Design and Evaluation in Mobility First MobiliytFirst team

Size: px
Start display at page:

Download "Design and Evaluation in Mobility First MobiliytFirst team"

Transcription

1 Design and Evaluation in Mobility First MobiliytFirst team Presented by: Jim Kurose Department of Computer Science University of Massachusetts Amherst MA USA

2 Overview v evaluation: architecture, system, prototype v MF evaluation GNS control overhead workloads prototype demos (GENI: end-end, components) other activities v reflection: broader context

3 Architecture, System, Prototype * architecture high-level design/structuring principles, service/function modularity guides, informs, inspires, constrains system instantiated set of interoperating protocols, mechanisms, platforms conforming to design principles here s what it does (function), you tell me how prototype (realization) Implemented (sub)set of protocols, platforms in particular existing technologies * ack: J. Wroclawksi, D. Clark

4 Architecture, System, Prototype telephony Internet ICN architecture end-end circuit, stateless endpoints, stateful core, QoS, single service datagram, stateful endpoints, best-effort stateless core, multiple services, IP content, naming, stateful core, caching system SS7, ESS, MSC, VLR, HLR, GGSN, TCP, UDP, DNS, BGP, IS-IS, OSPF Ongoing (routing, congestion control, caching, name resolution, search, ) prototype many.. over the years many.. over the years Ramping up

5 Architecture, System, Prototype architecture system Evaluation telephony end-end circuit, stateless endpoints, stateful core, QoS, single service SS7, ESS, MSC, VLR, HLD Blocking networks Kleinrock 64 Internet Cerf,&Kahn 74 datagram, Salzer 81 stateful endpoints, Clark 88, best-effort 13 stateless McCanne core, 98 multiple Kelly services 98 Chiang 08 TCP, UDP, DNS, BGP, IS-IS, LOTS OSPF Performance: Queueing networks, delay calculus, effective bandwidths, TCP, NUM optimization Layering: optimization decomposition Arch. complexity Management complexity ICN content, Principles stateful core, enunciated caching Ongoing ongoing, growing (routing, congestion control, caching, name resolution, search, ) simulation, prototyping, some analysis

6 Architecture, System, Prototype architecture system Evaluation telephony end-end circuit, stateless endpoints, stateful core, QoS, single service SS7, ESS, MSC, VLR, HLD Blocking networks Kleinrock 64 Internet MF Cerf,&Kahn 74 datagram, Salzer 81 stateful FIA Inter-architecture content, stateful endpoints, Clark 88, best-effort 13 comparisons core, caching under stateless McCanne core, 98 discussion multiple Kelly services 98 Chiang 08 TCP, UDP, DNS, Ongoing ongoing, (routing, congestion BGP, IS-IS, LOTS OSPF growing Performance: Queueing networks, delay calculus, effective bandwidths, TCP, NUM optimization Layering: optimization decomposition Arch. complexity Management complexity control, caching, name resolution, search, ) simulation, prototyping, analysis, workload analyzing GNS, control, mobility

7 Overview v architecture, system, prototype v MF evaluation GNS: DMap, Auspice control overhead workloads prototype demos (GENI: end-end, components) other activities v reflection: broader context

8 GNS Infrastructure: DMap v approach: hashing GUID to K AS-level resolvers, and local resolver for locally-created GUIDs v evaluation: performance as a function of K simulation: DIMES AS-level topology, latency Weighted query generation, Zipf destination popularity analysis: jellyfish topology model, latency bound DMap: A Shared Hosting Scheme for Dynamic Identifier to Locator Mappings in the Global Internet, Vu, et al, ICDCS 2012

9 GNS Infrastructure: Auspice v approach: active name server replicas, replica controllers, consistency v evaluation: replica placement (local, spatial), # emulation Planetlab, cluster synthetic de novo workload evaluate different replication approaches read/write latency, serverload e+04 1e+05 Sharma, Tie, Uppal, Venkataramani, A Global Name Service for a Highly Mobile Internet Venkataramani, Sharma, Tie, Uppal, Westbrook, Kurose, Raychaudhuri, Design requirements of a global name service for a mobility-centric, trustworthy internetwork, IEEE COMSNETS 2013 Lookup latency (ms) Optimal Auspice CoDoNS Static-3 Replicate-All Load (lookup+update/second)

10 Auspice: Simultaneous mobility recovery latency Server comes up Client comes up 200ms Reconnect complete msocket + Auspice GNS recover from simultaneous mobility in ~2 RTTs, the best achievable latency. UNIVERSITY OF MASSACHUSETTS AMHERST Department of Computer Science 10

11 Overview v architecture, system, prototype v MF evaluation GNS: DMap, Auspice control overhead workloads prototype demos (GENI: end-end, components) other activities v reflection: broader context

12 Evaluating Control Overhead v Question: overhead when routing on names vs. adding a topological address layer? Router-router name exchange: - Hierarchical names - Used for routing packets - Used for caching at routers Hybrid GUID-Name (HGN) Approach: - Use flat GUIDs for caching - Use topological addresses for routing

