

More information

GENI Experimental Infrastructure Wireless & Sensor Networks Aug 8, 2005

GENI Experimental Infrastructure Wireless & Sensor Networks Aug 8, 2005 GENI Experimental Infrastructure Wireless & Sensor Networks Aug 8, 2005 Rutgers, The State University of New Jersey D. Raychaudhuri ray@winlab.rutgers.edu www.winlab.rutgers.edu 1 GENI Wireless Network

More information

GENI and ORBIT Experimental Infrastructure Projects

GENI and ORBIT Experimental Infrastructure Projects GENI and ORBIT Experimental Infrastructure Projects Ivan Seskar Rutgers, The State University of New Jersey www.winlab.rutgers.edu Contact: seskar (at) winlab (dot) rutgers (dot) edu GENI Projects Cluster

More information

Experiences with Testbed Evaluation of the MobilityFirst Future Internet Architecture

Experiences with Testbed Evaluation of the MobilityFirst Future Internet Architecture Experiences with Testbed Evaluation of the MobilityFirst Future Internet Architecture Francesco Bronzino, Dipankar Raychaudhuri and Ivan Seskar WINLAB, Rutgers University, North Brunswick, NJ 08902, USA

More information

Experiences with Dynamic Circuit Creation in a Regional Network Testbed

Experiences with Dynamic Circuit Creation in a Regional Network Testbed This paper was presented as part of the High-Speed Networks 2011 (HSN 2011) Workshop at IEEE INFOCOM 2011 Experiences with Dynamic Circuit Creation in a Regional Network Testbed Pragatheeswaran Angu and

More information

Cognitive radio technology and GENI project

Cognitive radio technology and GENI project Cognitive radio technology and GENI project Ivan Seskar Rutgers, The State University of New Jersey www.winlab.rutgers.edu Contact: seskar (at) winlab (dot) rutgers (dot) edu ORBIT Cognitive Capable Platforms

More information

Building the At-Scale GENI Testbed

Building the At-Scale GENI Testbed Building the At-Scale GENI Testbed Mark Berman www.geni.net Panel: Building the At-Scale GENI Testbed Mark Berman (GENI Project Office, Cambridge) Building the At-Scale GENI Testbed Mike Zink (University

More information

Introduction to GENI. Ben Newton University of North Carolina at Chapel Hill Sponsored by the National Science Foundation

Introduction to GENI. Ben Newton University of North Carolina at Chapel Hill   Sponsored by the National Science Foundation Introduction to GENI Ben Newton University of North Carolina at Chapel Hill bn@cs.unc.edu www.geni.net Sponsored by the National Science Foundation Outline What is GENI? How is GENI being used? Key GENI

More information

Can the Production Network Be the Testbed?

Can the Production Network Be the Testbed? Can the Production Network Be the Testbed? Rob Sherwood Deutsche Telekom Inc. R&D Lab Glen Gibb, KK Yap, Guido Appenzeller, Martin Cassado, Nick McKeown, Guru Parulkar Stanford University, Big Switch Networks,

More information

GENI: Global Environment for Network Innovations. Larry Peterson, et al. Kideok Cho

GENI: Global Environment for Network Innovations. Larry Peterson, et al. Kideok Cho GENI: Global Environment for Network Innovations Larry Peterson, et al. Kideok Cho (kdcho@mmlab.snu.ac.kr) 2006. 9. 25 -2/37- Three steps to reach Future Internet Develop component technologies Antenna,

More information

COSMOS Architecture and Key Technologies. June 1 st, 2018 COSMOS Team

COSMOS Architecture and Key Technologies. June 1 st, 2018 COSMOS Team COSMOS Architecture and Key Technologies June 1 st, 2018 COSMOS Team COSMOS: System Architecture (2) System design based on three levels of SDR radio node (S,M,L) with M,L connected via fiber to optical

More information

Evaluation Strategies. Nick Feamster CS 7260 February 26, 2007

Evaluation Strategies. Nick Feamster CS 7260 February 26, 2007 Evaluation Strategies Nick Feamster CS 7260 February 26, 2007 Evaluation Strategies Many ways to evaluate new protocols, systems, implementations Mathematical analysis Simulation (ns, SSFNet, etc.) Emulation

More information

Future Internet Research using OpenFlow

Future Internet Research using OpenFlow 13 th German-Japanese Symposium Future Internet Research using OpenFlow NEC Corporation 13 September, 2010 Page 1 Agenda Trend of ICT world Infrastructure virtualization and Network OS OpenFlow for network

