Chapter 8. The Routing Table: A Closer Look

Size: px
Start display at page:

Download "Chapter 8. The Routing Table: A Closer Look"

Transcription

1 Chapter 8 The Routing Table: A Closer Look CCNA2-1 Chapter 8 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must go out to Rick Graziani of Cabrillo College. His material and additional information was used as a reference in their creation. If anyone finds any errors or omissions, please let me know at: tdame@stclaircollege.ca. CCNA2-2 Chapter 8

2 The Routing Table: A Closer Look The Routing Table Structure CCNA2-3 Chapter 8 Introduction As a network administrator, it is important to know the routing table in depth when troubleshooting network issues. Understanding the structure and lookup process of the routing table will help you diagnose any routing table issue. Assist you in answering questions like: Is the packet being forwarded as expected? Is the packet is being sent elsewhere? Why isn t t the packet being forwarded to the correct destination? Has the packet has been discarded? CCNA2-4 Chapter 8

3 Lab Topology Router R1 and R2 share a common /16 network that is divided into /24 subnets. R2 and R3 are connected by the /24 network. R3 also has a /24 subnet that is disconnected, or discontiguous,, from the network that R1 and R2 share. CCNA2-5 Chapter 8 Lab Topology Interface Configurations for R1 and R3: R1 R3 CCNA2-6 Chapter 8

4 Routing Table Entries Routing table entries from the following sources: Directly connected networks. Static routes. Dynamic routing protocols. CCNA2-7 Chapter 8 Routing Table Entries The routing table hierarchy in Cisco IOS software was originally implemented with the classful routing scheme. It incorporates both classful and classless addressing but the overall structure is still built around this classful scheme. CCNA2-8 Chapter 8

5 Routing Table Entries Hierarchy The routing table is actually a hierarchical structure that is used to speed up the lookup process when locating routes and forwarding packets. For simplicity, we discuss all routes as one of two levels: level 1 or level 2. 2 CCNA2-9 Chapter 8 Level 1 Routes Debugging is enabled and the Serial 0/0/1 interface for R2 is configured with the /24 address. CCNA2-10 Chapter 8

6 Level 1 Routes A level 1 route is a route with a subnet mask equal to or less than the classful mask of the network address is a Class C address. Classful Mask or / /24 is a level 1 network route because the subnet mask is equal to the network s s classful mask. CCNA2-11 Chapter 8 Level 1 Routes A Level 1 route can function as any of the following: Default Route: A static route with the address / 0. 0 Supernet Route: : Mask less than the classful mask. Network Route: A route that has a subnet mask equal to that of the classful mask. CCNA2-12 Chapter 8

7 Level 1 Routes The level 1 route /24 can also be defined as an ultimate route. A route that includes one or both of the following: A next-hop IP address (another path). An exit interface. CCNA2-13 Chapter 8 Level 1 Routes The directly connected network /24 is a level 1 network route because it has a subnet mask that is the same as its classful mask. This same route is also an ultimate route because it contains the exit interface Serial 0/0/1. CCNA2-14 Chapter 8

8 Parent and Child Routes: Classful Networks Parent Route Level 1 Parent Route: Two entries in the routing table. When the subnet was added to the routing table, another route ( ) was also added. This first entry does not contain any next-hop IP address or exit interface information. CCNA2-15 Chapter 8 Parent and Child Routes: Classful Networks Parent Route Child Route Level 1 Parent Route: The heading indicates the presence of level 2 routes or Child Routes. A level 1 parent route is created whenever a route with a mask greater than the classful mask is entered into the routing table. CCNA2-16 Chapter 8

9 Parent and Child Routes: Classful Networks Parent Route Child Route /24 configured on the Fast Ethernet interface is a Class B Address Classful Subnet Mask: or /16 Automatically creates the Parent Route with no exit interface. Adds the level 2 Child Route. CCNA2-17 Chapter 8 Parent and Child Routes: Classful Networks A level 2 route, then, is a route that is a subnet of a classful network address. The source of a level 2 route can be a directly connected network, a static route, or a dynamic routing protocol. CCNA2-18 Chapter 8

10 Parent and Child Routes: A Closer Look Parent Route: : The Classful network address for our subnet. /24: The subnet mask for all of the child routes is subnetted, 1 subnets: This part of the route specifies that this is a parent route and in this case has one child route (that is, one subnet). CCNA2-19 Chapter 8 Parent and Child Routes: A Closer Look Ultimate Route Child Route: C: The route code for a directly connected network : The specific route entry. is directly connected: A directly connected network with an administrative distance of 0. FastEthernet0/0: Exit interface for forwarding packets. CCNA2-20 Chapter 8

11 Adding Another Child Route Ultimate Routes Both and are members of the same parent route because they are both members of the /16 classful network. Because both child routes have the same subnet mask,, the parent route still maintains the /24 mask but now shows two subnets. CCNA2-21 Chapter 8 Adding Another Child Route If there is only a single level 2 child route and that route is removed, the level 1 parent route is automatically deleted. A level 1 parent route exists only when there is at least one level 2 child route. CCNA2-22 Chapter 8

12 Parent and Child Routes: Classless Networks Topology for discussing parent and child routes for classless networks. Classless: VLSM has been used to subnet the /16 network into subnets with variable length subnet masks. CCNA2-23 Chapter 8 Parent and Child Routes: Classless Networks All three subnets belong to the classful network /16 and are level 2 child routes. The child routes do not share the same subnet mask because the network addressing scheme used VLSM. Whenever there are two or more child routes with different subnet masks belonging to the same classful network, the routing table presents a slightly different view. This parent network is variably subnetted. CCNA2-24 Chapter 8

13 Parent and Child Routes: Classless Networks Parent Route: A Closer Look CCNA2-25 Chapter 8 Parent and Child Routes: Classless Networks Child Route: A Closer Look Ultimate Routes CCNA2-26 Chapter 8