13 An Analytic Model Model: Nlevels of hierarchy in the name; prefix at level i having l i sub- level prefixes. Define n top {1,2,, N} which indicates the prefix level below which the naming tree starts being influenced by the network topology

14 Sample Result Number of Entries (logscale) L = 10 Routing Table Size with L = 50 Topology Independent Prefixes L = 100 HGN (name independent) Current BGP Table Size n value top Hierarchy in name reduces the table size only when the name prefixes have some degree of dependence on the physical network topology. A. Baid, T. Vu, D. Raychaudhuri, Comparing Alternative Approaches for Networking of Named Objects in the Future Internet, 2012 IEEE Infocom NOMEN

15 Overview v architecture, system, prototype v MF evaluation GNS: DMap, Auspice control overhead workloads prototype demos (GENI: end-end, components) other activities v reflection: broader context

16 Characterizing mobility among networks not your father s mobility: characterize mobility among networks disrnctly different from physical mobility, models physically mobile users may be staronary (from network transiron POV); staronary users may move among networks (mulr- homing, mulrple devices) measure mobility among networks via IMAP logs online users periodically push (background login, check) , and/or intenronally read mail 70 users resident in 183 unique AS numbers

17 Where do users (in aggregate) spend Rme? Work: 5 college Mobile: Verizon, AT&T, sprint) Home: Comcast, Verizon, Verizon, Hughes Misc: 172 other networks in trace Users spend most of their Rme in small number of networks

18 MulR- homing Q: How ofen are users mulr- homed? 15- min subinterval has IMAP access from two different AS s S. Yang, S. Heimlicher, J. Kurose, A. Venkataramani, User TransiRoning Among Networks - a Measurement and Modeling Study, submijed to 2014 IEEE Infocom.

19 Workload, model characterizaron: ongoing mobility measurement on Android devices hjps://nomadlog.net/ generarve network- transironing model: parsimonious MC model for individual user transironing among networks topology models: embedding topology in physical space model exisrng, evolving network topology - Intra- and Inter- AS geo- coverage and connecrons - E.g., test locality- aware protocols, evaluaron future Internet protocol designs capture different external policy effects on network topology evolvement (country connecrvity, gateways) generate syntherc topology models matching measured geo starsrcs

20 Overview architecture, system, prototype MF evaluaron GNS: DMap, Auspice control overhead workloads prototype demos (GENI: end- end, components) other acrvires reflecron: broader context

21 MF Host Protocol Stack Socket API open send send_to recv recv_from close App- 1 App- 2 Network API App- 3 Context API Context Services Linux PC/laptop with WiMAX & WiFi Android device with WiMAX & WiFi Device: HTC Evo 4G, Android v2.3 E2E Transport Network Layer Click Openflow Flare SDN GUID Services Security RouRng Sensors User policies Interface Manager Hop Link Transport Early Dev. Integrate WiFi WiMAX

22 MF MulR- Site GENI Deployment GEC- 16, March 2013 NLR Lincoln, NE Madison, WI Ann Arbor, MI Cambridge, MA Tokyo, Japan Palo Alto, CA Salt Lake, UT N. Brunswick, NJ Los Angeles, CA I2 Atlanta, GA Clemson, SC MobilityFirst RouRng and Name ResoluRon Service Sites MobilityFirst Access Net Long- term (non- GENI) Short- term Wide Area ProtoGENI ProtoGENI

23 Geo- Messaging ApplicaRon with MF Core Services GEC- 18 Oct., 2013 Wisconsin GENI rack Utah GENI rack GENI Internet2 Core BBN GENI rack MF RouRng and Naming Services deployed at 5 GENI rack sites with Internet2 s AL2S providing cross- site layer- 2 connecrvity GENI Edge WiMAX BTS WiMAX BTS MobilityFirst Sofware Router with GNRS instance Dual interface Android phone with WiFi/WiMAX with MF protocol stack ORBIT radio node with WiFi as MF Access point GENI Edge

24 AddiRonal performance- related MF acrvires mulr- homing, mulrpath quanrfying the performance advantages analyzing networks of caches approximate, bounding approaches popularng edge caches: sparal locality

25 Overview architecture, system, prototype MF evaluaron GNS: DMap, Auspice control overhead workloads prototype demos (GENI: end- end, components) other acrvires reflecron: broader context

26 Reflection: broader context architecture system evaluation telephony end-end circuit, stateless endpoints, stateful core, QoS, single service SS7, ESS, MSC, VLR, HLD Blocking networks Kleinrock 64 Internet FIA Cerf,&Kahn 74 datagram, Salzer 81 stateful FIA Inter-architecture content, stateful endpoints, Clark 88, best-effort 13 comparisons core, caching under stateless McCanne core, 98 discussion multiple Kelly services 98 Chiang 08 lots ongoing across TCP, UDP, DNS, FIA, Ongoing broader (routing, congestion BGP, IS-IS, LOTS OSPF community Performance: Queueing networks, delay calculus, effective bandwidths, TCP, NUM optimization Layering: optimization decomposition Arch. complexity control, caching, name resolution, search, ) variety of goals

