Cache-Oblivious String Dictionaries

Size: px
Start display at page:

Download "Cache-Oblivious String Dictionaries"

Transcription

1 Cache-Oblivious String Dictionaries Gerth Stølting Brodal University of Aarhus Joint work with Rolf Fagerberg #"!

2 Outline of Talk Cache-oblivious model Basic cache-oblivious techniques Cache-oblivious string algorithms Cache-oblivious string dictionaries Cache-oblivious tries and blind tries

3 Hierarchical Memory Models

4 Hierarchical Memory

5 I/O Model Aggarwal and Vitter 1988 = problem size = memory size = I/O block size consecutive records from/to disk One I/O moves Complexity measure = number of I/Os

6 Ideal Cache Model no parameters!? Frigo, Leiserson, Prokop, Ramachandran 1999 Program with only one memory Analyze in the I/O model for Optimal off-line cache replacement strategy arbitrary and

7 Ideal Cache Model no parameters!? Frigo, Leiserson, Prokop, Ramachandran 1999 Program with only one memory Analyze in the I/O model for Optimal off-line cache replacement strategy arbitrary and Advantages Optimal on arbitrary level optimal on all levels Portability, and not hard-wired into algorithm D y n a m i c changing (and )

8 Cache-Oblivious Preliminaries

9 Cache-Oblivious Scanning I/Os

10 Cache-Oblivious Scanning I/Os I/Os Corollary Cache-oblivious selection requires Hoare 1961 / Blum et al. 1973

11 Cache-Aware B-trees

12 Static Cache-Oblivious B-Tree van Emde Boas layout Recursive layout of binary tree

13 Static Cache-Oblivious B-Tree

14 Static Cache-Oblivious B-Tree

15 Static Cache-Oblivious B-Tree

16 Static Cache-Oblivious B-Tree

17 Static Cache-Oblivious B-Tree and Each green tree has height between and green trees, I/Os (misalignment) Searches visit between i.e. perform at most

18 Summary Cache-Oblivious Tools Scanning : B-tree searching : Sorting : requires a tall cache assumption Frigo, Leiserson, Prokop, Ramachandran 1999 Brodal and Fagerberg 2002, 2003

19 Cache-Oblivious String Algorithms

20 Knuth-Morris-Pratt String Matching Knuth, Morris, Pratt 1977 Time Scans text left-to-right Accesses the pattern (and failure function) like a stack

21 Knuth-Morris-Pratt String Matching Knuth, Morris, Pratt 1977 Time Scans text left-to-right Accesses the pattern (and failure function) like a stack I/Os KMP is cache-oblivious and uses

22 Suffix Tree/Suffix Array Construction Farach et al a b c dacabab abacdacabab b c a abab dacabab a abab dacabab b cdacabab b cdacabab aabacdacabab Reduces to sorting, i.e. I/Os

23

24 String Dictionaries

25 Tries vs Blind Tries Blind trie Trie time in internal memory for constant sized time for comparison based alphabets Searches take alphabets and

26 The Trouble Starts... Tries cannot be stored cache-aware to support top-down searches in I/Os Demaine et al 2004 Can construct suffix trees cache-obliviously using I/Os, but cannot search in it efficiently... + Cache-aware string B trees support searches in a set of strings in I/Os Ferragina and Grossi 1999

27 String Dictionary Queries: Search blind trie + Verify one string

28 String Dictionary Queries: Search blind trie + Verify one string

29 Suffix Tree Queries: Search blind trie + Verify one suffix

30 Suffix Tree Queries: Search blind trie + Verify one suffix

31 Tries Queries: Search blind trie + Verify prefix of one path

32 Tries Queries: Search blind trie + Verify prefix of one path

33 Verifying a Prefix of a Path in a Tree

34 Verifying Paths in Giraffe Trees is Easy Definition A tree is a giraffe tree if all root-to-leaf paths share at least half of the nodes of the tree (long neck)