More information

NETWORK VIRTUALIZATION: PRESENT AND FUTURE

NETWORK VIRTUALIZATION: PRESENT AND FUTURE 1 NETWORK VIRTUALIZATION: PRESENT AND FUTURE Wednesday, May 21, 2008 Mosharaf Chowdhury Member, envy Project What is Network Virtualization? 2 Network virtualization is a networking environment that allows

More information

Supporting Mobility in MobilityFirst

Supporting Mobility in MobilityFirst Supporting Mobility in MobilityFirst F. Zhang, K. Nagaraja, T. Nguyen, D. Raychaudhuri, Y. Zhang WINLAB, Rutgers University Technology Centre of NJ 671 Route 1, North Brunswick, NJ 08902, USA Mobile Data

More information

Wireless, Mobile, Sensor Technologies and the Future Internet Aug 2, 2005

Wireless, Mobile, Sensor Technologies and the Future Internet Aug 2, 2005 Wireless, Mobile, Sensor Technologies and the Future Internet Aug 2, 2005 Rutgers, The State University of New Jersey D. Raychaudhuri ray@winlab.rutgers.edu www.winlab.rutgers.edu 1 Introduction 2 Introduction:

More information

Overview of Mobile Networking Initiatives at WINLAB

Overview of Mobile Networking Initiatives at WINLAB Overview of Mobile Networking Initiatives at WINLAB Introduction: The Next Generation MSC Custom Mobile Infrastructure (e.g. GSM, 3G) BTS Public Switched Network (PSTN) BSC GGSN, etc. WLAN Access Point

More information

Mid-Atlantic Crossroads (MAX) and GENI. The Quilt GENI Workshop

Mid-Atlantic Crossroads (MAX) and GENI. The Quilt GENI Workshop Mid-Atlantic Crossroads (MAX) and GENI The Quilt GENI Workshop July 22, 2010 Tom Lehman (USC/ISI, Arlington VA) MAX Dynamic Network Services DRAGON Internet2 ION Base MAX Dynamic Network Capabilities/Services

More information

GpENI: Great Plains Environment for Network Innovation (Proposal)

GpENI: Great Plains Environment for Network Innovation (Proposal) The University of Kansas Technical Report GpENI: Great Plains Environment for Network Innovation (Proposal) James PG Sterbenz, Deep Medhi, Greg Monaco, Byrav Ramamurthy, Caterina Scoglio, Baek-Young Choi,

More information

MobilityFirst Tutorial GEC21, Indiana University, 10/22/2014 Francesco Bronzino, Parishad Karimi, Ivan Seskar

MobilityFirst Tutorial GEC21, Indiana University, 10/22/2014 Francesco Bronzino, Parishad Karimi, Ivan Seskar MobilityFirst Tutorial GEC21, Indiana University, 10/22/2014 Francesco Bronzino, Parishad Karimi, Ivan Seskar Ini2al Setup Requirement: Have a GENI Portal Account hjps://portal.geni.net/ Join Project MFGEC21Tutorial

More information

Architecture and Prototyping of an based Self-Organizing Hierarchical Ad-Hoc Wireless Network (SOHAN)

Architecture and Prototyping of an based Self-Organizing Hierarchical Ad-Hoc Wireless Network (SOHAN) Architecture and Prototyping of an 802.11- based Self-Organizing Hierarchical Ad-Hoc Wireless Network (SOHAN) PIMRC 2004, Barcelona Sept 5-8, 2004 S. Ganu, L. Raju, B. Anepu, S. Zhao, I. Seskar and D.

More information

Design & Deployment of a Future Internet Testbed Brazil-EU cooperation in ICT Research and Development

Design & Deployment of a Future Internet Testbed Brazil-EU cooperation in ICT Research and Development Design & Deployment of a Future Internet Testbed Brazil-EU cooperation in ICT Research and Development Future Internet test beds / experimentation between BRazil and Europe EU Project nº 288356. CNPq Project

More information

Enabling Internet-of-Things (IoT) Services in MobilityFirst FIA

Enabling Internet-of-Things (IoT) Services in MobilityFirst FIA Enabling Internet-of-Things (IoT) Services in MobilityFirst FIA Jun Li, Rich Martin, John-Austen Francisco and Dipankar Raychaudhuri WINLAB, Rutgers University May 14 th, 2012 A Big Question Does Internet

More information

Software Defined Networks and OpenFlow. Courtesy of: AT&T Tech Talks.