27 Backup v architecture, system, prototype v MF evaluation GNS: DMap, Auspice control overhead workloads prototype demos (GENI: end-end, components) other activities v reflection: broader context

28 EvaluaKng lookup and update latency UNIVERSITY OF MASSACHUSETTS AMHERST Department of Computer Science 28

29 EvaluaKng load/capacity UNIVERSITY OF MASSACHUSETTS AMHERST Department of Computer Science 29

MobilityFirst Prototyping and Evaluation. October 6, 2011 WINLAB

MobilityFirst Prototyping and Evaluation. October 6, 2011 WINLAB MobilityFirst Prototyping and Evaluation October 6, 2011 1 Prototyping and Evaluation: Execution Summary Phase 1 Phase 2 Phase 3 Context Addressi ng Stack Content Addressi ng Stack Host/Device Addressing

More information

Comparing Alternative Approaches for Networking of Named Objects in the Future Internet

Comparing Alternative Approaches for Networking of Named Objects in the Future Internet Comparing Alternative Approaches for Networking of Named Objects in the Future Internet Akash Baid, Tam Vu, Dipankar Raychaudhuri, Rutgers University, NJ, USA Motivation Increasing consensus on: Rethinking

More information

MobilityFirst Future Internet Architecture. Samuel Nelson

MobilityFirst Future Internet Architecture. Samuel Nelson MobilityFirst Future Internet Architecture Samuel Nelson snelson@winlab.rutgers.edu MobilityFirst Project: Collaborating Institutions (LEA) A. Venkataramani, J. Kurose,. Towsley M. Reiter S. Bannerjee

More information

MobilityFirst Architecture and Protocol Evaluation on GENI. November 3, 2011 WINLAB

MobilityFirst Architecture and Protocol Evaluation on GENI. November 3, 2011 WINLAB MobilityFirst Architecture and Protocol Evaluation on GENI November 3, 2011 1 MobilityFirst Project: Collaborating Institutions (LEAD) D. Raychaudhuri, M. Gruteser, W. Trappe, R, Martin, Y. Zhang, I. Seskar,

More information

DMAP : Global Name Resolution Services Through Direct Mapping

DMAP : Global Name Resolution Services Through Direct Mapping DMAP : Global Name Resolution Services Through Direct Mapping Tam Vu, Rutgers University http://www.winlab.rutgers.edu/~tamvu/ (Joint work with Akash Baid, Yanyong Zhang, Thu D. Nguyen, Junichiro Fukuyama,

More information

Introduction. MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet Euroview 2012 July 24,

Introduction. MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet Euroview 2012 July 24, MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet Euroview 2012 July 24, 2012 D. Raychaudhuri, Rutgers University Technology Centre of NJ 671 Route 1, North

More information

Supporting Mobility in MobilityFirst

Supporting Mobility in MobilityFirst Supporting Mobility in MobilityFirst F. Zhang, K. Nagaraja, T. Nguyen, D. Raychaudhuri, Y. Zhang WINLAB, Rutgers University Technology Centre of NJ 671 Route 1, North Brunswick, NJ 08902, USA Mobile Data

More information

Prototyping and Evaluation of Mobility First Architecture

Prototyping and Evaluation of Mobility First Architecture Prototyping and Evaluation of Mobility First Architecture Kiran Nagaraja, Ivan Seskar Rutgers, The State University of New Jersey Contact: nkiran (at) winlab (dot) rutgers (dot) edu NSF FIA MobilityFirst

More information

Chapter 4 Network Layer: The Data Plane. Part A. Computer Networking: A Top Down Approach

Chapter 4 Network Layer: The Data Plane. Part A. Computer Networking: A Top Down Approach Chapter 4 Network Layer: The Data Plane Part A All material copyright 996-06 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th Edition, Global Edition Jim Kurose,

More information

Experiences with Testbed Evaluation of the MobilityFirst Future Internet Architecture

Experiences with Testbed Evaluation of the MobilityFirst Future Internet Architecture Experiences with Testbed Evaluation of the MobilityFirst Future Internet Architecture Francesco Bronzino, Dipankar Raychaudhuri and Ivan Seskar WINLAB, Rutgers University, North Brunswick, NJ 08902, USA

More information

Cellular-Internet Convergence: Evolving the Internet Architecture to Support Mobility Services as the Norm Johannesburg Summit May 20-21, 2013

Cellular-Internet Convergence: Evolving the Internet Architecture to Support Mobility Services as the Norm Johannesburg Summit May 20-21, 2013 Cellular-Internet Convergence: Evolving the Internet Architecture to Support Mobility Services as the Norm Johannesburg Summit May 20-21, 2013 D. Raychaudhuri, Rutgers University ray@winlab.rutgers.edu

More information

cs/ee 143 Communication Networks

cs/ee 143 Communication Networks cs/ee 143 Communication Networks Chapter 4 Internetworking Text: Walrand & Parekh, 2010 Steven Low CMS, EE, Caltech Warning These notes are not self-contained, probably not understandable, unless you also

