Static Routing and Serial interfaces. 1 st semester

Size: px
Start display at page:

Download "Static Routing and Serial interfaces. 1 st semester"

Transcription

1 Static Routing and Serial interfaces 1 st semester

2 Outline Static Routing Implementation Configure Static and Default Routes Review of CIDR Configure Summary and Floating Static Routes Troubleshoot Static and Default Route Issues Summary

3 Configuring router serial interfaces

4 Point-to-point WAN link The simplest type of WAN link, also called a leased line or leased circuit. Point-to-point link uses synchronous serial lines

5 Configuring Serial Interface The basic configuration of a serial connection is no different than the other types of interfaces

6 Synchronous Communication The serial links used between two routers typically use synchronous communication, which means that both routers on the ends of the leased line must use the exact same speed for sending and receiving bits. Serial interfaces will usually be attached to a CSU/DSU type of device that provides clocking for the line. Clocking typically provided by DCEs to routers.

7 Synchronous Communication In the lab, to synchronize the clocks on the serial interfaces of both routers on the ends of a serial link, one end must provide clocking.

8 Setting the Clock Rate The clock speed controls the speed at which data is sent over the connection in bits per second (bps). Enable clocking on the router that is connected to the DCE cable

9 Setting the Clock Rate To find the clock rates that are available on a router

10 Let s Build a Following Network

11 Static Routing

12 Static Routing Reach Remote Networks A router can learn about remote networks in one of two ways: Manually - Remote networks are manually entered into the route table using static routes. Dynamically - Remote networks are automatically learned using a dynamic routing protocol.

13 Static Routing Static route A static route is created, maintained, and updated by a network administrator, manually. A static route to every network must be configured on every router for full connectivity.

14

15

16 Static Routing Why Use Static Routing? Static routing provides some advantages over dynamic routing, including: Static routes are not advertised over the network, resulting in better security. Routers not share static routes with each other, thus reducing CPU/RAM overhead and saving bandwidth.

17 Static Routing Why Use Static Routing? (continued) Static routing has the following disadvantages: Initial configuration and maintenance is timeconsuming. Configuration is error-prone, especially in large networks. Administrator intervention is required to maintain changing route information. Does not scale well with growing networks; maintenance becomes cumbersome. Requires complete knowledge of the whole network for proper implementation.

18 Static Routing When to Use Static Routes Static routing has three primary uses: 1. Small networks: Providing ease of routing table maintenance in smaller networks that are not expected to grow significantly. 2. Default route: Using a single default route to represent a path to any network that does not have a more specific match with another route in the routing table. Default routes are used to send traffic to any destination beyond the next upstream router.

19 Static Routing When to Use Static Routes 3. Routing to and from stub networks. A stub network is a network accessed by a single route, and the router has no other neighbors (only one router).

20 Static Routing Activity - Identify the Advantages and Disadvantages of Static Routing

21 Types of Static Routes Static Route Applications Static Routes are often used to: 1. Connect to a specific network 2. Provide a Gateway of Last Resort for a stub network 3. Summarize routing table entries 4. Create a backup route in case a primary route link fails

22 Types of Static Routes Standard Static Route Static route can be used to connect to a specific network ( like for example a stub network)

23 Types of Static Routes Default Static Route Static route can be used to configure default route. A default static route is a route that matches all packets. A default route identifies the gateway IP address to which the router sends all IP packets that it does not have a learned or static route. A default static route is simply a static route with /0 as the destination IPv4 address. Configuring a default static route creates a Gateway of Last Resort.

24 Types of Static Routes Default Static Route Default static routes are used: When no other routes in the routing table match the packet destination IP address. When a router has only one other router to which it is connected. This condition is known as a stub router.

25 Types of Static Routes Summary Static Route

26 Types of Static Routes Summary Static Route To reduce the number of routing table entries, multiple static routes can be summarized into a single static route if: The destination networks are contiguous and can be summarized into a single network address. The multiple static routes all use the same exit interface or next-hop IP address.

27 Types of Static Routes Floating Static Route Floating static routes are static routes that are used to provide a backup path to a primary static or dynamic route, in the event of a link failure. The floating static route is only used when the primary route is not available. In order to accomplish this, the floating static route is configured with a higher administrative distance than the primary route.

28 Types of Static Routes Activity - Identify the Type of Static Route

29 Configure IPv4 Static Routes ip route Command Next hop

30 Configure IPv4 Static Routes Next-Hop Options The next hop can be identified by an IP address, exit interface, or both. How the destination is specified creates one of the three following route types: When only the next-hop IP address is specified Next-hop static route. When only the router exit interface is specified Directly connected static route. When the next-hop IP address and exit interface are specified Fully specified static route.

31 Configure IPv4 Static Routes Configure a Next-Hop Static Route

32 Configure IPv4 Static Routes Configure a Next-Hop Static Route In a next-hop static route, only the next-hop IP address is specified. The output interface is derived from the next hop. The router performs multiple lookups in the routing table before forwarding a packet( a recursive lookup). Because recursive lookups consume router resources, they should be avoided when possible.

33 Configure IPv4 Static Routes Configure Directly Connected Static Route When configuring a static route, another option is to use the exit interface to specify the next-hop address.

34 Configure IPv4 Static Routes Configure Directly Connected Static Route Configuring a directly connected static route with an exit interface allows the routing table to resolve the exit interface in a single search, instead of two searches. Although the routing table entry indicates directly connected, the administrative distance of the static route is still 1. Only a directly connected interface can have an administrative distance of 0. Note: For point-to-point interfaces, you can use static routes that point to the exit interface or to the next-hop address. For multipoint/broadcast interfaces, it is more suitable to use static routes that point to a next-hop address.