14 The Routing Table: A Closer Look The Routing Table Lookup Process CCNA2-27 Chapter 8 Routing Table Lookup Process When a router receives a frame on one of its interfaces: The routing table lookup process compares the destination IP address of the incoming packet with the entries in the routing table. The best match between the packet s s destination IP address and the route in the routing table is used to determine the interface used to forward the packet. CCNA2-28 Chapter 8

15 Routing Table Lookup Process CCNA2-29 Chapter 8 Routing Table Lookup Process CCNA2-30 Chapter 8

16 Routing Table Lookup Process As you would expect, there are reachability problems. No route to No route to CCNA2-31 Chapter 8 Steps in the Routing Table Lookup Process Step 1: The router examines level 1 routes,, including network routes and supernet routes, for the best match with the destination address of the IP packet. CCNA2-32 Chapter 8

17 Steps in the Routing Table Lookup Process Step 1a: If the best match is a level 1 ultimate route (a classful network, supernet, or default route) use this route to forward the packet. CCNA2-33 Chapter 8 Steps in the Routing Table Lookup Process Step 1b: If the best match is a level 1 parent route,, examine the child routes. CCNA2-34 Chapter 8

18 Steps in the Routing Table Lookup Process Step 2: The router examines child routes (the subnet routes) of the parent route for a best match. CCNA2-35 Chapter 8 Steps in the Routing Table Lookup Process Step 2a: If there is a match with a level 2 child route,, that subnet is used to forward the packet. CCNA2-36 Chapter 8

19 Steps in the Routing Table Lookup Process No Match! Step 2b: If there is not a match with any of the level 2 child routes, check the routing behaviour. CCNA2-37 Chapter 8 Steps in the Routing Table Lookup Process Classful or Classless? Step 3: Is the router implementing classful or classless routing behavior? We ll get into Routing Behaviour in a moment! CCNA2-38 Chapter 8

20 Steps in the Routing Table Lookup Process Classful or Classless? Step 3a: If classful routing behavior is in effect, terminate the lookup process and drop the packet. We ll get into Routing Behaviour in a moment! CCNA2-39 Chapter 8 Steps in the Routing Table Lookup Process Classful Drop it! Step 3a: If classful routing behavior is in effect, terminate the lookup process and drop the packet. We ll get into Routing Behaviour in a moment! CCNA2-40 Chapter 8

21 Steps in the Routing Table Lookup Process Classless Continue! Step 3b: If classless routing behavior is in effect, continue searching level 1 supernet routes in the routing table for a match, including the default route, if there is one. CCNA2-41 Chapter 8 Steps in the Routing Table Lookup Process Classless Continue! Step 4: If there is now a lesser match with a level 1 supernet or default routes, the router uses that route to forward the packet. CCNA2-42 Chapter 8

22 Steps in the Routing Table Lookup Process Classless Drop it! Step 5: If there is not a match with any route in the routing table, the router drops the packet. CCNA2-43 Chapter 8 Longest Match: Level 1 Network Routes For there to be a match between the destination IP address of a packet and a route in the routing table, a minimum number of leftmost bits must match between the IP address of the packet and the route in the routing table. The subnet mask of the route in the routing table is used to determine the minimum number of leftmost bits that must match. CCNA2-44 Chapter 8

23 Longest Match: Level 1 Network Routes The best match or longest match is the route in the routing table that has the greatest number of leftmost matching bits with the destination IP address of the packet. Preferred Route: The route with the greatest number of equivalent leftmost bits, or the longest match. CCNA2-45 Chapter 8 Example: Level 1 Ultimate Routes PC1 sends a ping to , the serial interface on R3. CCNA2-46 Chapter 8

24 Example: Level 1 Ultimate Routes The router first examines the Level 1 routes for the longest match. CCNA2-47 Chapter 8 Example: Level 1 Ultimate Routes There is a match with ultimate route /24 and the packet is Forwarded out interface S0/0/0. CCNA2-48 Chapter 8

25 Example: Level 1 Ultimate Routes Why didn t it find a match in one of the other subnets? Destination IP Level 1 Parent /16 is a Parent Route and there must be a match to the first 16 bits before any Child Routes are checked. CCNA2-49 Chapter 8 Example: Level 1 Ultimate Routes Why did it find a match to the ultimate route /24? Destination IP Level 1 Parent The first 24 bits of the ultimate route match. In fact, the first 30 bits match. There is no longer, more specific match. CCNA2-50 Chapter 8

26 Example: Level 1 Ultimate Routes PC1 sends a ping to , the serial interface on R3. The packet is forwarded out interface S0/0/0. CCNA2-51 Chapter 8 Longest Match: Level 1 Parent / Level 2 Child PC1 sends a ping to PC2 at address CCNA2-52 Chapter 8

27 Longest Match: Level 1 Parent / Level 2 Child Destination /24 Before any child routes (SUBNETS) can be checked, there must be a match with a parent route. The first 16 bits of the destination match the parent route /24. CCNA2-53 Chapter 8 Longest Match: Level 1 Parent / Level 2 Child Destination /24 Because there is a match with a parent route, the Level 2 child routes will be checked. The /24 subnet mask of the parent will be used for the minimum number of bits to match. CCNA2-54 Chapter 8

28 Longest Match: Level 1 Parent / Level 2 Child Destination /24 The child routes are searched and only one that has a minimum of 24 bits that match. The packet is forwarded out interface S0/0/0. CCNA2-55 Chapter 8 Longest Match: Level 1 Parent / Level 2 Child Destination IP Level 1 Parent Level 2 Child Level 2 Child Level 2 Child CCNA2-56 Chapter 8