More information

Project Title: Open Virtualized WiMAX Base Station Node for GENI Wide-Area Wireless Deployments

Project Title: Open Virtualized WiMAX Base Station Node for GENI Wide-Area Wireless Deployments GENI Project Quarterly Progress Report, Project Title: Open Virtualized WiMAX Base Station Node for GENI Wide-Area Wireless Deployments Principal Investigators: Dipankar Raychaudhuri, WINLAB, Rutgers University

More information

MobilityFirst: A Robust and Trustworthy Mobility- Centric Architecture for the Future Internet

MobilityFirst: A Robust and Trustworthy Mobility- Centric Architecture for the Future Internet MobilityFirst: A Robust and Trustworthy Mobility- Centric Architecture for the Future Internet Dipankar Raychaudhuri, Kiran Nagaraja WINLAB, Rutgers University Technology Centre of NJ, 671 Route 1 North

More information

ICN IDENTIFIER / LOCATOR. Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016)

ICN IDENTIFIER / LOCATOR. Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016) ICN IDENTIFIER / LOCATOR Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016) 1 A brief review of ID/Locators in IETF It s long, and we ll skim over it Then we discuss the CCNx & NDN

More information

Looking Beyond the Internet

Looking Beyond the Internet Looking Beyond the Internet The Rise of Software-Defined Infrastructure Chip Elliott, BBN celliott@bbn.com My thesis Software Defined Networking (SDN) was just an opening act A major transformation of

More information

Content Delivery in the MobilityFirst Future Internet Architecture

Content Delivery in the MobilityFirst Future Internet Architecture Content Delivery in the MobilityFirst Future Internet Architecture Feixiong Zhang, Kiran Nagaraja, Yanyong Zhang, Dipankar Raychaudhuri WINLAB, Rutgers University 671 Route 1 South, North Brunswick, NJ

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11 1 Midterm exam Midterm this Thursday Close book but one-side 8.5"x11" note is allowed (must

More information

Interdomain Routing Design for MobilityFirst

Interdomain Routing Design for MobilityFirst Interdomain Routing Design for MobilityFirst October 6, 2011 Z. Morley Mao, University of Michigan In collaboration with Mike Reiter s group 1 Interdomain routing design requirements Mobility support Network

More information

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin,

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw Chapter 1: Introduction 1. How does Internet scale to billions of hosts? (Describe what structure

More information

GENI Experimental Infrastructure Wireless & Sensor Networks Aug 8, 2005

GENI Experimental Infrastructure Wireless & Sensor Networks Aug 8, 2005 GENI Experimental Infrastructure Wireless & Sensor Networks Aug 8, 2005 Rutgers, The State University of New Jersey D. Raychaudhuri ray@winlab.rutgers.edu www.winlab.rutgers.edu 1 GENI Wireless Network

More information

MobilityFirst FIA-NP Project Annual Report Page: 1

MobilityFirst FIA-NP Project Annual Report Page: 1 MobilityFirst FIA-NP Project Annual Report Page: 1 NSF FIA-NP Award #CNS-134529 Lead Institution Consolidated Report for Period: May 2014-April 2015 The Next-Phase MobilityFirst Project - From Architecture

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NIKSUN WWSMC July 26, 2011

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NIKSUN WWSMC July 26, 2011 MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NIKSUN WWSMC July 26, 2011 Contact: D. Raychaudhuri, Rutgers University Technology Centre of NJ 671 Route 1,

More information

COMP211 Chapter 5 Network Layer: The Control Plane

COMP211 Chapter 5 Network Layer: The Control Plane COMP211 Chapter 5 Network Layer: The Control Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith

More information

The Design and Implementation of a Next Generation Name Service for the Internet (CoDoNS) Presented By: Kamalakar Kambhatla

The Design and Implementation of a Next Generation Name Service for the Internet (CoDoNS) Presented By: Kamalakar Kambhatla The Design and Implementation of a Next Generation Name Service for the Internet (CoDoNS) Venugopalan Ramasubramanian Emin Gün Sirer Presented By: Kamalakar Kambhatla * Slides adapted from the paper -

More information

Networking and Internetworking 1

Networking and Internetworking 1 Networking and Internetworking 1 Today l Networks and distributed systems l Internet architecture xkcd Networking issues for distributed systems Early networks were designed to meet relatively simple requirements

More information

HW3 and Quiz. P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) TCP), 20 mins

HW3 and Quiz. P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) TCP), 20 mins HW3 and Quiz v HW3 (Chapter 3): R1, R2, R5, R6, R7, R8, R15, P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) v Quiz: 10/30/2013, Wednesday,

More information

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University Daniel Zappala CS 460 Computer Networking Brigham Young University 2/20 Scaling Routing for the Internet scale 200 million destinations - can t store all destinations or all prefixes in routing tables

More information

Input ports, switching fabric, output ports Switching via memory, bus, crossbar Queueing, head-of-line blocking