35 Configure IPv4 Static Routes Configure a Fully Specified Static Route In a fully specified static route, both the output interface and the next-hop IP address are specified. This is another type of static route that is used in older IOS s, prior to CEF. This form of static route is used when the output interface is a multi-access interface and it is necessary to explicitly identify the next hop. The next hop must be directly connected to the specified exit interface.

36 Configure IPv4 Static Routes Configure a Fully Specified Static Route

37 Configure IPv4 Static Routes Verify a Static Route Along with ping and traceroute, useful commands to verify static routes include: show ip route show ip route static show ip route network

38 Configure IPv4 Static Routes Verify a Static Route

39 Configure IPv4 Default Routes Default Static Route

40 Configure IPv4 Default Routes Configure a Default Static Route

41 Configure IPv4 Default Routes Verify a Default Static Route Note the asterisk (*)next to the route with code S. The asterisk indicates that this static route is a candidate default route, which is selected as the Gateway of Last Resort.

42 Classful Addressing Classful Network Addressing and Default Subnet Masks Class A Class B Class C

43 CIDR Classless Inter-Domain Routing Classful Addressing Waste The overall result was that the classful addressing was a very wasteful addressing scheme. A better network addressing solution had to be developed. For this reason, Classless Inter-Domain Routing (CIDR) was introduced in 1993.

44 CIDR Classless Inter-Domain Routing CIDR also reduces the size of routing tables and manages the IPv4 address space more efficiently using: Route summarization: Also known as prefix aggregation, routes are summarized into a single route to help reduce the size of routing tables. Supernetting: Occurs when the route summarization mask is a smaller value than the default traditional classful mask. Note: A supernet is always a route summary, but a route summary is not always a supernet.

45 CIDR CIDR and Route Summarization

46 CIDR Static Routing CIDR Example

47 Configure IPv4 Summary Routes Calculate a Summary Route

48 Configure IPv4 Summary Routes Route Summarization CIDR is a form of route summarization and is synonymous with the term supernetting. CIDR ignores the limitation of classful boundaries, and allows summarization with masks that are smaller than that of the default classful mask. This type of summarization helps reduce the number of entries in routing updates and lowers the number of entries in local routing tables.

49 Configure IPv4 Summary Routes Summary Static Route Example

50 Types of Static Routes Activity - Determine the Summary Network Address and Prefix

51 Configure Floating Static Routes Floating Static Routes Floating static routes are static routes that have an administrative distance greater than the administrative distance of another static route or dynamic routes. The administrative distance of a static route can be increased to make the route less desirable than that of another static route or a route learned through a dynamic routing protocol. In this way, the static route floats and is not used when the route with the better administrative distance is active. However, if the preferred route is lost, the floating static route can take over, and traffic can be sent through this alternate route.

52 Configure Floating Static Routes Configure a Floating Static Route Default static route Floating default static route

53 Configure Floating Static Routes Test the Floating Static Route Use a show ip route command to verify that the routing table is using the default static route. Use a traceroute command to follow the traffic flow out the primary route. Disconnect the primary link or shutdown the primary exit interface. Use a show ip route command to verify that the routing table is using the floating static route. Use a traceroute command to follow the traffic flow out the backup route.

54 Troubleshoot IPv4 Static and Default Route Configuration Troubleshoot a Missing Route Common IOS troubleshooting commands include: ping traceroute show ip route show ip interface brief show cdp neighbors detail

55 Summary Static routes can be configured with a next-hop IP address, which is commonly the IP address of the next-hop router. When a next-hop IP address is used, the routing table process must resolve this address to an exit interface. On point-to-point serial links, it is usually more efficient to configure the static route with an exit interface. On multi-access networks, such as Ethernet, both a next-hop IP address and an exit interface can be configured on the static route. Static routes have a default administrative distance of "1".

56 Summary (continued) A static route is only entered in the routing table if the next-hop IP address can be resolved through an exit interface. Whether the static route is configured with a next-hop IP address or exit interface, if the exit interface that is used to forward that packet is not in the routing table, the static route is not included in the routing table. In many cases, several static routes can be configured as a single summary route. If there is not a more specific match in the routing table, the routing table uses the default route to forward the packet to another router. A floating static route can be configured to back up a main link by manipulating its administrative value.

57 Any Question?

Smart Serial. Show interfaces. Shut down. logging synchronous

Smart Serial. Show interfaces. Shut down. logging synchronous SEMESTER 2 Chapter 2 Static Networking V 4.0 2.1.1 What are the primary responsibilities of the router? 2.1.3 What is the first serial connector described called at the router end? What is the first serial

More information

Static Routing. Routing Protocols and Concepts Chapter 2. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.

Static Routing. Routing Protocols and Concepts Chapter 2. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. Static Routing Routing Protocols and Concepts Chapter 2 1 Objectives Define the general role a router plays in networks. Describe the directly connected networks, different router interfaces Examine directly

More information

SEMESTER 2 Chapter 3 Introduction to Dynamic Routing Protocols V 4.0

SEMESTER 2 Chapter 3 Introduction to Dynamic Routing Protocols V 4.0 SEMESTER 2 Chapter 3 Introduction to Dynamic Routing Protocols V 4.0 3.1.1 What are the four routing RIP, RIPv2, EIGRP, OSPFv2 protocols that are the focus of this course? 3.1.1.2 What are routing protocols?