29 Longest Match: Level 1 Parent / Level 2 Child Final Notes: If this child route had a next-hop IP Address instead of an exit interface, the lookup process would start again. This time the next-hop IP address would be resolved to an exit interface. What happens if the router does not have a route? In this scenario, it discards the packet. CCNA2-57 Chapter 8 Route Lookup Process with VLSM Packet s s destination IP Address: Using VSLM does not change the lookup process. The only difference with VLSM is that child routes display their own specific subnet masks. 16 bits match the parent route, For there to be a match with the child route, a minimum of 30 leftmost bits must match because the subnet mask is /30. CCNA2-58 Chapter 8

30 The Routing Table: A Closer Look Routing Behaviour CCNA2-59 Chapter 8 Classful and Classless Routing Behaviour Classless and classful routing behaviours are not the same as classless and classful routing protocols. Classful and Classless Routing Protocols: Affect how the routing table is populated. Classful and Classless Routing Behaviours: Determine how the routing table is searched. CCNA2-60 Chapter 8

31 Topology Changes Add a quad-zero default route to R2 to send traffic to R3 and send the default route to R1. Add RIPv1 to R1 and R2 Add a static route to R3. Classful routing protocols such as RIPv1 do not support discontiguous networks. CCNA2-61 Chapter 8 Topology Changes CCNA2-62 Chapter 8

32 Classful and Classless Routing Behaviour Classful and classless routing behaviours can be controlled by commands. Global Configuration Mode: ip classless no ip classless The default is ip classless. CCNA2-63 Chapter 8 Classful Routing Behaviour: no ip classless no ip classless = classful routing behaviour Destination: Is there a match? NO! - Is routing behaviour classful or classless? no ip classless (Classful) - DROP THE PACKET! The default route is never used. CCNA2-64 Chapter 8

33 Classful Routing Behaviour: ip classless ip classless = classless routing behaviour Destination: Is there a match? NO! - Is routing behaviour classful or classless? ip classless (Classless) USE THE DEFAULT ROUTE CCNA2-65 Chapter 8 Classful Routing Behaviour: R3 When the static route was added to R3, it appears in the routing table as a Child Route. Even though it is the same network as the parent route, there was already a child route ( /24) existing in the table for parent /16. If there was no child route already existing, it would have been added as an ultimate route. CCNA2-66 Chapter 8

34 Classful Routing Behaviour: R3 X Return traffic: Finds a match on the Parent Route. No match on the first Child Route. Finds a match on the second child route and forwards the packet out interface S0/0/1. CCNA2-67 Chapter 8 Classful vs Classless Real World Remember that classful and classless routing behaviors are independent from classful and classless routing protocols. A router could be configured with classful routing behavior (no ip classless) and a classless routing protocol, such as RIPv2. A router could also be configured with classless routing behavior (ip classless) and a classful routing protocol, such as RIPv1. In today's networks, it is recommended to use classless routing behavior so that supernet and default routes can be used whenever needed. CCNA2-68 Chapter 8

The Routing Table: A Closer Look

The Routing Table: A Closer Look The Routing Table: A Closer Look Routing Protocols and Concepts Chapter 8 Version 4.0 1 Objectives Describe the various route types found in the routing table structure. Describe the routing table lookup

More information

Chapter 7. RIP Version 2 (RIPv2)

Chapter 7. RIP Version 2 (RIPv2) Chapter 7 RIP Version 2 (RIPv2) CCNA2-1 Chapter 7 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must

More information

Chapter 5. RIP Version 1 (RIPv1)

Chapter 5. RIP Version 1 (RIPv1) Chapter 5 RIP Version 1 (RIPv1) CCNA2-1 Chapter 5 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must

More information

Chapter 9. Enhanced Interior Gateway Routing Protocol (EIGRP) Part I

Chapter 9. Enhanced Interior Gateway Routing Protocol (EIGRP) Part I Chapter 9 Enhanced Interior Gateway Routing Protocol (EIGRP) Part I CCNA2-1 Chapter 9-2 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College

More information

Chapter 7. OSI Data Link Layer. CCNA1-1 Chapter 7

Chapter 7. OSI Data Link Layer. CCNA1-1 Chapter 7 Chapter 7 OSI Data Link Layer CCNA1-1 Chapter 7 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must go

More information

Chapter 7. OSI Data Link Layer

Chapter 7. OSI Data Link Layer Chapter 7 OSI Data Link Layer CCNA1-1 Chapter 7 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must go

More information

Chapter 3. Virtual Local Area Networks (VLANs) Part II

Chapter 3. Virtual Local Area Networks (VLANs) Part II Chapter 3 Virtual Local Area Networks (VLANs) Part II CCNA3-1 Chapter 3-2 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor,

More information

Introduction to Local and Wide Area Networks

Introduction to Local and Wide Area Networks Introduction to Local and Wide Area Networks Lecturers Amnach Khawne Jirasak Sittigorn Chapter 1 1 Routing Protocols and Concepts Chapter 8 : The Routing Table: A Closer Look Chapter 9 : EIGRP Chapter

More information

Chapter 5. RIP Version 1 (RIPv1) CCNA2-1 Chapter 5

Chapter 5. RIP Version 1 (RIPv1) CCNA2-1 Chapter 5 Chapter 5 RIP Version 1 (RIPv1) CCNA2-1 Chapter 5 RIP Version 1 RIPv1: Distance Vector, Classful Routing Protocol CCNA2-2 Chapter 5 Background and Perspective RIP evolved from the Xerox Network System

More information

RIPv2. Routing Protocols and Concepts Chapter 7. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. Cisco Public

RIPv2. Routing Protocols and Concepts Chapter 7. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. Cisco Public RIPv2 Routing Protocols and Concepts Chapter 7 1 Objectives Encounter and describe the limitations of RIPv1 s limitations. Apply the basic Routing Information Protocol Version 2 (RIPv2) configuration commands

More information

Chapter 7: Routing Dynamically. Routing & Switching

Chapter 7: Routing Dynamically. Routing & Switching Chapter 7: Routing Dynamically Routing & Switching The Evolution of Dynamic Routing Protocols Dynamic routing protocols used in networks since the late 1980s Newer versions support the communication based

More information

Cisco CCNA Basic IP Routing Part I

Cisco CCNA Basic IP Routing Part I Cisco CCNA Basic IP Routing Part I Cisco CCNA IP Routing In this chapter, we re to discuss the IP routing process. This is an important subject to understand since it pertains to all routers and configurations

More information

Chapter 5. Spanning Tree Protocol (STP) Part II

Chapter 5. Spanning Tree Protocol (STP) Part II Chapter 5 Spanning Tree Protocol (STP) Part II CCNA3-1 Chapter 5-2 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario.