Input ports, switching fabric, output ports Switching via memory, bus, crossbar Queueing, head-of-line blocking Last time Router internals Input ports, switching fabric, output ports Switching via memory, bus, crossbar Queueing, head-of-line blocking Mobility Home, visited s Home, foreign agents Permanent, care-of

More information

IPv6: An Introduction

IPv6: An Introduction Outline IPv6: An Introduction Dheeraj Sanghi Department of Computer Science and Engineering Indian Institute of Technology Kanpur dheeraj@iitk.ac.in http://www.cse.iitk.ac.in/users/dheeraj Problems with

More information

Student ID: CS457: Computer Networking Date: 3/20/2007 Name:

Student ID: CS457: Computer Networking Date: 3/20/2007 Name: CS457: Computer Networking Date: 3/20/2007 Name: Instructions: 1. Be sure that you have 9 questions 2. Be sure your answers are legible. 3. Write your Student ID at the top of every page 4. This is a closed

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

Internet Architecture and Experimentation

Internet Architecture and Experimentation Internet Architecture and Experimentation Today l Internet architecture l Principles l Experimentation A packet switched network Modern comm. networks are packet switched Data broken into packets, packet

More information

Advanced Network Design

Advanced Network Design Advanced Network Design Organization Whoami, Book, Wikipedia www.cs.uchicago.edu/~nugent/cspp54015 Grading Homework/project: 60% Midterm: 15% Final: 20% Class participation: 5% Interdisciplinary Course

More information

Routing in the Internet

Routing in the Internet Routing in the Internet Daniel Zappala CS 460 Computer Networking Brigham Young University Scaling Routing for the Internet 2/29 scale 200 million destinations - can t store all destinations or all prefixes

More information

NET ID. CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17

NET ID. CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17 CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17 Q1. 2 points Write your NET ID at the top of every page of this test. Q2. X points Name 3 advantages of a circuit network

More information

TRANSCLOUD: Design Considerations for a. Multiple Administrative Domains Rick McGeer, HP Labs. August 1, 2010

TRANSCLOUD: Design Considerations for a. Multiple Administrative Domains Rick McGeer, HP Labs. August 1, 2010 TRANSCLOUD: Design Considerations for a High-Performance Cloud Architecture Across Multiple Administrative Domains Rick McGeer, HP Labs For the TransCloud Team: HP Labs, UC San Diego, University of Victoria,

More information

Internet Applications and the Application Layer Material from Kurose and Ross, Chapter 2: The Application Layer

Internet Applications and the Application Layer Material from Kurose and Ross, Chapter 2: The Application Layer Midterm Study Sheet Below is a list of topics that will be covered on the midterm exam. Some topics may have summaries to clarify the coverage of the topic during the lecture. Disclaimer: the list may

More information

CS155b: E-Commerce. Lecture 3: Jan 16, How Does the Internet Work? Acknowledgements: S. Bradner and R. Wang

CS155b: E-Commerce. Lecture 3: Jan 16, How Does the Internet Work? Acknowledgements: S. Bradner and R. Wang CS155b: E-Commerce Lecture 3: Jan 16, 2001 How Does the Internet Work? Acknowledgements: S. Bradner and R. Wang Internet Protocols Design Philosophy ordered set of goals 1. multiplexed utilization of existing

More information

CSC 4900 Computer Networks: Link Layer (3)

CSC 4900 Computer Networks: Link Layer (3) CSC 4900 Computer Networks: Link Layer (3) Professor Henry Carter Fall 2017 Link Layer 6.1 Introduction and services 6.2 Error detection and correction 6.3 Multiple access protocols 6.4 LANs addressing,

More information

Exploiting ICN for Flexible Management of Software-Defined Networks

Exploiting ICN for Flexible Management of Software-Defined Networks Exploiting ICN for Flexible Management of Software-Defined Networks Mayutan Arumaithurai, Jiachen Chen, Edo Monticelli, Xiaoming Fu and K. K. Ramakrishnan * University of Goettingen, Germany * University

More information

Transport Layer Review

Transport Layer Review Transport Layer Review Mahalingam Mississippi State University, MS October 1, 2014 Transport Layer Functions Distinguish between different application instances through port numbers Make it easy for applications

More information

Content and Context in Mobility First

Content and Context in Mobility First and Context in Mobility First Presented by: Rich Martin WINLAB, Rutgers University Technology Centre of NJ 671 Route 1, North Brunswick, NJ 08902, USA rmartin@cs.rutgers.edu Using the for content and context

More information

Inter-AS routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley

Inter-AS routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Inter-AS routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Chapter 4:

More information

IP ADDRESSES, NAMING, AND DNS

IP ADDRESSES, NAMING, AND DNS IP ADDRESSES, NAMING, AND DNS George Porter Apr 9, 2018 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license These

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

MobilityFirst FIA-NP Project Annual Report Page: 1

MobilityFirst FIA-NP Project Annual Report Page: 1 MobilityFirst FIA-NP Project Annual Report Page: 1 NSF FIA-NP Award #CNS-134529 Lead Institution Consolidated Report for Period: May 2015-April 2016 The Next-Phase MobilityFirst Project - From Architecture