More information

Chapter 6 Reading Organizer

Chapter 6 Reading Organizer Name Date Chapter 6 Reading Organizer After completion of this chapter, you should be able to: Describe and plan a network using OSPF Design and configure a network using single-area OSPF Work with multi-protocol

More information

The Routing Table: A Closer Look

The Routing Table: A Closer Look The Routing Table: A Closer Look Routing Protocols and Concepts Chapter 8 Version 4.0 1 Objectives Describe the various route types found in the routing table structure. Describe the routing table lookup

More information

Chapter 7: Routing Dynamically. Routing & Switching

Chapter 7: Routing Dynamically. Routing & Switching Chapter 7: Routing Dynamically Routing & Switching The Evolution of Dynamic Routing Protocols Dynamic routing protocols used in networks since the late 1980s Newer versions support the communication based

More information

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Building the Routing Table Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Introducing the Routing Table R1# show ip route Codes: C - connected,

More information

Chapter 4 Lab 4-2, Controlling Routing Updates. Topology. Objectives. CCNPv7 ROUTE

Chapter 4 Lab 4-2, Controlling Routing Updates. Topology. Objectives. CCNPv7 ROUTE Chapter 4 Lab 4-2, Controlling Routing Updates Topology Objectives Filter routes using a distribute list and ACL. Filter routes using a distribute list and prefix list. Filter redistributed routes using

More information

Claim desired outcome

Claim desired outcome Assessment Authoring - Table of Specification (TOS) The Table of Specification (TOS) is a high-level design template for a given assessment. It identifies the claims, components skills, targeted number

More information

RIPv2. Routing Protocols and Concepts Chapter 7. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. Cisco Public

RIPv2. Routing Protocols and Concepts Chapter 7. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. Cisco Public RIPv2 Routing Protocols and Concepts Chapter 7 1 Objectives Encounter and describe the limitations of RIPv1 s limitations. Apply the basic Routing Information Protocol Version 2 (RIPv2) configuration commands

More information

Lab 9.6.2: Challenge EIGRP Configuration Lab

Lab 9.6.2: Challenge EIGRP Configuration Lab Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway HQ BRANCH1 BRANCH2 PC1 PC2 PC3 Fa0/0 S0/0/0 S0/0/1 Lo1 Fa0/0 S0/0/0 S0/0/1 Fa0/0 S0/0/0 S0/0/1 NIC NIC NIC All

More information

Lab : Challenge OSPF Configuration Lab. Topology Diagram. Addressing Table. Default Gateway. Device Interface IP Address Subnet Mask

Lab : Challenge OSPF Configuration Lab. Topology Diagram. Addressing Table. Default Gateway. Device Interface IP Address Subnet Mask Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway Fa0/0 HQ S0/0/0 S0/0/1 Lo1 10.10.10.1 255.255.255.252 Fa0/0 Branch1 S0/0/0 S0/0/1 Fa0/0 Branch2 S0/0/0 S0/0/1 PC1

More information

CCNA EXPLORATION V4.0 ROUTING PROTOCOLS AND CONCEPTS ACCESSIBLE INSTRUCTOR MATERIALS POWERPOINT OBJECTIVES

CCNA EXPLORATION V4.0 ROUTING PROTOCOLS AND CONCEPTS ACCESSIBLE INSTRUCTOR MATERIALS POWERPOINT OBJECTIVES CCNA EXPLORATION V4.0 ROUTING PROTOCOLS AND CONCEPTS ACCESSIBLE INSTRUCTOR MATERIALS Prepared by Cisco Learning Institute June 23, 2008 Chapter 1 Introduction to Routing and Packet Forwarding Objectives

More information

Default & Static Routes and Routing Information Protocol. Presented by : Mohammed Hamad

Default & Static Routes and Routing Information Protocol. Presented by : Mohammed Hamad Default & Static Routes and Routing Information Protocol Presented by : Mohammed Hamad When a device has multiple paths to reach a destination, it always selects one path by preferring it over others.

More information

Chapter 4 Lab 4-1, Redistribution Between RIP and OSPF

Chapter 4 Lab 4-1, Redistribution Between RIP and OSPF hapter 4 Lab 4-1, Redistribution Between RIP and OSPF Topology Objectives Review configuration and verification of RIP and OSPF. onfigure passive interfaces in both RIP and OSPF. Filter routing updates

More information

Chapter 5 RIP version 1

Chapter 5 RIP version 1 Cisco CCNA 2 Exploration - Routing Chapter 5 RIP version 1 João José jjose@ualg.pt http://w3.ualg.pt/~jjose/cisco/ Based on: Graziani, R. (2008) CIS 82 Routing Theory and Concepts RIPv1: A Distance Vector,

More information

Lab 5.6.2: Challenge RIP Configuration

Lab 5.6.2: Challenge RIP Configuration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway BRANCH HQ ISP PC1 PC2 PC3 Fa0/0 S0/0/0 Fa0/0 S0/0/0 S0/0/1 Fa0/0 S0/0/1 NIC NIC NIC Learning Objectives Upon completion

More information

Lab 2.8.2: Challenge Static Route Configuration

Lab 2.8.2: Challenge Static Route Configuration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway BRANCH HQ ISP PC1 PC2 Web Server Fa0/0 S0/0/0 Fa0/0 S0/0/0 S0/0/1 209.165.201.2 255.255.255.252 Fa0/0 209.165.200.225

More information

Module 4. Planning the Addressing Structure

Module 4. Planning the Addressing Structure Module 4 Planning the Addressing Structure Name 4.1.1 1. How many bits are in an IP address? 2. What is dotted decimal notation? 3. What is the parent part of an IP address? 4. What is the child part of

More information

Chapter 4 Lab 4-1, Redistribution Between EIGRP and OSPF. Topology. Objectives. CCNPv7 ROUTE

Chapter 4 Lab 4-1, Redistribution Between EIGRP and OSPF. Topology. Objectives. CCNPv7 ROUTE hapter 4 Topology Objectives Review EIGRP and OSPF configuration. Summarize routes in EIGRP. Summarize in OSPF at an ABR. Redistribute into EIGRP. Redistribute into OSPF. Summarize in OSPF at an ASBR.