Software Defined Networks and OpenFlow. Courtesy of: AT&T Tech Talks. MOBILE COMMUNICATION AND INTERNET TECHNOLOGIES Software Defined Networks and Courtesy of: AT&T Tech Talks http://web.uettaxila.edu.pk/cms/2017/spr2017/temcitms/ MODULE OVERVIEW Motivation behind Software

More information

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NSF FIA Meeting Nov 15-16, 2010

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NSF FIA Meeting Nov 15-16, 2010 MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NSF FIA Meeting Nov 15-16, 2010 MobilityFirst Project Team Contact: D. Raychaudhuri ray@winlab.rutgers.edu

More information

HETEROGENEOUS NETWORKING TESTBEDS INTEGRATION AND WIRELESS NETWORK VIRTUALIZATION

HETEROGENEOUS NETWORKING TESTBEDS INTEGRATION AND WIRELESS NETWORK VIRTUALIZATION HETEROGENEOUS NETWORKING TESTBEDS INTEGRATION AND WIRELESS NETWORK VIRTUALIZATION BY RAJESH MAHINDRA A thesis submitted to the Graduate School New Brunswick Rutgers, The State University of New Jersey

More information

Evaluating 5G Multihoming Services in the MobilityFirst Future Internet Architecture

Evaluating 5G Multihoming Services in the MobilityFirst Future Internet Architecture Evaluating 5G Multihoming Services in the MobilityFirst Future Internet Architecture Parishad Karimi, Michael Sherman, Ivan Seskar, Dipankar Raychaudhuri WINLAB, Rutgers University {parishad,msherman,seskar,ray}@winlab.rutgers.edu

More information

Virtualization in Wireless Networks Feb. 23 th, 2009

Virtualization in Wireless Networks Feb. 23 th, 2009 Virtualization in Wireless Networks Feb. 23 th, 2009 Heejin Lee Keum-mo Park Prof. Chong-kwon Kim Outline Introduction Examples: WLAN virtualization Techniques: Wireless resource isolation Embedding problem

More information

NIDHI TARE. B.E., Shri. G. S Institute of Technology and Science, India, 2007 A REPORT

NIDHI TARE. B.E., Shri. G. S Institute of Technology and Science, India, 2007 A REPORT A COMPARATIVE PERFORMANCE ANALYSIS OF GENI CONTROL FRAMEWORK AGGREGATES By NIDHI TARE B.E., Shri. G. S Institute of Technology and Science, India, 2007 A REPORT Submitted in partial fulfillment of the

More information

CloudLab. Updated: 5/24/16

CloudLab. Updated: 5/24/16 2 The Need Addressed by Clouds are changing the way we look at a lot of problems Impacts go far beyond Computer Science but there's still a lot we don't know, from perspective of Researchers (those who

More information

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet Summary Slides for FIA Review September 2012

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet Summary Slides for FIA Review September 2012 MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet Summary Slides for FIA Review September 2012 D. Raychaudhuri ray@winlab.rutgers.edu Arun Venkataramani arun@cs.umass.edu

More information

Network Mobility Across Private Domains

Network Mobility Across Private Domains Network Mobility Across Private Domains Harish Viswanathan, Sampath Rangarajan, Suman Das April, 2007 Mobile Broadband new usage scenarios Mobile broadband is evolving to provide high data rates New services

More information

MobilityFirst: A Robust and Trustworthy Mobility- Centric Architecture for the Future Internet

MobilityFirst: A Robust and Trustworthy Mobility- Centric Architecture for the Future Internet MobilityFirst: A Robust and Trustworthy Mobility- Centric Architecture for the Future Internet Dipankar Raychaudhuri, Kiran Nagaraja WINLAB, Rutgers University Technology Centre of NJ, 671 Route 1 North

More information

Content Delivery in the MobilityFirst Future Internet Architecture

Content Delivery in the MobilityFirst Future Internet Architecture Content Delivery in the MobilityFirst Future Internet Architecture Feixiong Zhang, Kiran Nagaraja, Yanyong Zhang, Dipankar Raychaudhuri WINLAB, Rutgers University 671 Route 1 South, North Brunswick, NJ

More information

Announcements. Lecture 2: Wireless Networking Challenges. Motivation: Many many Network Components. Schedule for Today. Page 1

Announcements. Lecture 2: Wireless Networking Challenges. Motivation: Many many Network Components. Schedule for Today. Page 1 Announcements 18-759: Wireless Networks Lecture 2: Wireless Networking Challenges Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wirelesss10/