More information

MFTP: a Clean- Slate Transport Protocol for the Informa8on Centric MobilityFirst Network

MFTP: a Clean- Slate Transport Protocol for the Informa8on Centric MobilityFirst Network MFTP: a Clean- Slate Transport Protocol for the Informa8on Centric MobilityFirst Network Kai Su (presen8ng), Francesco Bronzino, K. K. Ramakrishnan*, and Dipankar Raychaudhuri WINLAB, Rutgers University

More information

Enabling Advanced Network Services in the Future Internet Using Named Object Identifiers and Global Name Resolution

Enabling Advanced Network Services in the Future Internet Using Named Object Identifiers and Global Name Resolution Enabling Advanced Network Services in the Future Internet Using Named Object Identifiers and Global Name Resolution Shreyasee Mukherjee, Parishad Karimi, Dipankar Raychaudhuri WINLAB, Rutgers University

More information

End-to-End Transport Layer Services in the MobilityFirst Network

End-to-End Transport Layer Services in the MobilityFirst Network End-to-End Transport Layer Services in the MobilityFirst Network Kai Su, Francesco Bronzino, Dipankar Raychaudhuri, K.K. Ramakrishnan WINLAB Research Review Winter 2014 Transport Services From TCP/IP to

More information

NETWORKING KEITH W. ROSS. Polytechnic Institute of NYU. Addison-Wesley

NETWORKING KEITH W. ROSS. Polytechnic Institute of NYU. Addison-Wesley COMPUTER FIFTH EDITION NETWORKING JAMES F. KUROSE University of Massachusetts, Amherst KEITH W. ROSS Polytechnic Institute of NYU Addison-Wesley New York Boston San Francisco London Toronto Sydney Tokyo

More information

Evaluating 5G Multihoming Services in the MobilityFirst Future Internet Architecture

Evaluating 5G Multihoming Services in the MobilityFirst Future Internet Architecture Evaluating 5G Multihoming Services in the MobilityFirst Future Internet Architecture Parishad Karimi, Michael Sherman, Ivan Seskar, Dipankar Raychaudhuri WINLAB, Rutgers University {parishad,msherman,seskar,ray}@winlab.rutgers.edu

More information

CSE 3214: Computer Network Protocols and Applications Network Layer

CSE 3214: Computer Network Protocols and Applications Network Layer CSE 314: Computer Network Protocols and Applications Network Layer Dr. Peter Lian, Professor Department of Computer Science and Engineering York University Email: peterlian@cse.yorku.ca Office: 101C Lassonde

More information

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access Last time Wireless link-layer Introduction Wireless hosts, base stations, wireless links Characteristics of wireless links Signal strength, interference, multipath propagation Hidden terminal, signal fading

More information

Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5

Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5 Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5 Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained

More information

Architecture and Prototyping of an based Self-Organizing Hierarchical Ad-Hoc Wireless Network (SOHAN)

Architecture and Prototyping of an based Self-Organizing Hierarchical Ad-Hoc Wireless Network (SOHAN) Architecture and Prototyping of an 802.11- based Self-Organizing Hierarchical Ad-Hoc Wireless Network (SOHAN) PIMRC 2004, Barcelona Sept 5-8, 2004 S. Ganu, L. Raju, B. Anepu, S. Zhao, I. Seskar and D.

More information

industrial and educational campuses. The tiered administrative architecture provides flexibility for the different tiers to have their own policies, i

industrial and educational campuses. The tiered administrative architecture provides flexibility for the different tiers to have their own policies, i CNT4007C Computer Networks Fundamentals, Fall 2015 Instructor: Prof. Ahmed Helmy Homework #1 Part I On Internet Architecture and Application Layer [Date Assigned: Sept 22 nd, 2015. Due Date: Oct 2 nd,

More information

CS118 Discussion 1A, Week 9. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m.

CS118 Discussion 1A, Week 9. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. CS118 Discussion 1A, Week 9 Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. 1 Outline Wireless: 802.11 Mobile IP Cellular Networks: LTE Sample final 2 Wireless and Mobile Network Wireless access: WIFI

More information

1. The Internet 2. Principles 3. Ethernet 4. WiFi 5. Routing 6. Internetworking 7. Transport 8. Models 9. WiMAX & LTE 10. QoS 11. Physical Layer 12.