More information

Final exam study Guide

Final exam study Guide Final exam study Guide K-1A * In relationship to the OSI layer model and encapsulation/decapsulation process, what happen to a packet that travels through multiple hops of routers? - What happen to the

More information

Configuring IPv4 Addresses

Configuring IPv4 Addresses This chapter contains information about, and instructions for configuring IPv4 addresses on interfaces that are part of a networking device. Note All further references to IPv4 addresses in this document

More information

Chapter 7 Lab 7-1, Configuring BGP with Default Routing

Chapter 7 Lab 7-1, Configuring BGP with Default Routing Chapter 7 Topology Objectives Configure BGP to exchange routing information with two ISPs. Background The International Travel Agency (ITA) relies extensively on the Internet for sales. For this reason,

More information

Objectives. Review: Classful addresses. RIPv1 Characteristics. RIP Operation. RIP version 1

Objectives. Review: Classful addresses. RIPv1 Characteristics. RIP Operation. RIP version 1 2007 isco Systems, Inc. All rights reserved. isco Public Objectives IP version 1 outing Protocols and oncepts hapter 5 Describe the functions, characteristics, and operation of the IPv1 protocol. onfigure

More information

Chapter 4: Manipulating Routing

Chapter 4: Manipulating Routing : Manipulating Routing Updates CCNP ROUTE: Implementing IP Routing ROUTE v6 1 Objectives Describe network performance issues and ways to control routing updates and traffic (3). Describe the purpose of

More information

Chapter 7. RIP Version 2 (RIPv2)

Chapter 7. RIP Version 2 (RIPv2) Chapter 7 RIP Version 2 (RIPv2) CCNA2-1 Chapter 7 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must

More information

EIGRP Stub Routing. Finding Feature Information. Information About EIGRP Stub Routing. EIGRP Stub Routing

EIGRP Stub Routing. Finding Feature Information. Information About EIGRP Stub Routing. EIGRP Stub Routing The EIGRP stub routing feature improves network stability, reduces resource utilization, and simplifies the stub device configuration. Stub routing is commonly used in hub-and-spoke network topologies.

More information

Lab 2.8.1: Basic Static Route Configuration

Lab 2.8.1: Basic Static Route Configuration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway R1 Fa0/0 172.16.3.1 255.255.255.0 N/A S0/0/0 172.16.2.1 255.255.255.0 N/A Fa0/0 172.16.1.1 255.255.255.0 N/A R2

More information

CCNA Semester 2 labs. Labs for chapters 2 10

CCNA Semester 2 labs. Labs for chapters 2 10 CCNA Semester 2 labs Labs for chapters 2 10 2.2.2.5 Lab - Configuring IPv4 Static and Default Routes 2.3.2.4 Lab - Troubleshooting Static Routes 3.2.1.9 Lab - Configuring Basic RIPv2 5.2.2.9 Lab - Configuring

More information

CHAPTER 4: ROUTING DYNAMIC. Routing & Switching

CHAPTER 4: ROUTING DYNAMIC. Routing & Switching CHAPTER 4: ROUTING DYNAMIC Routing & Switching CHAPTER4 4.1 Dynamic Routing Protocols 4.2 Distance Vector Dynamic Routing 4.3 RIP and RIPng Routing 4.4 Link-State Dynamic Routing 4.5 The Routing Table

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Six Designing Models for Addressing and Naming Copyright 2010 Cisco Press & Priscilla Oppenheimer Guidelines for Addressing and Naming Use a structured model for addressing

More information

Chapter 5. RIP Version 1 (RIPv1) CCNA2-1 Chapter 5

Chapter 5. RIP Version 1 (RIPv1) CCNA2-1 Chapter 5 Chapter 5 RIP Version 1 (RIPv1) CCNA2-1 Chapter 5 RIP Version 1 RIPv1: Distance Vector, Classful Routing Protocol CCNA2-2 Chapter 5 Background and Perspective RIP evolved from the Xerox Network System

More information

BGP Policy Accounting

BGP Policy Accounting Border Gateway Protocol (BGP) policy accounting measures and classifies IP traffic that is sent to, or received from, different peers. Policy accounting is enabled on an input interface, and counters based

More information

Lab Troubleshooting IPv4 and IPv6 Static Routes (Instructor Version Optional Lab)

Lab Troubleshooting IPv4 and IPv6 Static Routes (Instructor Version Optional Lab) (Instructor Version Optional Lab) Instructor Note: Red font color or gray highlights indicate text that appears in the instructor copy only. Optional activities are designed to enhance understanding and/or

More information

Chapter 3. Introduction to Dynamic Routing Protocols. CCNA2-1 Chapter 3

Chapter 3. Introduction to Dynamic Routing Protocols. CCNA2-1 Chapter 3 Chapter 3 Introduction to Dynamic Routing Protocols CCNA2-1 Chapter 3 Introduction to Dynamic Routing Protocols Introduction to Dynamic Routing Protocols CCNA2-2 Chapter 3 Perspective and Background Dynamic

More information

Route Leaking in MPLS/VPN Networks

Route Leaking in MPLS/VPN Networks Route Leaking in MPLS/VPN Networks Document ID: 47807 Contents Introduction Prerequisites Requirements Components Used Conventions Configure Route Leaking from a Global Routing Table into a VRF and Route

More information

SCALABLE INTERNET ROUTING

SCALABLE INTERNET ROUTING CS 4/55231 Internet Engineering Kent State University Dept. of Computer Science LECT-7 SCALABLE ROUTING 1 2 Scalability Basic Subnetting & Subnet Masks The management of global resource is a complex task.