More information

Looking Beyond the Internet

Looking Beyond the Internet Looking Beyond the Internet The Rise of Software-Defined Infrastructure Chip Elliott, BBN celliott@bbn.com My thesis Software Defined Networking (SDN) was just an opening act A major transformation of

More information

So#ware Defined Networks and OpenFlow

So#ware Defined Networks and OpenFlow So#ware Defined Networks and OpenFlow NANOG 50, October 2010 Nick McKeown nickm@stanford.edu With Martin Casado and Scott Shenker And contributions from many others Supported by NSF, Stanford Clean Slate

More information

Teaching with the Emerging GENI Network

Teaching with the Emerging GENI Network Teaching with the Emerging GENI Network James Griffioen, Zongming Fei, Hussamuddin Nasir, Xiongqi Wu, Jeremy Reed, and Charles Carpenter Laboratory for Advanced Networking, University of Kentucky 301 Rose

More information

Francesco Bronzino OBJECTIVE

Francesco Bronzino OBJECTIVE Francesco Bronzino Inria, Paris, MUSE Research Group LINCS, 23 avenue d Italie, Paris, 75013 Email: francesco.bronzino@inria.fr Phone: +39-333-349-9276 www.winlab.rutgers.edu/ bronzino/ OBJECTIVE EXPERTISE

More information

Design and Evaluation in Mobility First MobiliytFirst team

Design and Evaluation in Mobility First MobiliytFirst team Design and Evaluation in Mobility First MobiliytFirst team Presented by: Jim Kurose Department of Computer Science University of Massachusetts Amherst MA USA Overview v evaluation: architecture, system,

More information

GENI Exploring Networks of the Future

GENI Exploring Networks of the Future GENI Exploring Networks of the Future CPqD International Workshop New Architectures for Future Internet Chip Elliott www.geni.net Outline What is GENI? How we ll build it, how we ll use it (Two Comic Books)

More information

OFELIA The European OpenFlow Experimental Facility

OFELIA The European OpenFlow Experimental Facility OFELIA The European OpenFlow Experimental Facility EU-JP symposium on Future Internet / New Generation Networks Part: Federation of testbeds: Control, tools and experiments Tokyo, January 2012 Presenter:

More information

Overcoming the Internet Impasse through Virtualization Thomas Anderson, Larry Peterson, Scott Shenker, Jonathan Turner. 원종호 (INC lab) Sep 25, 2006

Overcoming the Internet Impasse through Virtualization Thomas Anderson, Larry Peterson, Scott Shenker, Jonathan Turner. 원종호 (INC lab) Sep 25, 2006 Overcoming the Internet Impasse through Virtualization Thomas Anderson, Larry Peterson, Scott Shenker, Jonathan Turner 원종호 (INC lab) Sep 25, 2006 Outline Introduction Three requirements Virtualization

More information

In VINI Veritas: Realistic and Controlled Network Experimentation

In VINI Veritas: Realistic and Controlled Network Experimentation In VINI Veritas: Realistic and Controlled Network Experimentation Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rexford Princeton University Georgia Tech ABSTRACT This paper describes

More information

HY436: Network Virtualization

HY436: Network Virtualization HY436: Network Virtualization 20/10/2014 Xenofontas Dimitropoulos Credits: Bing Wang, Rob Sherwood, Ben Pfaff, Nick Feamster Agenda Network virtualization basics Early Forms of Vnets Overlay networks VPNs

More information

ORBIT 10 Years Later WINLAB. Ivan Seskar, Associate Director WINLAB

ORBIT 10 Years Later WINLAB. Ivan Seskar, Associate Director WINLAB ORBIT 10 Years Later Ivan Seskar, Associate Director Rutgers, The State University of New Jersey Contact: seskar (at) winlab (dot) rutgers (dot) edu Orbit Project Rationale Wireless testbeds motivated

More information

Emerging Testbeds for NwGN through Virtualization Technologies. Akihiro NAKAO University of Tokyo NICT

Emerging Testbeds for NwGN through Virtualization Technologies. Akihiro NAKAO University of Tokyo NICT Emerging Testbeds for NwGN through Virtualization Technologies Akihiro NAKAO University of Tokyo NICT Testbeds through Net Virtualization Various ideas under development GENI 5 Clusters PlanetLab Today