1. The Internet 2. Principles 3. Ethernet 4. WiFi 5. Routing 6. Internetworking 7. Transport 8. Models 9. WiMAX & LTE 10. QoS 11. Physical Layer 12. Lecture Slides 1. The Internet 2. Principles 3. Ethernet 4. WiFi 5. Routing 6. Internetworking 7. Transport 8. Models 9. WiMAX & LTE 10. QoS 11. Physical Layer 12. Additional Topics 1.1. Basic Operations

More information

Inter-Domain Routing with Cut-Through Switching for the MobilityFirst Future Internet Architecture

Inter-Domain Routing with Cut-Through Switching for the MobilityFirst Future Internet Architecture 1 Inter-Domain Routing with Cut-Through Switching for the MobilityFirst Future Internet Architecture Adrian Lara, Shreyasee Mukherjee, Byrav Ramamurthy, Dipankar Raychaudhuri and K. K. Ramakrishnan University

More information

A Hierarchically Aggregated In-Network Global Name Resolution Service for the Mobile Internet

A Hierarchically Aggregated In-Network Global Name Resolution Service for the Mobile Internet 1 A Hierarchically Aggregated In-Network Global Name Resolution Service for the Mobile Internet Yi Hu, Roy D. Yates, Dipankar Raychaudhuri WINLAB, Rutgers University {yihu, ryates, ray}@winlab.rutgers.edu

More information

Internet Design: Big Picture

Internet Design: Big Picture Internet Design: Big Picture Internet architectural, design and implementation principles not scriptures, but guidelines understand pros and cons, trade-offs involves Original Internet Design Goals what

More information

TDTS06: Computer Networks

TDTS06: Computer Networks TDTS06: Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived from Computer Networking: A Top Down Approach, by Jim Kurose and Keith Ross, Addison-Wesley. The slides

More information

Internet Technology. 15. Things we didn t get to talk about. Paul Krzyzanowski. Rutgers University. Spring Paul Krzyzanowski

Internet Technology. 15. Things we didn t get to talk about. Paul Krzyzanowski. Rutgers University. Spring Paul Krzyzanowski Internet Technology 15. Things we didn t get to talk about Paul Krzyzanowski Rutgers University Spring 2016 May 6, 2016 352 2013-2016 Paul Krzyzanowski 1 Load Balancers Load Balancer External network NAT

More information

Computer Networking. Introduction. Quintin jean-noël Grenoble university

Computer Networking. Introduction. Quintin jean-noël Grenoble university Computer Networking Introduction Quintin jean-noël Jean-noel.quintin@imag.fr Grenoble university Based on the presentation of Duda http://duda.imag.fr 1 Course organization Introduction Network and architecture

More information

SATELLITE-ASSISTED CONTENT DELIVERY NETWORK USING MOBILITYFIRST FUTURE INTERNET ARCHITECTURE

SATELLITE-ASSISTED CONTENT DELIVERY NETWORK USING MOBILITYFIRST FUTURE INTERNET ARCHITECTURE SATELLITE-ASSISTED CONTENT DELIVERY NETWORK USING MOBILITYFIRST FUTURE INTERNET ARCHITECTURE BY SHASHIKANTH RANGAN PENUGONDE A thesis submitted to the Graduate School New Brunswick Rutgers, The State University

More information

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services:

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services: NET 331 Computer Networks Lecture 12 Internet Routing Protocols Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose and Ross, (c) Pearson Education

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Francesco Bronzino OBJECTIVE

Francesco Bronzino OBJECTIVE Francesco Bronzino Inria, Paris, MUSE Research Group LINCS, 23 avenue d Italie, Paris, 75013 Email: francesco.bronzino@inria.fr Phone: +39-333-349-9276 www.winlab.rutgers.edu/ bronzino/ OBJECTIVE EXPERTISE

More information

Introduction to computer networking

Introduction to computer networking edge core Introduction to computer networking Comp Sci 3600 Security Outline edge core 1 2 edge 3 core 4 5 6 The edge core Outline edge core 1 2 edge 3 core 4 5 6 edge core Billions of connected computing

More information

Introduction to Networking

Introduction to Networking Introduction to Networking The fundamental purpose of data communications is to exchange information between user's computers, terminals and applications programs. Simplified Communications System Block

More information

CSC 4900 Computer Networks: Routing Protocols

CSC 4900 Computer Networks: Routing Protocols CSC 4900 Computer Networks: Routing Protocols Professor Henry Carter Fall 2017 Last Time Link State (LS) versus Distance Vector (DV) algorithms: What are some of the differences? What is an AS? Why do

More information

Building the At-Scale GENI Testbed

Building the At-Scale GENI Testbed Building the At-Scale GENI Testbed Mark Berman www.geni.net Panel: Building the At-Scale GENI Testbed Mark Berman (GENI Project Office, Cambridge) Building the At-Scale GENI Testbed Mike Zink (University

More information

15-744: Computer Networking. Data Center Networking II

15-744: Computer Networking. Data Center Networking II 15-744: Computer Networking Data Center Networking II Overview Data Center Topology Scheduling Data Center Packet Scheduling 2 Current solutions for increasing data center network bandwidth FatTree BCube

More information

Chapter 4: outline. Network Layer 4-1

Chapter 4: outline. Network Layer 4-1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link

More information

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NSF FIA Meeting Nov 15-16, 2010

MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NSF FIA Meeting Nov 15-16, 2010 MobilityFirst: A Robust and Trustworthy Mobility-Centric Architecture for the Future Internet NSF FIA Meeting Nov 15-16, 2010 MobilityFirst Project Team Contact: D. Raychaudhuri ray@winlab.rutgers.edu