35 Verifying Paths in Giraffe Trees is Easy Definition A tree is a giraffe tree if all root-to-leaf paths share at least half of the nodes of the tree (long neck) A prefix of length of a path in a giraffe tree using a BFS layout can be traversed in I/Os

36 Giraffe Cover of a Tree

37 Giraffe Cover of a Tree Uses space left-to-right using BFS layout of each giraffe A prefix of length traversed in and can be constructed greedily from I/Os by an Euler traversal of of a path in a known giraffe can be I/Os

38 Summary so far... reduce to blind trie search String dictionary search Suffix tree search Trie search I/Os Query : Blind trie search +

39 Cache-Oblivious (Blind) Tries

40 Cache-Oblivious (Blind) Tries into components (generalization of Partition input trie heavy paths) = collapse components in into high degree nodes and replace by weight balanced trees Apply van Emde Boas layout out to

41 Cache-Oblivious (Blind) Tries into components (generalization of Partition input trie heavy paths) = collapse components in into high degree nodes and replace by weight balanced trees Apply van Emde Boas layout out to I/O Search:

42 Cache-Oblivious (Blind) Tries Partition input trie heavy paths) into components (generalization of = collapse components in into high degree nodes and replace by weight balanced trees Apply van Emde Boas layout out to Search: I/O ignoring searching inside components

43 ! - "# "# * % * %,! "# "# %, - * * %, Decomposition into Components.0/ + + ')( ')( & -1 2 / ' ( + ' ( 5 &

44 2 Storing and Searching Components separately Store each layer Make a giraf-decompostition of For of size (using BFS layout) to select the right giraffe-tree have a blind trie Search: search in one giraffe-tree search the blind trie + Distribute in the van Emde Boas layout of Analysis: Search in blind trie for dominated by the matched characters in Space in van Emde Boas layout for a subtree of size becomes

45 Cache-Oblivious Tries There exists a cache-oblivious trie supporting prefix queries in I/Os where is the query string, and leaves in the trie. is the number of It can be constructed in time, where the total number of characters in the input. is The space required is The structure assumes..

46 Conclusion A string dictionary (trie data structure) was presented that supports queries in I/Os. The data structure uses space and can be constructed using I/Os. Lookahead in the query string is crucial (both cache-aware and cache-oblivious) A giraffe cover is a simple construction allowing topdown path traversals in a tree using I/Os

47 Open problems Prove a lower bound trade-off between the number of I/Os required for a query and the lookahead used Implementation: compare with string B-trees, tries, ternary trees, different trie layouts,...

48 The End

Cache-Oblivious String Dictionaries

Cache-Oblivious String Dictionaries Cache-Oblivious String Dictionaries Gerth Stølting Brodal Rolf Fagerberg Abstract We present static cache-oblivious dictionary structures for strings which provide analogues of tries and suffix trees in

More information

Cache-Oblivious Algorithms A Unified Approach to Hierarchical Memory Algorithms

Cache-Oblivious Algorithms A Unified Approach to Hierarchical Memory Algorithms Cache-Oblivious Algorithms A Unified Approach to Hierarchical Memory Algorithms Aarhus University Cache-Oblivious Current Trends Algorithms in Algorithms, - A Unified Complexity Approach to Theory, Hierarchical

More information

Algorithms and Data Structures: Efficient and Cache-Oblivious

Algorithms and Data Structures: Efficient and Cache-Oblivious 7 Ritika Angrish and Dr. Deepak Garg Algorithms and Data Structures: Efficient and Cache-Oblivious Ritika Angrish* and Dr. Deepak Garg Department of Computer Science and Engineering, Thapar University,

More information

BRICS Research Activities Algorithms

BRICS Research Activities Algorithms BRICS Research Activities Algorithms Gerth Stølting Brodal BRICS Retreat, Sandbjerg, 21 23 October 2002 1 Outline of Talk The Algorithms Group Courses Algorithm Events Expertise within BRICS Examples Algorithms