More information

OFELIA. Intercontinental Cooperation

OFELIA. Intercontinental Cooperation OFELIA Intercontinental Cooperation OFELIA and Intercontinental Cooperation OpenFlow based research activities Ongoing initiatives: FIBRE (Brazil), JGN-X (Japan), FIRST (Korea) A layer 2 loop around the

More information

Cognitive Radio Platform Research at WINLAB

Cognitive Radio Platform Research at WINLAB Cognitive Radio Platform Research at WINLAB December 2, 2010 Zoran Miljanic and Ivan Seskar WINLAB Rutgers University www.winlab.rutgers.edu 1 WiNC2R objectives Programmable processing of phy and higher

More information

MobilityFirst: Architecture Summary & Project Status EAB Meeting - 30 April 2012

MobilityFirst: Architecture Summary & Project Status EAB Meeting - 30 April 2012 MobilityFirst: Architecture Summary & Project Status EAB Meeting - 30 April 2012 Contact: D. Raychaudhuri WINLAB, Rutgers University Technology Centre of NJ 671 Route 1, North Brunswick, NJ 08902, USA

More information

On the Scalability of Hierarchical Ad Hoc Wireless Networks

On the Scalability of Hierarchical Ad Hoc Wireless Networks On the Scalability of Hierarchical Ad Hoc Wireless Networks Suli Zhao and Dipankar Raychaudhuri Fall 2006 IAB 11/15/2006 Outline Motivation Ad hoc wireless network architecture Three-tier hierarchical

More information

Schedule for Today : Wireless Networks Lecture 2: Wireless Networking Challenges. Motivation: Many many Network Components. What is a Protocol

Schedule for Today : Wireless Networks Lecture 2: Wireless Networking Challenges. Motivation: Many many Network Components. What is a Protocol Schedule for Today 18-759: Wireless Networks Lecture 2: Wireless Networking Challenges Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2016 http://www.cs.cmu.edu/~prs/wirelesss16/

More information

MobilityFirst Vision & Technical Approach Summary External Advisory Board Meeting Feb 28, 2011

MobilityFirst Vision & Technical Approach Summary External Advisory Board Meeting Feb 28, 2011 MobilityFirst Vision & Technical Approach Summary External Advisory Board Meeting Feb 28, 2011 Prof. D. Raychaudhuri WINLAB, Rutgers University Technology Centre of NJ 671 Route 1, North Brunswick, NJ

More information

ONELAB and Beyond. Prof. Serge Fdida. University P&M Curie, Paris 6, France

ONELAB and Beyond. Prof. Serge Fdida. University P&M Curie, Paris 6, France ONELAB and Beyond Prof. Serge Fdida University P&M Curie, Paris 6, France http://www.lip6.fr/rp IST 2006 Brussels, December 2006 1 ONELAB Rationale & History Grounded on ENEXT (NoE) Identification of critical

More information

Synchronous Two-Phase Rate and Power Control in WLANs

Synchronous Two-Phase Rate and Power Control in WLANs Synchronous Two-Phase Rate and Power Control in 802.11 WLANs Kishore Ramachandran, Ravi Kokku, Honghai Zhang, and Marco Gruteser WINLAB, Rutgers University and NEC Laboratories America Towards All-Wireless

More information

Enabling High Performance Data Centre Solutions and Cloud Services Through Novel Optical DC Architectures. Dimitra Simeonidou

Enabling High Performance Data Centre Solutions and Cloud Services Through Novel Optical DC Architectures. Dimitra Simeonidou Enabling High Performance Data Centre Solutions and Cloud Services Through Novel Optical DC Architectures Dimitra Simeonidou Challenges and Drivers for DC Evolution Data centres are growing in size and

More information

Bluetooth. 3.3 Latest Technology in Wireless Network. What is BLUETOOTH: Bluetooth 2/17/2016

Bluetooth. 3.3 Latest Technology in Wireless Network. What is BLUETOOTH: Bluetooth 2/17/2016 3.3 Latest Technology in Wireless Network Bluetooth Bluetooth Bluetooth is a high-speed, low-power microwave wireless link technology, designed to connect phones, laptops, PDAs and other portable equipment

More information

Next- Gen Mobile Network Architecture for Advanced Wireless. December 2, 2016 Shreyasee Mukherjee

Next- Gen Mobile Network Architecture for Advanced Wireless. December 2, 2016 Shreyasee Mukherjee Next- Gen Mobile Network Architecture for Advanced Wireless December 2, 2016 Shreyasee Mukherjee The Advanced Wireless Research Ini?a?ve 2/16 Requirements for a Next- Gen Mobile Network 1.1. Gigabit- speed