More information

CCNA EXPLORATION V4.0 ROUTING PROTOCOLS AND CONCEPTS

CCNA EXPLORATION V4.0 ROUTING PROTOCOLS AND CONCEPTS CCNA EXPLORATION V4.0 ACCESSIBLE INSTRUCTOR MATERIALS COMPARISON OF NEW CURRICULA WITH EXISTING CURRICULA Prepared by Cisco Learning Institute June 23, 2008 Routing Protocols and Concepts Summary New CCNA

More information

Chapter 5 RIP version 1

Chapter 5 RIP version 1 Cisco CCNA 2 Exploration - Routing Chapter 5 RIP version 1 João José jjose@ualg.pt http://w3.ualg.pt/~jjose/cisco/ Based on: Graziani, R. (2008) CIS 82 Routing Theory and Concepts RIPv1: A Distance Vector,

More information

Chapter 11. Configuring and Testing Your Network

Chapter 11. Configuring and Testing Your Network Chapter 11 Configuring and Testing Your Network CCNA1-1 Chapter 11 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario.

More information

Claim desired outcome

Claim desired outcome Assessment Authoring - Table of Specification (TOS) The Table of Specification (TOS) is a high-level design template for a given assessment. It identifies the claims, components skills, targeted number

More information

Lab 5.6.2: Challenge RIP Configuration

Lab 5.6.2: Challenge RIP Configuration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway BRANCH HQ ISP PC1 PC2 PC3 Fa0/0 S0/0/0 Fa0/0 S0/0/0 S0/0/1 Fa0/0 S0/0/1 NIC NIC NIC Learning Objectives Upon completion

More information

Chapter 9. Ethernet. Part II

Chapter 9. Ethernet. Part II Chapter 9 Ethernet Part II CCNA1-1 Chapter 9-2 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks must go

More information

Chapter 5. Spanning Tree Protocol (STP) Part I

Chapter 5. Spanning Tree Protocol (STP) Part I Chapter 5 Spanning Tree Protocol (STP) Part I CCNA3-1 Chapter 5-1 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario.

More information

Lab 9.6.2: Challenge EIGRP Configuration Lab

Lab 9.6.2: Challenge EIGRP Configuration Lab Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway HQ BRANCH1 BRANCH2 PC1 PC2 PC3 Fa0/0 S0/0/0 S0/0/1 Lo1 Fa0/0 S0/0/0 S0/0/1 Fa0/0 S0/0/0 S0/0/1 NIC NIC NIC All

More information

Chapter 2. Switch Concepts and Configuration. Part I

Chapter 2. Switch Concepts and Configuration. Part I Chapter 2 Switch Concepts and Configuration Part I CCNA3-1 Chapter 2-1 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor,

More information

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Building the Routing Table Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Introducing the Routing Table R1# show ip route Codes: C - connected,

More information

Lab : Challenge OSPF Configuration Lab. Topology Diagram. Addressing Table. Default Gateway. Device Interface IP Address Subnet Mask

Lab : Challenge OSPF Configuration Lab. Topology Diagram. Addressing Table. Default Gateway. Device Interface IP Address Subnet Mask Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway Fa0/0 HQ S0/0/0 S0/0/1 Lo1 10.10.10.1 255.255.255.252 Fa0/0 Branch1 S0/0/0 S0/0/1 Fa0/0 Branch2 S0/0/0 S0/0/1 PC1

More information

Lab Correcting RIPv2 Routing Problems

Lab Correcting RIPv2 Routing Problems Lab 9.4.2 Correcting RIPv2 Routing Problems e Interface IP Address Subnet Mask Default Gateway Device Host Name Interface IP Address Subnet Mask Default Gateway R1 BRANCH1 Fast Ethernet 0/0 172.16.0.1

More information

Lab 9.6.1: Basic EIGRP Configuration Lab

Lab 9.6.1: Basic EIGRP Configuration Lab Lab 9.6.1: Basic EIGRP Configuration Lab Topology Diagram Address Table 1 Learning Objectives Upon completion of this lab, you will be able to: Cable a network according to the Topology Diagram. Erase

More information

Draft Manuscript Draft M. Manuscript Draft Ma. t Manuscript Draft Manu. ipt Draft Manuscript Dra. anuscript Draft Manuscri

Draft Manuscript Draft M. Manuscript Draft Ma. t Manuscript Draft Manu. ipt Draft Manuscript Dra. anuscript Draft Manuscri M aft Ma CHAPTER 5 ript Dra RIP Version 1 Objectives aft Ma Upon completion of this chapter, you should be able to answer the following questions: What are the functions, characteristics, and operation

More information

Objectives. Review: Classful addresses. RIPv1 Characteristics. RIP Operation. RIP version 1

Objectives. Review: Classful addresses. RIPv1 Characteristics. RIP Operation. RIP version 1 2007 isco Systems, Inc. All rights reserved. isco Public Objectives IP version 1 outing Protocols and oncepts hapter 5 Describe the functions, characteristics, and operation of the IPv1 protocol. onfigure

More information

Packet Tracer Mini-Lab 08: Supplement Configuring 2 LANs/2 Routers using Config, CLI, & RIPv2

Packet Tracer Mini-Lab 08: Supplement Configuring 2 LANs/2 Routers using Config, CLI, & RIPv2 Packet Tracer Mini-Lab 08: Supplement Configuring 2 LANs/2 Routers using Config, CLI, & RIPv2 CAVEAT: THE LABS IN CC2-180 MAY NOT WORK ENTIRELY AS PLANNED. WE WILL BE UTILIZING BOTH A SERVER 2012 R2 HOST

More information

Static Routing. Routing Protocols and Concepts Chapter 2. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.