More information

Lecture 19 Apr 25, 2007

Lecture 19 Apr 25, 2007 6.851: Advanced Data Structures Spring 2007 Prof. Erik Demaine Lecture 19 Apr 25, 2007 Scribe: Aditya Rathnam 1 Overview Previously we worked in the RA or cell probe models, in which the cost of an algorithm

More information

Funnel Heap - A Cache Oblivious Priority Queue

Funnel Heap - A Cache Oblivious Priority Queue Alcom-FT Technical Report Series ALCOMFT-TR-02-136 Funnel Heap - A Cache Oblivious Priority Queue Gerth Stølting Brodal, Rolf Fagerberg Abstract The cache oblivious model of computation is a two-level

More information

Lecture 7 8 March, 2012

Lecture 7 8 March, 2012 6.851: Advanced Data Structures Spring 2012 Lecture 7 8 arch, 2012 Prof. Erik Demaine Scribe: Claudio A Andreoni 2012, Sebastien Dabdoub 2012, Usman asood 2012, Eric Liu 2010, Aditya Rathnam 2007 1 emory

More information

Report Seminar Algorithm Engineering

Report Seminar Algorithm Engineering Report Seminar Algorithm Engineering G. S. Brodal, R. Fagerberg, K. Vinther: Engineering a Cache-Oblivious Sorting Algorithm Iftikhar Ahmad Chair of Algorithm and Complexity Department of Computer Science

More information

Lecture April, 2010

Lecture April, 2010 6.851: Advanced Data Structures Spring 2010 Prof. Eri Demaine Lecture 20 22 April, 2010 1 Memory Hierarchies and Models of Them So far in class, we have wored with models of computation lie the word RAM

More information

The History of I/O Models Erik Demaine

The History of I/O Models Erik Demaine The History of I/O Models Erik Demaine MASSACHUSETTS INSTITUTE OF TECHNOLOGY Memory Hierarchies in Practice CPU 750 ps Registers 100B Level 1 Cache 100KB Level 2 Cache 1MB 10GB 14 ns Main Memory 1EB-1ZB

More information

Simple and Semi-Dynamic Structures for Cache-Oblivious Planar Orthogonal Range Searching

Simple and Semi-Dynamic Structures for Cache-Oblivious Planar Orthogonal Range Searching Simple and Semi-Dynamic Structures for Cache-Oblivious Planar Orthogonal Range Searching ABSTRACT Lars Arge Department of Computer Science University of Aarhus IT-Parken, Aabogade 34 DK-8200 Aarhus N Denmark

More information

Lecture 24 November 24, 2015

Lecture 24 November 24, 2015 CS 229r: Algorithms for Big Data Fall 2015 Prof. Jelani Nelson Lecture 24 November 24, 2015 Scribes: Zhengyu Wang 1 Cache-oblivious Model Last time we talked about disk access model (as known as DAM, or

More information

ICS 691: Advanced Data Structures Spring Lecture 8

ICS 691: Advanced Data Structures Spring Lecture 8 ICS 691: Advanced Data Structures Spring 2016 Prof. odari Sitchinava Lecture 8 Scribe: Ben Karsin 1 Overview In the last lecture we continued looking at arborally satisfied sets and their equivalence to

More information

38 Cache-Oblivious Data Structures

38 Cache-Oblivious Data Structures 38 Cache-Oblivious Data Structures Lars Arge Duke University Gerth Stølting Brodal University of Aarhus Rolf Fagerberg University of Southern Denmark 38.1 The Cache-Oblivious Model... 38-1 38.2 Fundamental

More information

Cache-Oblivious Index for Approximate String Matching

Cache-Oblivious Index for Approximate String Matching Cache-Oblivious Index for Approximate String Matching Wing-Kai Hon 1, Tak-Wah Lam 2, Rahul Shah 3, Siu-Lung Tam 2, and Jeffrey Scott Vitter 3 1 Department of Computer Science, National Tsing Hua University,

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 412 (2011) 3579 3588 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Cache-oblivious index for approximate