More information

Meeting Experimenters Needs Through Testbed Federation

Meeting Experimenters Needs Through Testbed Federation Meeting Experimenters Needs Through Testbed Federation International Symposium on Network Virtualization 2013 University of Tokyo Sponsored by the National Science Foundation Mark Berman GENI Project Director

More information

NetFPGA Update at GEC4

NetFPGA Update at GEC4 NetFPGA Update at GEC4 http://netfpga.org/ NSF GENI Engineering Conference 4 (GEC4) March 31, 2009 John W. Lockwood http://stanford.edu/~jwlockwd/ jwlockwd@stanford.edu NSF GEC4 1 March 2009 What is the

More information

MobilityFirst Architecture Summary WINLAB Research Review May 14, 2012

MobilityFirst Architecture Summary WINLAB Research Review May 14, 2012 MobilityFirst Architecture Summary Research Review May 14, 2012 Contact: D. Raychaudhuri, Rutgers University Technology Centre of NJ 671 Route 1, North Brunswick, NJ 08902, USA ray@winlab.rutgers.edu NSF

More information

Content and Context in Mobility First

Content and Context in Mobility First and Context in Mobility First Presented by: Rich Martin WINLAB, Rutgers University Technology Centre of NJ 671 Route 1, North Brunswick, NJ 08902, USA rmartin@cs.rutgers.edu Using the for content and context

More information

Cognitive Radio Networks at WINLAB: Networking and Security Research

Cognitive Radio Networks at WINLAB: Networking and Security Research Cognitive Radio Networks at WINLAB: Networking and Security WINLAB Rutgers, The State University of New Jersey www.winlab.rutgers.edu Contact: Professor Wade Trappe, Associate Director trappe@winlab.rutgers.edu

More information

Leveraging Virtualization Technologies to Build the World s First Open Programmable Smart City

Leveraging Virtualization Technologies to Build the World s First Open Programmable Smart City Leveraging Virtualization Technologies to Build the World s First Open Programmable Smart City Dimitra Simeonidou Director of Smart Internet Lab, University of Bristol (www.bristol.ac.uk/smart) CTO, Bristol

More information

Switching and Routing projects description

Switching and Routing projects description Switching and Routing 2012-2013 projects description Outline Introduction to OpenFlow A case study The projects Additional information What s OpenFlow An open standard, which defines: An abstraction of

More information

Mobile Edge Cloud Services in 5G

Mobile Edge Cloud Services in 5G Mobile Edge Cloud Services in 5G Yanyong Zhang, Rutgers University yyzhang@winlab.rutgers.edu Edge clouds, edge applications MOTIVATION Mobile Edge Clouds Edge Applications Mobile Edge Cloud Services Emergency

More information

CEN 538 Wireless LAN & MAN Networks

CEN 538 Wireless LAN & MAN Networks King Saud University College of Computer and Information Sciences Department of Computer Engineering CEN 538 Wireless LAN & MAN Networks Dr. Ridha OUNI rouni@ksu.edu.sa LMS web site References Text book

More information

vmcn: Virtual Mobile Cloud Network for Realizing Scalable, Real-time Cyber Physical Systems

vmcn: Virtual Mobile Cloud Network for Realizing Scalable, Real-time Cyber Physical Systems vmcn: Virtual Mobile Cloud Network for Realizing Scalable, Real-time Cyber Physical Systems Kiyohide Nakauchi National Institute of Information and Communications Technology nakauchi@nict.go.jp Ivan Seskar

More information

An Integrated Experimental

An Integrated Experimental An Integrated Experimental Environment for Distributed Systems and Networks B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, A. Joglekar University of Utah www.netbed.org

More information

EU ICT COMBO Project: Fixed Mobile Convergence Solution. Ricardo Martínez ONA, IP Tech. & Engineering Unit

EU ICT COMBO Project: Fixed Mobile Convergence Solution. Ricardo Martínez ONA, IP Tech. & Engineering Unit EU ICT COMBO Project: Fixed Mobile Convergence Solution Ricardo Martínez ONA, IP Tech. & Engineering Unit Outline Project details Scope Challenges and Concept Targets Workplan CTTC participation 2 Project

More information

MFTP: a Clean- Slate Transport Protocol for the Informa8on Centric MobilityFirst Network