Static Routing. Routing Protocols and Concepts Chapter 2. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. Static Routing Routing Protocols and Concepts Chapter 2 1 Objectives Define the general role a router plays in networks. Describe the directly connected networks, different router interfaces Examine directly

More information

RIP version 1. Routing Protocols and Concepts Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

RIP version 1. Routing Protocols and Concepts Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 RIP version 1 Routing Protocols and Concepts Chapter 5 Version 4.0 1 Objectives Describe the functions, characteristics, and operation of the RIPv1 protocol. Configure a device for using RIPv1. Verify

More information

Static Routing and Serial interfaces. 1 st semester

Static Routing and Serial interfaces. 1 st semester Static Routing and Serial interfaces 1 st semester 1439-2017 Outline Static Routing Implementation Configure Static and Default Routes Review of CIDR Configure Summary and Floating Static Routes Troubleshoot

More information

12 Advanced IP Addressing

12 Advanced IP Addressing 12 Advanced IP Addressing CERTIFICATION OBJECTIVES 12.01 Variable-Length Subnet Masking 12.02 Route Summarization Q&A Two-Minute Drill Self Test 2 Chapter 12: Advanced IP Addressing In Chapter 11, you

More information

Configuring IP Summary Address for RIPv2

Configuring IP Summary Address for RIPv2 Finding Feature Information, page 1 Information About IP Summary Address for RIPv2, page 1 How to Configure IP Summary Address for RIPv2, page 3 Configuring Examples for IP Summary Address for RIPv2, page

More information

Lab 2.8.2: Challenge Static Route Configuration

Lab 2.8.2: Challenge Static Route Configuration Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway BRANCH HQ ISP PC1 PC2 Web Server Fa0/0 S0/0/0 Fa0/0 S0/0/0 S0/0/1 209.165.201.2 255.255.255.252 Fa0/0 209.165.200.225

More information

Sybex CCENT Chapter 8: IP Routing. Instructor & Todd Lammle

Sybex CCENT Chapter 8: IP Routing. Instructor & Todd Lammle Sybex CCENT 100-101 Chapter 8: IP Routing Instructor & Todd Lammle Chapter 8 Objectives The CCENT Topics Covered in this chapter include: IP Routing Technologies Describe basic routing concepts CEF Packet

More information

Smart Serial. Show interfaces. Shut down. logging synchronous

Smart Serial. Show interfaces. Shut down. logging synchronous SEMESTER 2 Chapter 2 Static Networking V 4.0 2.1.1 What are the primary responsibilities of the router? 2.1.3 What is the first serial connector described called at the router end? What is the first serial

More information

IT245 ROUTING AND SWITCHING I

IT245 ROUTING AND SWITCHING I IT245 ROUTING AND SWITCHING I ***For Classes Delivered Online, please see specific requirements in your online course header located at Course Objectives http://classes.miller motte.edu*** Upon successful

More information

CCNA EXPLORATION V4.0 ROUTING PROTOCOLS AND CONCEPTS ACCESSIBLE INSTRUCTOR MATERIALS POWERPOINT OBJECTIVES

CCNA EXPLORATION V4.0 ROUTING PROTOCOLS AND CONCEPTS ACCESSIBLE INSTRUCTOR MATERIALS POWERPOINT OBJECTIVES CCNA EXPLORATION V4.0 ROUTING PROTOCOLS AND CONCEPTS ACCESSIBLE INSTRUCTOR MATERIALS Prepared by Cisco Learning Institute June 23, 2008 Chapter 1 Introduction to Routing and Packet Forwarding Objectives

More information

Introduction. Goal of This Book

Introduction. Goal of This Book xxviii Introduction The Cisco Networking Academy is a comprehensive e-learning program that provides students with Internet technology skills. A Networking Academy delivers web-based content, online assessment,

More information

Lab Troubleshooting RIP

Lab Troubleshooting RIP Lab 7.2.6 Troubleshooting RIP Objective Set up an IP addressing scheme using class B networks. Configure RIP on routers. Observe routing activity using the debug ip rip command. Examine routes using the

More information

TDC 363 Introduction to LANs

TDC 363 Introduction to LANs TDC 363 Introduction to LANs Routing Protocols and RIP Greg Brewster DePaul University TDC 363 1 Dynamic Routing Routing Protocols Distance Vector vs. Link State Protocols RIPv1 & RIPv2 RIP Problems Slow

More information

Lab 9.6.3: EIGRP Troubleshooting Lab

Lab 9.6.3: EIGRP Troubleshooting Lab Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway Fa0/0 172.18.64.1 255.255.192.0 N/A HQ S0/0/0 209.165.202.129 255.255.255.252 N/A S0/0/1 209.165.202.133 255.255.255.252

More information

CCENT Study Guide. Chapter 9 IP Routing

CCENT Study Guide. Chapter 9 IP Routing CCENT Study Guide Chapter 9 IP Routing Chapter 9 Objectives The CCENT Topics Covered in this chapter include: 3.0 Routing Technologies 3.1 Describe the routing concepts. 3.1.a Packet handling along the

More information

6.5.1: Packet Tracer Skills Integration Challenge Activity Topology Diagram

6.5.1: Packet Tracer Skills Integration Challenge Activity Topology Diagram 6.5.1: Packet Tracer Skills Integration Challenge Activity Topology Diagram All contents are Copyright 1992 2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page