More information

Chapter 8. The Routing Table: A Closer Look

Chapter 8. The Routing Table: A Closer Look Chapter 8 The Routing Table: A Closer Look CCNA2-1 Chapter 8 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks

More information

This appendix contains supplementary Border Gateway Protocol (BGP) information and covers the following topics:

This appendix contains supplementary Border Gateway Protocol (BGP) information and covers the following topics: Appendix C BGP Supplement This appendix contains supplementary Border Gateway Protocol (BGP) information and covers the following topics: BGP Route Summarization Redistribution with IGPs Communities Route

More information

VLSM and CIDR. Routing Protocols and Concepts Chapter 6. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

VLSM and CIDR. Routing Protocols and Concepts Chapter 6. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 VLSM and CIDR Routing Protocols and Concepts Chapter 6 Version 4.0 1 Objectives Compare and contrast classful and classless IP addressing. Review VLSM and explain the benefits of classless IP addressing.

More information

Full file at

Full file at ch02 True/False Indicate whether the statement is true or false. 1. IP addresses have links to domain names to make it possible for users to identify and access resources on a network. 2. As a frame moves

More information

Lab 8.4.2: Show IP Route Challenge Lab

Lab 8.4.2: Show IP Route Challenge Lab Addressing Table Device Interface IP Address Subnet Mask R1 R2 R3 R4 R5 Learning Objectives Upon completion of this lab, you will be able to: Determine network topology based on the outputs from the show

More information

Fractional DS3. Version: 400. Copyright ImageStream Internet Solutions, Inc., All rights Reserved.

Fractional DS3. Version: 400. Copyright ImageStream Internet Solutions, Inc., All rights Reserved. Version: 400 Copyright 2007-2010 ImageStream Internet Solutions, Inc., All rights Reserved. Table of Contents Fractional DS3...1 Configuration for Fractional DS3 Point-to-Point...1 Before You Start...1

More information

CCENT Study Guide. Chapter 9 IP Routing

CCENT Study Guide. Chapter 9 IP Routing CCENT Study Guide Chapter 9 IP Routing Chapter 9 Objectives The CCENT Topics Covered in this chapter include: 3.0 Routing Technologies 3.1 Describe the routing concepts. 3.1.a Packet handling along the

More information

Chapter 6 Lab 6-4, BGP Route Reflectors and Route Filters

Chapter 6 Lab 6-4, BGP Route Reflectors and Route Filters Chapter 6 Lab 6-4, BGP Route Reflectors and Route Filters Topology Objectives Background Configure IBGP routers to use a route reflector and a simple route filter. The International Travel Agency maintains

More information

Troubleshooting Cisco Express Forwarding Routing Loops

Troubleshooting Cisco Express Forwarding Routing Loops Troubleshooting Cisco Express Forwarding Routing Loops Document ID: 26083 Contents Introduction Prerequisites Requirements Components Used Conventions Network Diagram Problem Troubleshoot Solution Related

More information

IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 12.4

IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 12.4 IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 12.4 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

More information

Chapter 3 Lab 3-2, Multi-Area OSPFv2 and OSPFv3 with Stub Area

Chapter 3 Lab 3-2, Multi-Area OSPFv2 and OSPFv3 with Stub Area Chapter 3 Topology Objectives Configure multi-area OSPFv2 for IPv4. Configure multi-area OSPFv3 for IPv6 Verify multi-area behavior. Configure stub and totally stubby areas for OSPFv2. Configure stub and

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

IP addressing. Overview. IP addressing Issues and solution Variable Length Subnet Mask (VLSM)

IP addressing. Overview. IP addressing Issues and solution Variable Length Subnet Mask (VLSM) Overview IP addressing IP addressing Issues and solution Variable Length Subnet Mask (VLSM) Written exercise : VLSM calculation Summarisation of routes Classless InterDomain routing (CIDR) Internet registry

More information

Lab: Basic Static Route Configuration

Lab: Basic Static Route Configuration Lab: Basic Static Route onfiguration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway R1 Fa0/0 172.16.3.1 255.255.255.0 N/A S0/0/0 172.16.2.1 255.255.255.0 N/A

More information

5. Providing a narrower address space is the primary design goal for IPv6.

5. Providing a narrower address space is the primary design goal for IPv6. Chapter 2: IP Addressing and Related Topics TRUE/FALSE 1. IP addresses can be represented as domain names to make it possible for users to identify and access resources on a network. T PTS: 1 REF: 59 2.

More information

Which of the following are primary functions of a router? (Choose two.) - packet switching - path selection

Which of the following are primary functions of a router? (Choose two.) - packet switching - path selection Which three statements are true regarding the encapsulation and de-encapsulation of packets when traveling through a router? (Choose three.) - The router modifies the TTL field, decrementing it by one.