More information

Lecture 22 November 19, 2015

Lecture 22 November 19, 2015 CS 229r: Algorithms for ig Data Fall 2015 Prof. Jelani Nelson Lecture 22 November 19, 2015 Scribe: Johnny Ho 1 Overview Today we re starting a completely new topic, which is the external memory model,

More information

Massive Data Algorithmics. Lecture 12: Cache-Oblivious Model

Massive Data Algorithmics. Lecture 12: Cache-Oblivious Model Typical Computer Hierarchical Memory Basics Data moved between adjacent memory level in blocks A Trivial Program A Trivial Program: d = 1 A Trivial Program: d = 1 A Trivial Program: n = 2 24 A Trivial

More information

Cache-Aware and Cache-Oblivious Adaptive Sorting

Cache-Aware and Cache-Oblivious Adaptive Sorting Cache-Aware and Cache-Oblivious Adaptive Sorting Gerth Stølting rodal 1,, Rolf Fagerberg 2,, and Gabriel Moruz 1 1 RICS, Department of Computer Science, University of Aarhus, IT Parken, Åbogade 34, DK-8200

More information

3.2 Cache Oblivious Algorithms

3.2 Cache Oblivious Algorithms 3.2 Cache Oblivious Algorithms Cache-Oblivious Algorithms by Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. In the 40th Annual Symposium on Foundations of Computer Science,

More information

Cache-oblivious comparison-based algorithms on multisets

Cache-oblivious comparison-based algorithms on multisets Cache-oblivious comparison-based algorithms on multisets Arash Farzan 1, Paolo Ferragina 2, Gianni Franceschini 2, and J. Ian unro 1 1 {afarzan, imunro}@uwaterloo.ca School of Computer Science, University

More information

Cache-Oblivious Planar Orthogonal Range Searching and Counting

Cache-Oblivious Planar Orthogonal Range Searching and Counting Cache-Oblivious Planar Orthogonal Range Searching and Counting Lars Arge BRICS Dept. of Computer Science University of Aarhus IT Parken, Aabogade 34 8200 Aarhus N, Denmark large@daimi.au.dk Gerth Stølting

More information

Predecessor Data Structures. Philip Bille

Predecessor Data Structures. Philip Bille Predecessor Data Structures Philip Bille Outline Predecessor problem First tradeoffs Simple tries x-fast tries y-fast tries Predecessor Problem Predecessor Problem The predecessor problem: Maintain a set

More information

I/O Model. Cache-Oblivious Algorithms : Algorithms in the Real World. Advantages of Cache-Oblivious Algorithms 4/9/13

I/O Model. Cache-Oblivious Algorithms : Algorithms in the Real World. Advantages of Cache-Oblivious Algorithms 4/9/13 I/O Model 15-853: Algorithms in the Real World Locality II: Cache-oblivious algorithms Matrix multiplication Distribution sort Static searching Abstracts a single level of the memory hierarchy Fast memory

More information

Predecessor. Predecessor Problem van Emde Boas Tries. Philip Bille

Predecessor. Predecessor Problem van Emde Boas Tries. Philip Bille Predecessor Predecessor Problem van Emde Boas Tries Philip Bille Predecessor Predecessor Problem van Emde Boas Tries Predecessors Predecessor problem. Maintain a set S U = {,..., u-} supporting predecessor(x):

More information

Level-Balanced B-Trees

Level-Balanced B-Trees Gerth Stølting rodal RICS University of Aarhus Pankaj K. Agarwal Lars Arge Jeffrey S. Vitter Center for Geometric Computing Duke University January 1999 1 -Trees ayer, McCreight 1972 Level 2 Level 1 Leaves

More information

Cache Oblivious Search Trees via Binary Trees of Small Height

Cache Oblivious Search Trees via Binary Trees of Small Height Alcom-FT Technical Report Series ALCOMFT-TR-02-53 Cache Oblivious Search Trees via Binary Trees of Small Height Gerth Stølting Brodal, Rolf Fagerberg Riko Jacob Abstract We propose a version of cache oblivious