More information

CCNA-A Scope and Sequence (March 2007-Draft)

CCNA-A Scope and Sequence (March 2007-Draft) CCNA-A Scope and Sequence (March 2007-Draft) This document is a preliminary overview of the new CCNA-A curriculum and is subject to change since the courses are still under development. The English versions

More information

Final exam study Guide

Final exam study Guide Final exam study Guide K-1A * In relationship to the OSI layer model and encapsulation/decapsulation process, what happen to a packet that travels through multiple hops of routers? - What happen to the

More information

Lab Configuring OSPF Timers

Lab Configuring OSPF Timers Lab 2.3.5 Configuring OSPF Timers Objective Setup an IP addressing scheme for OSPF area. Configure and verify OSPF routing. Modify OSPF interface timers to adjust efficiency of network. Background/Preparation

More information

Course Form Revision

Course Form Revision 27 Course Form Revision For help filling out the form press F1 or look at the bottom of the screen. For additional instructions, see Course Form Instructions. Type of Action Revision Major revision of

More information

Scope and Sequence: CCNA Exploration v4.0

Scope and Sequence: CCNA Exploration v4.0 Scope and Sequence: CCNA Exploration v4.0 Last Updated August 30, 2007 The course objectives and outline for the final two CCNA Exploration courses, LAN Switching and Wireless and Accessing the WAN, are

More information

RIP Version 2. The Classless Brother

RIP Version 2. The Classless Brother RIP Version 2 The Classless Brother (C) Herbert Haas 2005/03/11 1 Why RIPv2 Need for subnet information and VLSM Need for Next Hop addresses for each route entry Need for external route tags Need for multicast

More information

EIGRP. Routing Protocols and Concepts Chapter 9. Video Frank Schneemann, MS EdTech

EIGRP. Routing Protocols and Concepts Chapter 9. Video Frank Schneemann, MS EdTech Video Frank Schneemann, MS EdTech EIGRP Routing Protocols and Concepts Chapter 9 ITE PC v4.0 Chapter 1 2007 Cisco Systems, Inc. All rights reserved. Cisco Public 1 9.0.1 Introduction Enhanced Interior

More information

Lab: RIP v2 with VLSM

Lab: RIP v2 with VLSM Lab: RIP v2 with VLSM Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway BRANCH HQ ISP PC1 PC2 PC3 PC4 PC5 Lo1 S0/0/0 Lo1 S0/0/0 S0/0/1 S/0/0/1 Learning Objectives

More information

CCNA Semester 2 labs. Labs for chapters 2 10

CCNA Semester 2 labs. Labs for chapters 2 10 CCNA Semester 2 labs Labs for chapters 2 10 2.2.2.5 Lab - Configuring IPv4 Static and Default Routes 2.3.2.4 Lab - Troubleshooting Static Routes 3.2.1.9 Lab - Configuring Basic RIPv2 5.2.2.9 Lab - Configuring

More information

Lab 8.4.2: Show IP Route Challenge Lab

Lab 8.4.2: Show IP Route Challenge Lab Addressing Table Device Interface IP Address Subnet Mask R1 R2 R3 R4 R5 Learning Objectives Upon completion of this lab, you will be able to: Determine network topology based on the outputs from the show

More information

Lab 4.2.5a Connectivity Tests Ping

Lab 4.2.5a Connectivity Tests Ping Lab 4.2.5a Connectivity Tests Ping Objective Use the ping command to send ICMP datagrams to target host. Verify that the network layer between source and destination is working properly. Retrieve information

More information

Al-Mustansiriyah University Fourth Year ( )

Al-Mustansiriyah University Fourth Year ( ) What subnet and broadcast address is IP address 172.16.10.33, 255.255.255.224 (/27) a member of? Answer: The interesting octet is the fourth octet. 256-224=32 block size. Because 32+32=64 and 33 is between

More information

Ch6 Packet Tracer Skills Integration Challenge Topology Diagram

Ch6 Packet Tracer Skills Integration Challenge Topology Diagram Topology Diagram All contents are Copyright 1992 2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 1 of 7 Addressing Table for R1 Device Interface IP Address

More information

Chapter 3. Introduction to Dynamic Routing Protocols. CCNA2-1 Chapter 3

Chapter 3. Introduction to Dynamic Routing Protocols. CCNA2-1 Chapter 3 Chapter 3 Introduction to Dynamic Routing Protocols CCNA2-1 Chapter 3 Introduction to Dynamic Routing Protocols Introduction to Dynamic Routing Protocols CCNA2-2 Chapter 3 Perspective and Background Dynamic

More information

Draft Manuscript Draft M. uscript Draft Manuscript. aft Manuscript Draft Ma. cript Draft Manuscript D. ipt Draft Manuscript Dra

Draft Manuscript Draft M. uscript Draft Manuscript. aft Manuscript Draft Ma. cript Draft Manuscript D. ipt Draft Manuscript Dra M aft Ma CHAPTER 3 ript Introduction to Dynamic Routing Protocols Objectives aft Ma Upon completion of this chapter, you should be able How do you determine the administrative distance of a route, and

More information

CCNP 1: Advanced Routing

CCNP 1: Advanced Routing Scope and Sequence CCNP 1: Advanced Routing Cisco Networking Academy Program Version 3.1 TABLE OF CONTENTS CCNP 1: ADVANCED ROUTING...1 TARGET AUDIENCE...3 PREREQUISITES...3 COURSE DESCRIPTION...3 COURSE

More information

Lab : OSPF Troubleshooting Lab

Lab : OSPF Troubleshooting Lab Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway Fa0/0 10.10.0.1 255.255.252.0 N/A HQ S0/0/0 172.16.7.1 255.255.255.252 N/A S0/0/1 172.16.7.5 255.255.255.252 N/A

More information

ECE 4110 Internetwork Programming Lab 7: Configuring a Network Using RIP Routing Protocol. Prelab Questions