More information

Implementing Static Routes for IPv6

Implementing Static Routes for IPv6 Implementing Static Routes for IPv6 Last Updated: July 31, 2012 This module describes how to configure static routes for IPv6. Routing defines the paths over which packets travel in the network. Manually

More information

Chapter 7 Lab 7-2, Using the AS_PATH Attribute

Chapter 7 Lab 7-2, Using the AS_PATH Attribute Chapter 7 Topology Objectives Use BGP commands to prevent private AS numbers from being advertised to the outside world. Use the AS_PATH attribute to filter BGP routes based on their source AS numbers.

More information

Lecture 10: Addressing

Lecture 10: Addressing Lecture 10: Addressing CSE 123: Computer Networks Alex C. Snoeren HW 2 due WEDNESDAY Lecture 10 Overview ICMP The other network-layer protocol IP Addresses Class-based addressing Subnetting Classless addressing

More information

CCNP 1: Advanced Routing

CCNP 1: Advanced Routing Scope and Sequence CCNP 1: Advanced Routing Cisco Networking Academy Program Version 3.1 TABLE OF CONTENTS CCNP 1: ADVANCED ROUTING...1 TARGET AUDIENCE...3 PREREQUISITES...3 COURSE DESCRIPTION...3 COURSE

More information

Lecture (01) Determining IP Routes (1)

Lecture (01) Determining IP Routes (1) Lecture (01) Determining IP Routes (1) By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU : Fall 2016, Practical App. Networks II Overview Routing is the process of determining where to send data packets

More information

Basics of communication. Grundlagen der Rechnernetze Introduction 31

Basics of communication. Grundlagen der Rechnernetze Introduction 31 Basics of communication Grundlagen der Rechnernetze Introduction 31 Types of communication H9 H8 H1 H7 R1 N3 H2 N1 R3 H3 R2 N2 H6 H5 H4 Unicast communication where a piece of information is sent from one

More information

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model Lecture 8 Basic Internetworking (IP) Reminder: Homework 3, Programming Project 2 due on Tuesday. An example internet is shown at right. Routers or gateways are used to connect different physical networks.

More information

Lab Correcting RIPv2 Routing Problems

Lab Correcting RIPv2 Routing Problems Lab 9.4.2 Correcting RIPv2 Routing Problems e Interface IP Address Subnet Mask Default Gateway Device Host Name Interface IP Address Subnet Mask Default Gateway R1 BRANCH1 Fast Ethernet 0/0 172.16.0.1

More information

Vanguard Managed Solutions

Vanguard Managed Solutions Vanguard Managed Solutions Vanguard Applications Ware IP and LAN Feature Protocols Open Shortest Path First (OSPF) Notice 2003 Vanguard Managed Solutions, LLC 575 West Street Mansfield, Massachusetts 02048

More information

Chapter 4: Routing Concepts. Routing & Switching

Chapter 4: Routing Concepts. Routing & Switching Chapter 4: Routing Concepts Routing & Switching Routers are Computers Routers are specialized computers containing the following required components to operate: Central processing unit (CPU) Operating

More information

Symbols. Numerics I N D E X

Symbols. Numerics I N D E X I N D E X Symbols? (question mark), CLI help system, 126 Numerics A 2-router BGP topology, configuring, 279 284 4-router BGP topology, configuring, 266, 276 279 ABRs (area border routers), 9, 87, 95, 141

More information

Advanced IPv6 Training Course. Lab Manual. v1.3 Page 1

Advanced IPv6 Training Course. Lab Manual. v1.3 Page 1 Advanced IPv6 Training Course Lab Manual v1.3 Page 1 Network Diagram AS66 AS99 10.X.0.1/30 2001:ffXX:0:01::a/127 E0/0 R 1 E1/0 172.X.255.1 2001:ffXX::1/128 172.16.0.X/24 2001:ff69::X/64 E0/1 10.X.0.5/30

More information

IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 15S

IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 15S IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 15S Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

More information

Lab Configuring IPv4 Static and Default Routes (Solution)

Lab Configuring IPv4 Static and Default Routes (Solution) (Solution) Topology Addressing Table Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.0.1 255.255.255.0 N/A S0/0/1 10.1.1.1 255.255.255.252 N/A R3 G0/1 192.168.1.1 255.255.255.0

More information

Configuration and Management of Networks

Configuration and Management of Networks EIGRP Summarization and efault Network Advertisement The lab is built on the topology: Topology Objectives Review a basic EIGRP configuration. onfigure and verify EIGRP auto-summarization. onfigure and

More information

Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF

Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF Topology Objectives Review EIGRP and OSPF configuration. Redistribute into EIGRP. Redistribute into OSPF. Summarize routes in EIGRP. Filter routes

More information

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Lecture 8 Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Outline Chapter 3 - Internetworking 3.1 Switching and Bridging 3.2

More information

Chapter 4: VLSM and Classless Inter Domain Routing. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.

Chapter 4: VLSM and Classless Inter Domain Routing. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. Chapter 4: VLSM and Classless Inter Domain Routing 1 What will we Learn from chapter 4? Compare and contrast classful and classless IP addressing. Review VLSM and explain the benefits of classless IP addressing.