MFTP: a Clean- Slate Transport Protocol for the Informa8on Centric MobilityFirst Network MFTP: a Clean- Slate Transport Protocol for the Informa8on Centric MobilityFirst Network Kai Su (presen8ng), Francesco Bronzino, K. K. Ramakrishnan*, and Dipankar Raychaudhuri WINLAB, Rutgers University

More information

Software-Defined Networking (SDN) Overview

Software-Defined Networking (SDN) Overview Reti di Telecomunicazione a.y. 2015-2016 Software-Defined Networking (SDN) Overview Ing. Luca Davoli Ph.D. Student Network Security (NetSec) Laboratory davoli@ce.unipr.it Luca Davoli davoli@ce.unipr.it

More information

Lecture 10.1 A real SDN implementation: the Google B4 case. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 10.1 A real SDN implementation: the Google B4 case. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 10.1 A real SDN implementation: the Google B4 case Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it WAN WAN = Wide Area Network WAN features: Very expensive (specialized high-end

More information

G E N I. Global Environment for Network Innovations. Milestone 2 DMEAS: Document Embedded Measurement Capabilities (DRAFT)

G E N I. Global Environment for Network Innovations. Milestone 2 DMEAS: Document Embedded Measurement Capabilities (DRAFT) G E N I Global Environment for Network Innovations Milestone 2 DMEAS: Document Embedded Measurement Capabilities (DRAFT) Document ID: GENI-MS2- DMEAS-February09-v1.0 March 01, 2009 Prepared by: Deniz Gurkan

More information

Information-Agnostic Flow Scheduling for Commodity Data Centers. Kai Chen SING Group, CSE Department, HKUST May 16, Stanford University

Information-Agnostic Flow Scheduling for Commodity Data Centers. Kai Chen SING Group, CSE Department, HKUST May 16, Stanford University Information-Agnostic Flow Scheduling for Commodity Data Centers Kai Chen SING Group, CSE Department, HKUST May 16, 2016 @ Stanford University 1 SING Testbed Cluster Electrical Packet Switch, 1G (x10) Electrical

More information

Evolution of OSCARS. Chin Guok, Network Engineer ESnet Network Engineering Group. Winter 2012 Internet2 Joint Techs. Baton Rouge, LA.

Evolution of OSCARS. Chin Guok, Network Engineer ESnet Network Engineering Group. Winter 2012 Internet2 Joint Techs. Baton Rouge, LA. Evolution of OSCARS Chin Guok, Network Engineer ESnet Network Engineering Group Winter 2012 Internet2 Joint Techs Baton Rouge, LA Jan 23, 2012 Outline What was the motivation for OSCARS History of OSCARS

More information

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup

Chapter 4. Routers with Tiny Buffers: Experiments. 4.1 Testbed experiments Setup Chapter 4 Routers with Tiny Buffers: Experiments This chapter describes two sets of experiments with tiny buffers in networks: one in a testbed and the other in a real network over the Internet2 1 backbone.

More information

Chapter 4. The Medium Access Control Sublayer. Points and Questions to Consider. Multiple Access Protocols. The Channel Allocation Problem.

Chapter 4. The Medium Access Control Sublayer. Points and Questions to Consider. Multiple Access Protocols. The Channel Allocation Problem. Dynamic Channel Allocation in LANs and MANs Chapter 4 The Medium Access Control Sublayer 1. Station Model. 2. Single Channel Assumption. 3. Collision Assumption. 4. (a) Continuous Time. (b) Slotted Time.

More information

ns-3 Training Emulation

ns-3 Training Emulation ns-3 Training Emulation 1 Outline Main emulation devices Tap Bridge FdNetDevice NetmapNetDevice (coming soon) ns-3 training, June 2018 2 Emulation support Support moving between simulation and testbeds

More information

Programmable BitPipe. Andreas Gladisch VP Convergent Networks and Infrastructure, Telekom Innovation Labs

Programmable BitPipe. Andreas Gladisch VP Convergent Networks and Infrastructure, Telekom Innovation Labs Programmable BitPipe Andreas Gladisch VP Convergent Networks and Infrastructure, Telekom Innovation Labs 25.10.2012 How do you program a switch / router today? Vendor N SDK and API Vendor 3 Vendor 2 SDK

More information

OMF: A Control and Management Framework for Networking Testbeds

OMF: A Control and Management Framework for Networking Testbeds OMF: A Control and Management Framework for Networking Testbeds Thierry Rakotoarivelo Maximilian Ott, Guillaume Jourjon Ivan Seskar National ICT Australia (NICTA) Alexandria, NSW 1435, Australia first.last@nicta.com.au