ECE 4110 Internetwork Programming Lab 7: Configuring a Network Using RIP Routing Protocol. Prelab Questions ECE 4110 Internetwork Programming Lab 7: Configuring a Network Using RIP Routing Protocol Group Number: Member Names: Date Issued: March 26, 2013 Date Due: April 3, 2013 Last Edited: January 31, 2013 This

More information

Lab Configuring Basic RIPv2 (Solution)

Lab Configuring Basic RIPv2 (Solution) (Solution) Topology 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 15 Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway

More information

CCNA Exploration Network Fundamentals

CCNA Exploration Network Fundamentals CCNA Exploration 4.0 1. Network Fundamentals The goal of this course is to introduce you to fundamental networking concepts and technologies. These online course materials will assist you in developing

More information

Introduction to Local and Wide Area Networks

Introduction to Local and Wide Area Networks Introduction to Local and Wide Area Networks Lecturers Amnach Khawne Jirasak Sittigorn Chapter 1 1 Routing Protocols and Concepts Chapter 4 : Distance Vector Routing Protocols Chapter 5 : RIP version 1

More information

Subnetting/Supernetting and Classless Addressing

Subnetting/Supernetting and Classless Addressing Subnetting/Supernetting and Classless Addressing CONTENTS SUBNETTING SUPERNETTING CLASSLESS ADDRSSING SUBNETTING IP addresses are designed with two levels of hierarchy. Figure 5-1 A network with two levels

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Six Designing Models for Addressing and Naming Copyright 2010 Cisco Press & Priscilla Oppenheimer Guidelines for Addressing and Naming Use a structured model for addressing

More information

SEMESTER 2 Chapter 3 Introduction to Dynamic Routing Protocols V 4.0

SEMESTER 2 Chapter 3 Introduction to Dynamic Routing Protocols V 4.0 SEMESTER 2 Chapter 3 Introduction to Dynamic Routing Protocols V 4.0 3.1.1 What are the four routing RIP, RIPv2, EIGRP, OSPFv2 protocols that are the focus of this course? 3.1.1.2 What are routing protocols?

More information

9 Routing Introduction

9 Routing Introduction 9 Routing Introduction CERTIFICATION OBJECTIVES 9.01 Types of Routes 9.02 Static Routes 9.03 Router on a Stick 9.04 Dynamic Routing Protocols 9.05 Problems with Distance Vector Protocols Two-Minute Drill

More information

Lab10- Configuring EIGRP

Lab10- Configuring EIGRP Lab10- Configuring EIGRP Topology Lab10- Configuring EIGRP Page 1 Learning Objectives Upon completion of this lab, you will be able to: Cable a network according to the Topology Diagram. Erase the startup

More information

Lab Troubleshooting Basic PPP with Authentication Topology

Lab Troubleshooting Basic PPP with Authentication Topology Topology 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 8 Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.1.1

More information

How to Choose the Best Router Switching Path for Your Network

How to Choose the Best Router Switching Path for Your Network How to Choose the Best Router Switching Path for Your Network Document ID: 13706 Contents Introduction Process Switching Interrupt Context Switching Fast Switching Optimum Switching Cisco Express Forwarding

More information

Chapter 4 Reading Organizer

Chapter 4 Reading Organizer Name Date Chapter 4 Reading Organizer After completion of this chapter, you should be able to: 4.1 Analyze the features and benefits of a hierarchical IP addressing structure. Plan and implement a VLSM

More information

Activity 6.4.1: Basic VLSM Calculation and Addressing Design

Activity 6.4.1: Basic VLSM Calculation and Addressing Design Activity 6.4.1: Basic VLSM Calculation and ing Design Topology Diagram ing Table Device Interface IP Subnet Default Gateway HQ Branch1 Branch2 All contents are Copyright 1992 2007 Cisco Systems, Inc. All

More information

Module 4. Planning the Addressing Structure

Module 4. Planning the Addressing Structure Module 4 Planning the Addressing Structure Name 4.1.1 1. How many bits are in an IP address? 2. What is dotted decimal notation? 3. What is the parent part of an IP address? 4. What is the child part of

More information

LAB THREE STATIC ROUTING

LAB THREE STATIC ROUTING LAB THREE STATIC ROUTING In this lab you will work with four different network topologies. The topology for Parts 1-4 is shown in Figure 3.1. These parts address router configuration on Linux PCs and a

More information

IP Addressing Week 6. Module : Computer Networks Lecturer: Lucy White Office : 324

IP Addressing Week 6. Module : Computer Networks Lecturer: Lucy White Office : 324 IP Addressing Week 6 Module : Computer Networks Lecturer: Lucy White lbwhite@wit.ie Office : 324 1 Addressing: Network & Host Network address help to identify route through the network cloud Network address

More information

Lab Troubleshooting Using traceroute Instructor Version 2500

Lab Troubleshooting Using traceroute Instructor Version 2500 Lab 9.3.4 Troubleshooting Using traceroute Instructor Version 2500 294-833 CCNA 2: Routers and Routing Basics v 3.1 - Lab 9.3.4 Copyright 2003, Cisco Systems, Inc. Objective Use the traceroute Cisco IOS

More information

Device Interface IP Address Subnet Mask Default Gateway

Device Interface IP Address Subnet Mask Default Gateway Topology Diagram Addressing Table Device Interface IP Address Subnet Mask Default Gateway BRANCH HQ ISP Fa0/0 172.20.1.129 255.255.255.128 N/A S0/0/0 172.20.1.1 255.255.255.128 N/A Fa0/0 172.20.0.129 255.255.255.128

More information

Scaling IP Addresses DHCP CCNA 4

Scaling IP Addresses DHCP CCNA 4 Scaling IP Addresses DHCP CCNA 4 Note to instructors If you have downloaded this presentation from the Cisco Networking Academy Community FTP Center, this may not be my latest version of this PowerPoint.