More information

Chapter 5. RIP Version 1 (RIPv1)

Chapter 5. RIP Version 1 (RIPv1) Chapter 5 RIP Version 1 (RIPv1) CCNA2-1 Chapter 5 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must

More information

Hands-On ROUTE Implementing Cisco IP Routing CCNP Course 1

Hands-On ROUTE Implementing Cisco IP Routing CCNP Course 1 Hands-On CCNP Course 1 Course Description Revised CCNP Curriculum and Exams Cisco has redesigned the CCNP courses and exams to reflect the evolving job tasks of global network professionals. Course 1 ROUTE

More information

Laboratory 2 Dynamic routing using RIP. Iptables. Part1. Dynamic Routing

Laboratory 2 Dynamic routing using RIP. Iptables. Part1. Dynamic Routing Introduction Laboratory 2 Dynamic routing using RIP. Iptables. Part1. Dynamic Routing Static routing has the advantage that it is simple, requires no computing power in router for determining routes (this

More information

RealCiscoLAB.com. Chapter 6 Lab 6-1, Configuring BGP with Default Routing. Configure BGP to exchange routing information with two ISPs.

RealCiscoLAB.com. Chapter 6 Lab 6-1, Configuring BGP with Default Routing. Configure BGP to exchange routing information with two ISPs. RealCiscoLAB.com CCNPv6 ROUTE Chapter 6 Lab 6-1, Configuring BGP with Default Routing Topology Objectives Background Configure BGP to exchange routing information with two ISPs. The International Travel

More information

Routing Concepts. 1.0 Routing Concepts. Chapter Introduction Class Activity - Do We Really Need a Map?

Routing Concepts. 1.0 Routing Concepts. Chapter Introduction Class Activity - Do We Really Need a Map? Chapter 1 Routing Concepts 1.0 Routing Concepts 1.0.1.1 Introduction Networks allow people to communicate, collaborate, and interact in many ways. Networks are used to access web pages, talk using IP telephones,

More information

RealCiscoLAB.com. Chapter 2 Lab 2-2, EIGRP Load Balancing. Topology. Objectives. Background. CCNPv6 ROUTE

RealCiscoLAB.com. Chapter 2 Lab 2-2, EIGRP Load Balancing. Topology. Objectives. Background. CCNPv6 ROUTE RealCiscoLAB.com CCNPv6 ROUTE Chapter 2 Lab 2-2, EIGRP Load Balancing Topology Objectives Background Review a basic EIGRP configuration. Explore the EIGRP topology table. Identify successors, feasible

More information

Table of Contents 1 Static Routing Configuration RIP Configuration 2-1

Table of Contents 1 Static Routing Configuration RIP Configuration 2-1 Table of Contents 1 Static Routing Configuration 1-1 Introduction 1-1 Static Route 1-1 Default Route 1-1 Application Environment of Static Routing 1-1 Configuring a Static Route 1-2 Configuration Prerequisites

More information

Cabrillo College. CCNP Advanced Routing Ch. 3 Routing Overview. Rick Graziani, Instructor. Feb. 17, 2002

Cabrillo College. CCNP Advanced Routing Ch. 3 Routing Overview. Rick Graziani, Instructor. Feb. 17, 2002 Cabrillo College CCNP Advanced Routing Ch. 3 Routing Overview Rick Graziani, Instructor Feb. 17, 2002 1 Note This chapter is just a brief overview of some routing concepts. Most of these will be discussed

More information

debug ip ospf database external default-metric subnet area 0 stub distribute-list in Serial0/1

debug ip ospf database external default-metric subnet area 0 stub distribute-list in Serial0/1 Which statement about stateless autoconfiguration is true? A host can autoconfigure itself by appending its MAC address to the local link prefix (64 bits). 2 Autoconfiguration allows devices to connect

More information

Draft Manuscript Draft M. Manuscript Draft Ma. t Manuscript Draft Manu. ipt Draft Manuscript Dra. anuscript Draft Manuscri

Draft Manuscript Draft M. Manuscript Draft Ma. t Manuscript Draft Manu. ipt Draft Manuscript Dra. anuscript Draft Manuscri M aft Ma CHAPTER 5 ript Dra RIP Version 1 Objectives aft Ma Upon completion of this chapter, you should be able to answer the following questions: What are the functions, characteristics, and operation

More information

Routing Dynamically. 3.0 Routing Dynamically. Chapter Introduction Class Activity How Much Does This Cost?

Routing Dynamically. 3.0 Routing Dynamically. Chapter Introduction Class Activity How Much Does This Cost? Chapter 3 Routing Dynamically 3.0 Routing Dynamically 3.0.1.1 Introduction The data networks that we use in our everyday lives to learn, play, and work range from small, local networks to large, global

More information

CCNA 3 (v v6.0) Chapter 5 Exam Answers % Full

CCNA 3 (v v6.0) Chapter 5 Exam Answers % Full CCNA 3 (v5.0.3 + v6.0) Chapter 5 Exam Answers 2017 100% Full ccnav6.com /ccna-3-v5-0-3-v6-0-chapter-5-exam-answers-2017-100-full.html CCNA Exam Answers 2017 CCNA 3 (v5.0.3 + v6.0) Chapter 5 Exam Answers

More information

Draft Manuscript Draft M. uscript Draft Manuscript. aft Manuscript Draft Ma. cript Draft Manuscript D. ipt Draft Manuscript Dra

Draft Manuscript Draft M. uscript Draft Manuscript. aft Manuscript Draft Ma. cript Draft Manuscript D. ipt Draft Manuscript Dra M aft Ma CHAPTER 3 ript Introduction to Dynamic Routing Protocols Objectives aft Ma Upon completion of this chapter, you should be able How do you determine the administrative distance of a route, and

More information

Introduction to Local and Wide Area Networks

Introduction to Local and Wide Area Networks Introduction to Local and Wide Area Networks Lecturers Amnach Khawne Jirasak Sittigorn Chapter 1 1 Routing Protocols and Concepts Chapter 8 : The Routing Table: A Closer Look Chapter 9 : EIGRP Chapter

More information

Inter-networking. Problem. 3&4-Internetworking.key - September 20, LAN s are great but. We want to connect them together. ...