More information

Venugopal Ramasubramanian Emin Gün Sirer SIGCOMM 04

Venugopal Ramasubramanian Emin Gün Sirer SIGCOMM 04 The Design and Implementation of a Next Generation Name Service for the Internet Venugopal Ramasubramanian Emin Gün Sirer SIGCOMM 04 Presenter: Saurabh Kadekodi Agenda DNS overview Current DNS Problems

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms

More information

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner Communication Networks (0368-3030) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner Kurose & Ross, Chapter 4 (5 th ed.) Many slides adapted from: J. Kurose & K. Ross

More information

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Network Layer By: Dr. Alireza Abdollahpouri What s the Internet: nuts and bolts view PC server wireless laptop cellular handheld millions

More information

Lecture 16: Network Layer Overview, Internet Protocol

Lecture 16: Network Layer Overview, Internet Protocol Lecture 16: Network Layer Overview, Internet Protocol COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation

Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation Internet 3.0: Ten Problems with Current Internet Architecture and Solutions for the Next Generation Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

INF3190 A critical look at the Internet / alternative network architectures. Michael Welzl

INF3190 A critical look at the Internet / alternative network architectures. Michael Welzl INF390 A critical look at the Internet / alternative network architectures Michael Welzl What s the problem? The Internet works! I work, too! Could be faster Could be safer Could be more reliable (Internet):

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

Deploy Microsoft SQL Server 2014 on a Cisco Application Centric Infrastructure Policy Framework

Deploy Microsoft SQL Server 2014 on a Cisco Application Centric Infrastructure Policy Framework White Paper Deploy Microsoft SQL Server 2014 on a Cisco Application Centric Infrastructure Policy Framework August 2015 2015 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public.

More information

Enhancement of CoAP Packet Delivery Performance for Internet of Things. Hang Liu

Enhancement of CoAP Packet Delivery Performance for Internet of Things. Hang Liu Enhancement of CoAP Packet Delivery Performance for Internet of Things Hang Liu Outline Motivation and Industrial Relevance Project Objectives Approach and Previous Results Future Work Outcome and Impact

More information

CSc 450/550 Computer Networks Internet Routing

CSc 450/550 Computer Networks Internet Routing CSc 450/550 Computer Networks Internet Routing Jianping Pan Summer 2007 7/12/07 CSc 450/550 1 Review Internet Protocol (IP) IP header addressing class-based, classless, hierarchical, NAT routing algorithms

More information

CMSC 332 Computer Networks Network Layer

CMSC 332 Computer Networks Network Layer CMSC 332 Computer Networks Network Layer Professor Szajda CMSC 332: Computer Networks Where in the Stack... CMSC 332: Computer Network 2 Where in the Stack... Application CMSC 332: Computer Network 2 Where

More information

CloudLab. Updated: 5/24/16

CloudLab. Updated: 5/24/16 2 The Need Addressed by Clouds are changing the way we look at a lot of problems Impacts go far beyond Computer Science but there's still a lot we don't know, from perspective of Researchers (those who

More information

CS 43: Computer Networks The Network Layer. Kevin Webb Swarthmore College November 2, 2017

CS 43: Computer Networks The Network Layer. Kevin Webb Swarthmore College November 2, 2017 CS 43: Computer Networks The Network Layer Kevin Webb Swarthmore College November 2, 2017 TCP/IP Protocol Stack host host HTTP Application Layer HTTP TCP Transport Layer TCP router router IP IP Network

More information

ECE 158A: Lecture 7. Fall 2015

ECE 158A: Lecture 7. Fall 2015 ECE 158A: Lecture 7 Fall 2015 Outline We have discussed IP shortest path routing Now we have a closer look at the IP addressing mechanism We are still at the networking layer, we will examine: IP Headers

More information

Networking and Internetworking 1

Networking and Internetworking 1 Networking and Internetworking 1 To do q q Networks and distributed systems Internet architecture xkcd Internet history Early days ~1960 ARPA sponsored research on computer networking to enable remote

More information

Computer Networks. Instructor: Niklas Carlsson

Computer Networks. Instructor: Niklas Carlsson Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived from Computer Networking: A Top Down Approach, by Jim Kurose and Keith Ross, Addison-Wesley. The slides are adapted

More information

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009.

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009. Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

CSCI 466 Midterm Networks Fall 2013

CSCI 466 Midterm Networks Fall 2013 CSCI 466 Midterm Networks Fall 2013 Name: This exam consists of 6 problems on the following 7 pages. You may use your single-sided hand-written 8 ½ x 11 note sheet and a calculator during the exam. No

More information

CSCI Topics: Internet Programming Fall 2008

CSCI Topics: Internet Programming Fall 2008 CSCI 491-01 Topics: Internet Programming Fall 2008 Network Layer Derek Leonard Hendrix College November 17, 2008 Original slides copyright 1996-2007 J.F Kurose and K.W. Ross 1 Chapter 4: Roadmap 4.1 Introduction

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.15 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information