More information

Using IP Addressing in the Network Design

Using IP Addressing in the Network Design Using IP Addressing in the Network Design Designing and Supporting Computer Networks Chapter 6 Version 4.0 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objectives Describe the use of a

More information

Cisco CCNA 2 Exploration - Routing

Cisco CCNA 2 Exploration - Routing Cisco CCNA 2 Exploration - Routing Chapter 9 EIGRP João José jjose@ualg.pt http://w3.ualg.pt/~jjose/cisco/ Based on: Graziani, R. (2008) CIS 82 Routing Theory and Concepts Introduction to EIGRP EIGRP:

More information

Lab 6.4.2: Challenge Inter-VLAN Routing

Lab 6.4.2: Challenge Inter-VLAN Routing Lab 6.4.2: Challenge Inter-VLAN Routing Topology Diagram Addressing Table Device (Hostname) Interface IP Address Subnet Mask Default Gateway S1 VLAN 99 192.168.99.11 255.255.255.0 192.168.99.1 S2 VLAN

More information

Chapter 6. Delivery and Forwarding of IP Packets

Chapter 6. Delivery and Forwarding of IP Packets Chapter 6 Delivery and Forwarding of IP Packets TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. OBJECTIVES: To discuss the delivery of

More information

Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF

Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF Topology Objectives Review EIGRP and OSPF configuration. Redistribute into EIGRP. Redistribute into OSPF. Summarize routes in EIGRP. Filter routes

More information

Introduction. A Word About Packet Tracer

Introduction. A Word About Packet Tracer xxvi Introduction The Cisco Networking Academy is a comprehensive e-learning program that provides students with Internet technology skills. A Networking Academy delivers web-based content, online assessment,

More information

Lab b Standard ACLs Instructor Version 2500

Lab b Standard ACLs Instructor Version 2500 Lab 11.2.1b Standard ACLs Instructor Version 2500 Objective Scenario Plan, configure, and apply a standard ACL to permit or deny specific traffic and test the ACL to determine if the desired results were

More information

ITE PC v4.0. Chapter Cisco Systems, Inc. All rights reserved. Cisco Public

ITE PC v4.0. Chapter Cisco Systems, Inc. All rights reserved. Cisco Public EIGRP Routing Protocols and Concepts Chapter 9 1 Objectives Describe the background and history of Enhanced Interior Gateway Routing Protocol (EIGRP). Examine the basic EIGRP configuration commands and

More information

Configuration and Management of Networks

Configuration and Management of Networks EIGRP Summarization and efault Network Advertisement The lab is built on the topology: Topology Objectives Review a basic EIGRP configuration. onfigure and verify EIGRP auto-summarization. onfigure and

More information

Symbols. Numerics I N D E X

Symbols. Numerics I N D E X I N D E X Symbols? (question mark), CLI help system, 126 Numerics A 2-router BGP topology, configuring, 279 284 4-router BGP topology, configuring, 266, 276 279 ABRs (area border routers), 9, 87, 95, 141

More information

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Switching 2 Page 1 Objectives MAC address table Describe the features

More information

Basics of communication. Grundlagen der Rechnernetze Introduction 31

Basics of communication. Grundlagen der Rechnernetze Introduction 31 Basics of communication Grundlagen der Rechnernetze Introduction 31 Types of communication H9 H8 H1 H7 R1 N3 H2 N1 R3 H3 R2 N2 H6 H5 H4 Unicast communication where a piece of information is sent from one

More information

CCNA Exploration: Routing Protocols and Concepts Chapter 8 Case Study

CCNA Exploration: Routing Protocols and Concepts Chapter 8 Case Study Objectives: Consolidate routing table reading skills. Introduce the idea of more than 1 routing protocol running into the same router. Explain the use of routes to Null0 interface. Intro: Connex Inc. is

More information

Lab Configuring the OSPF Routing Process

Lab Configuring the OSPF Routing Process Lab 2.3.1 Configuring the OSPF Routing Process Objective Setup an IP addressing scheme for OSPF area 0. Configure and verify Open Shortest Path First (OSPF) routing. Background/Preparation Cable a network

More information

IP addressing. Overview. IP addressing Issues and solution Variable Length Subnet Mask (VLSM)

IP addressing. Overview. IP addressing Issues and solution Variable Length Subnet Mask (VLSM) Overview IP addressing IP addressing Issues and solution Variable Length Subnet Mask (VLSM) Written exercise : VLSM calculation Summarisation of routes Classless InterDomain routing (CIDR) Internet registry

More information

Lab Configuring IGRP Instructor Version 2500

Lab Configuring IGRP Instructor Version 2500 Lab 7.3.5 Configuring IGRP Instructor Version 2500 Objective Setup IP an addressing scheme using class C networks. Configure IGRP on routers. Background/Preparation Cable a network similar to the one in

More information

GAME100 Lab 5. Before beginning the lab, please download and install Cisco Packet Trace

GAME100 Lab 5. Before beginning the lab, please download and install Cisco Packet Trace GAME100 Lab 5 Name: Part 1: Learn to Use Packet Tracer Objectives Develop an understanding of the basic functions of Packet Tracer. Create/model a simple Ethernet network using two hosts and a switch.

More information

Lab - Examining Telnet and SSH in Wireshark

Lab - Examining Telnet and SSH in Wireshark Topology Addressing Table Objectives Device Interface IP Address Subnet Mask Default Gateway R1 G0/1 192.168.1.1 255.255.255.0 N/A PC-A NIC 192.168.1.3 255.255.255.0 192.168.1.1 Part 1: Configure the Devices

More information

How to Choose the Best Router Switching Path for

How to Choose the Best Router Switching Path for How to Choose the Best Router Switching Path for Your Network Contents Introduction Process Switching Interrupt Context Switching Fast Switching Optimum Switching Cisco Express Forwarding Which Switching

More information