More information

Winncom Video Solution

Winncom Video Solution Winncom Video Solution Crafting the Future 2010 Security Industry Migration Market Size ($ million) Trend: systems become closer and closer to the Ethernet networking devices vs. analog or semi-analog

More information

FairVPN, overlay topology construction tool to maximize TCP fairness. A framework for packet droppers mitigation in OLSR Wireless Community Networks

FairVPN, overlay topology construction tool to maximize TCP fairness. A framework for packet droppers mitigation in OLSR Wireless Community Networks FairVPN, overlay topology construction tool to maximize TCP fairness A framework for packet droppers mitigation in OLSR Wireless Community Networks Giornata di incontro con i borsisti GARR, Roma, 23.02.2011

More information

OPENAIR-CN Deployment

OPENAIR-CN Deployment OPENAIR-CN Deployment 4th OpenAirInterface Workshop, Fall 2017 November 7 th, 2017 70 ft m ( 20 nodes ) Orbit Testbed VPN Gateway to Wide-Area Testbed Gigabit backbone Front-end Servers 80 ft ( 20 nodes

More information

Next Generation Networking and The HOPI Testbed

Next Generation Networking and The HOPI Testbed Next Generation Networking and The HOPI Testbed Rick Summerhill Director, Network Research, Architecture, and Technologies, Internet2 CANS 2005 Shenzhen, China 2 November 2005 Agenda Current Abilene Network

More information

Maturing of OpenFlow and Software-Defined Networking through Deployments

Maturing of OpenFlow and Software-Defined Networking through Deployments Maturing of OpenFlow and Software-Defined Networking through Deployments Masayoshi Kobayashi, Srini Seetharaman, Guru Parulkar, Guido Appenzeller, Joseph Little, Johan van Reijendam, Paul Weissmann, Nick

More information

US Ignite & A Smart Gigabit Austin

US Ignite & A Smart Gigabit Austin US Ignite & A Smart Gigabit Austin SCOTT TURNBULL NATIONAL TECHNICAL LEADER SCOTT.TURNBULL@US-IGNITE.ORG @STREAMWEAVER "Building a nationwide broadband network will strengthen our economy and put more

More information

Inter-Domain Routing with Cut-Through Switching for the MobilityFirst Future Internet Architecture

Inter-Domain Routing with Cut-Through Switching for the MobilityFirst Future Internet Architecture 1 Inter-Domain Routing with Cut-Through Switching for the MobilityFirst Future Internet Architecture Adrian Lara, Shreyasee Mukherjee, Byrav Ramamurthy, Dipankar Raychaudhuri and K. K. Ramakrishnan University

More information

Identity Management and Resource Allocation in the Network Virtualization Environment

Identity Management and Resource Allocation in the Network Virtualization Environment Identity Management and Resource Allocation in the Network Virtualization Environment Mosharaf Chowdhury School of Computer Science University of Waterloo January 21, 2009 1 NETWORK VIRTUALIZATION January

More information

PacketShader as a Future Internet Platform

PacketShader as a Future Internet Platform PacketShader as a Future Internet Platform AsiaFI Summer School 2011.8.11. Sue Moon in collaboration with: Joongi Kim, Seonggu Huh, Sangjin Han, Keon Jang, KyoungSoo Park Advanced Networking Lab, CS, KAIST

More information

WLAN a-z 2010/02/15. (C) Herbert Haas

WLAN a-z 2010/02/15. (C) Herbert Haas WLAN 802.11a-z (C) Herbert Haas 2010/02/15 Wireless Products WLAN is integrated E. g. Intel Centrino chipsets Increasing data rates Towards Fast Ethernet speeds and more Today strong native security solutions

More information

Achieving the Science DMZ

Achieving the Science DMZ Achieving the Science DMZ Eli Dart, Network Engineer ESnet Network Engineering Group Joint Techs, Winter 2012 Baton Rouge, LA January 22, 2012 Outline of the Day Motivation Services Overview Science DMZ

More information

DMAP : Global Name Resolution Services Through Direct Mapping

DMAP : Global Name Resolution Services Through Direct Mapping DMAP : Global Name Resolution Services Through Direct Mapping Tam Vu, Rutgers University http://www.winlab.rutgers.edu/~tamvu/ (Joint work with Akash Baid, Yanyong Zhang, Thu D. Nguyen, Junichiro Fukuyama,

More information