Inter-networking. Problem. 3&4-Internetworking.key - September 20, LAN s are great but. We want to connect them together. ... 1 Inter-networking COS 460 & 540 2 Problem 3 LAN s are great but We want to connect them together...across the world Inter-networking 4 Internet Protocol (IP) Routing The Internet Multicast* Multi-protocol

More information

LAB11: EIGRP IPv4. EIGRP: Stub. Disclaimer

LAB11: EIGRP IPv4. EIGRP: Stub. Disclaimer Page1 AB11: EIGRP IPv4 isclaimer This onfiguration Guide is designed to assist members to enhance their skills in respective technology area. While every effort has been made to ensure that all material

More information

Chapter 6. Variable Length Subnet Masking (VLSM) Classless Inter-Domain Routing (CIDR) CCNA2-1 Chapter 6

Chapter 6. Variable Length Subnet Masking (VLSM) Classless Inter-Domain Routing (CIDR) CCNA2-1 Chapter 6 Chapter 6 Variable Length Subnet Masking (VLSM) Classless Inter-Domain Routing (CIDR) CCNA2-1 Chapter 6 VLSM and CIDR Classful and Classless Addressing CCNA2-2 Chapter 6 Classful and Classless Routing

More information

Implementing Static Routes

Implementing Static Routes This module describes how to implement static routes. Static routes are user-defined routes that cause packets moving between a source and a destination to take a specified path. Static routes can be important

More information

DGS-1510 Series Gigabit Ethernet SmartPro Switch Web UI Reference Guide

DGS-1510 Series Gigabit Ethernet SmartPro Switch Web UI Reference Guide 6. Layer 3 Features ARP ARP Gratuitous ARP IPv4 Interface IPv4 Static/Default Route IPv4 Route Table IPv6 General Prefix IPv6 Interface IPv6 Neighbor IPv6 Static/Default Route IPv6 Route Table ARP Aging

More information

Basic Idea. Routing. Example. Routing by the Network

Basic Idea. Routing. Example. Routing by the Network Basic Idea Routing Routing table at each router/gateway When IP packet comes, destination address checked with routing table to find next hop address Questions: Route by host or by network? Routing table:

More information

Configuration and Management of Networks 2012

Configuration and Management of Networks 2012 Configuring BGP with default routing Topology Objectives Background Instructions Configure BGP to exchange routing information with two ISPs. The International Travel Agency (ITA) relies extensively on

More information

Routing by the Network

Routing by the Network Routing Basic Idea Routing table at each router/gateway When IP packet comes, destination address checked with routing table to find next hop address Questions: Route by host or by network? Routing table:

More information

CCE1030 Computer Networking

CCE1030 Computer Networking CCE1030 Computer Networking Lecture 19 Subnetting CIDR / VLSM Usama Arusi January 2018 CCE1030 Usama Arusi 1 Lecture Content Introduction Classful IP Addressing Classful Addressing Structure Classless

More information

College of DuPage. CCNA3 V3.0 Switching Basics and Intermediate Routing: Module 1: Introduction to Classless Routing

College of DuPage. CCNA3 V3.0 Switching Basics and Intermediate Routing: Module 1: Introduction to Classless Routing College of DuPage CCNA3 V3.0 Switching Basics and Intermediate Routing: Module 1: Introduction to Classless Routing 3-2004 1 Overview With the phenomenal growth of the Internet and TCP/IP, virtually every

More information

Lab - Configuring Multi-area OSPFv2

Lab - Configuring Multi-area OSPFv2 Topology Addressing Table Device Interface IP Address Subnet Mask Lo0 209.165.200.225 255.255.255.252 R1 R2 R3 Lo1 192.168.1.1 255.255.255.0 Lo2 192.168.2.1 255.255.255.0 S0/0/0 (DCE) 192.168.12.1 255.255.255.252

More information

8. Refer to the exhibit. The ORL router is unable to form a neighbor relationship with the JAX router. What is a possible cause of this problem?

8. Refer to the exhibit. The ORL router is unable to form a neighbor relationship with the JAX router. What is a possible cause of this problem? 1. Refer to the exhibit. A new PC was deployed in the Sales network. It was given the host address of 192.168.10.31 with a default gateway of 192.168.10.17. The PC is not communicating with the network

More information

Cisco Exam Questions & Answers

Cisco Exam Questions & Answers Questions & Answers Number: 200-120 Passing Score: 821 Time Limit: 120 min File Version: 28.8 http://www.gratisexam.com/ Questions & Answers Exam Name: CCNA Cisco Certified Network Associate CCNA (803)

More information

IP Addressing & Interdomain Routing. Next Topic

IP Addressing & Interdomain Routing. Next Topic IP Addressing & Interdomain Routing Next Topic IP Addressing Hierarchy (prefixes, class A, B, C, subnets) Interdomain routing Application Presentation Session Transport Network Data Link Physical Scalability

More information

EIGRP. Routing Protocols and Concepts Chapter 9. Video Frank Schneemann, MS EdTech

EIGRP. Routing Protocols and Concepts Chapter 9. Video Frank Schneemann, MS EdTech Video Frank Schneemann, MS EdTech EIGRP Routing Protocols and Concepts Chapter 9 ITE PC v4.0 Chapter 1 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 1 9.0.1 Introduction Enhanced Interior

More information