More information

GreenBST: Energy-Efficient Concurrent Search Tree

GreenBST: Energy-Efficient Concurrent Search Tree GreenBST: Energy-Efficient Concurrent Search Tree Ibrahim Umar, Otto J. Anshus, Phuong H. Ha Arctic Green Computing Lab Department of Computer Science UiT The Arctic University of Norway Outline of the

More information

Lecture 9 March 15, 2012

Lecture 9 March 15, 2012 6.851: Advanced Data Structures Spring 2012 Prof. Erik Demaine Lecture 9 March 15, 2012 1 Overview This is the last lecture on memory hierarchies. Today s lecture is a crossover between cache-oblivious

More information

arxiv: v2 [cs.ds] 1 Jul 2014

arxiv: v2 [cs.ds] 1 Jul 2014 Cache-Oblivious Persistence Pooya Davoodi 1, Jeremy T. Fineman 2, John Iacono 1, and Özgür Özkan1 1 New York University 2 Georgetown University arxiv:1402.5492v2 [cs.ds] 1 Jul 2014 Abstract Partial persistence

More information

Integer Algorithms and Data Structures

Integer Algorithms and Data Structures Integer Algorithms and Data Structures and why we should care about them Vladimír Čunát Department of Theoretical Computer Science and Mathematical Logic Doctoral Seminar 2010/11 Outline Introduction Motivation

More information

Cache-Oblivious Algorithms and Data Structures

Cache-Oblivious Algorithms and Data Structures Cache-Oblivious Algorithms and Data Structures Erik D. Demaine MIT Laboratory for Computer Science, 200 Technology Square, Cambridge, MA 02139, USA, edemaine@mit.edu Abstract. A recent direction in the

More information

CSE 638: Advanced Algorithms. Lectures 18 & 19 ( Cache-efficient Searching and Sorting )

CSE 638: Advanced Algorithms. Lectures 18 & 19 ( Cache-efficient Searching and Sorting ) CSE 638: Advanced Algorithms Lectures 18 & 19 ( Cache-efficient Searching and Sorting ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2013 Searching ( Static B-Trees ) A Static

More information

Predecessor. Predecessor. Predecessors. Predecessors. Predecessor Problem van Emde Boas Tries. Predecessor Problem van Emde Boas Tries.

Predecessor. Predecessor. Predecessors. Predecessors. Predecessor Problem van Emde Boas Tries. Predecessor Problem van Emde Boas Tries. Philip Bille s problem. Maintain a set S U = {,..., u-} supporting predecessor(x): return the largest element in S that is x. sucessor(x): return the smallest element in S that is x. insert(x): set S =

More information

Cache Oblivious Distribution Sweeping

Cache Oblivious Distribution Sweeping Cache Oblivious Distribution Sweeping Gerth Stølting Brodal 1,, and Rolf Fagerberg 1, BRICS, Department of Computer Science, University of Aarhus, Ny Munkegade, DK-8000 Århus C, Denmark. E-mail: {gerth,rolf}@brics.dk

More information

Lecture L16 April 19, 2012

Lecture L16 April 19, 2012 6.851: Advanced Data Structures Spring 2012 Prof. Erik Demaine Lecture L16 April 19, 2012 1 Overview In this lecture, we consider the string matching problem - finding some or all places in a text where

More information

39 B-trees and Cache-Oblivious B-trees with Different-Sized Atomic Keys

39 B-trees and Cache-Oblivious B-trees with Different-Sized Atomic Keys 39 B-trees and Cache-Oblivious B-trees with Different-Sized Atomic Keys Michael A. Bender, Department of Computer Science, Stony Brook University Roozbeh Ebrahimi, Google Inc. Haodong Hu, School of Information

More information

Cache-Oblivious Persistence

Cache-Oblivious Persistence Cache-Oblivious Persistence Pooya Davoodi 1,, Jeremy T. Fineman 2,, John Iacono 1,,andÖzgür Özkan 1 1 New York University 2 Georgetown University Abstract. Partial persistence is a general transformation

More information

University of Padova - DEI Bioinformatics course, academic year Term paper Hierarchy-conscious Data Structures for String Analysis

University of Padova - DEI Bioinformatics course, academic year Term paper Hierarchy-conscious Data Structures for String Analysis University of Padova - DEI Bioinformatics course, academic year 2001-2002 Term paper Hierarchy-conscious Data Structures for String Analysis PhD Student: Carlo Fantozzi, XVI ciclo 1 Introduction This paper

More information

CMPUT 403: Strings. Zachary Friggstad. March 11, 2016

CMPUT 403: Strings. Zachary Friggstad. March 11, 2016 CMPUT 403: Strings Zachary Friggstad March 11, 2016 Outline Tries Suffix Arrays Knuth-Morris-Pratt Pattern Matching Tries Given a dictionary D of strings and a query string s, determine if s is in D. Using

More information

Friday Four Square! 4:15PM, Outside Gates

Friday Four Square! 4:15PM, Outside Gates Binary Search Trees Friday Four Square! 4:15PM, Outside Gates Implementing Set On Monday and Wednesday, we saw how to implement the Map and Lexicon, respectively. Let's now turn our attention to the Set.

More information

Report on Cache-Oblivious Priority Queue and Graph Algorithm Applications[1]

Report on Cache-Oblivious Priority Queue and Graph Algorithm Applications[1] Report on Cache-Oblivious Priority Queue and Graph Algorithm Applications[1] Marc André Tanner May 30, 2014 Abstract This report contains two main sections: In section 1 the cache-oblivious computational

More information

External Memory. Philip Bille

External Memory. Philip Bille External Memory Philip Bille Outline Computationals models Modern computers (word) RAM I/O Cache-oblivious Shortest path in implicit grid graphs RAM algorithm I/O algorithms Cache-oblivious algorithm Computational

More information

Algorithms for dealing with massive data

Algorithms for dealing with massive data Computer Science Department Federal University of Rio Grande do Sul Porto Alegre, Brazil Outline of the talk Introduction Outline of the talk Algorithms models for dealing with massive datasets : Motivation,

More information

Lossless Fault-Tolerant Data Structures with Additive Overhead

Lossless Fault-Tolerant Data Structures with Additive Overhead Lossless Fault-Tolerant Data Structures with Additive Overhead Paul Christiano, Erik D. Demaine, and Shaunak Kishore MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St., Cambridge,

More information

Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi.

Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi. Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture 18 Tries Today we are going to be talking about another data

More information

Data Structures and Methods. Johan Bollen Old Dominion University Department of Computer Science

Data Structures and Methods. Johan Bollen Old Dominion University Department of Computer Science Data Structures and Methods Johan Bollen Old Dominion University Department of Computer Science jbollen@cs.odu.edu http://www.cs.odu.edu/ jbollen January 20, 2004 Page 1 Lecture Objectives 1. To this point:

More information

( ) n 5. Test 1 - Closed Book

( ) n 5. Test 1 - Closed Book Name Test 1 - Closed Book Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each 1. During which operation on a leftist heap may subtree swaps be needed? A. DECREASE-KEY

More information

MITOCW watch?v=ninwepprkdq

MITOCW watch?v=ninwepprkdq MITOCW watch?v=ninwepprkdq The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Optimal Cache-Oblivious Implicit Dictionaries

Optimal Cache-Oblivious Implicit Dictionaries Optimal Cache-Oblivious Implicit Dictionaries Gianni Franceschini and Roberto Grossi Dipartimento di Informatica, Università di Pisa via Filippo Buonarroti 2, 56127 Pisa, Italy {francesc,grossi}@di.unipi.it

More information

Compressed Cache-Oblivious String B-tree

Compressed Cache-Oblivious String B-tree Compressed Cache-Oblivious String B-tree Paolo Ferragina and Rossano Venturini Dipartimento di Informatica, Università di Pisa, Italy Abstract In this paper we address few variants of the well-known prefixsearch

More information

A Compressed Cache-Oblivious String B-tree

A Compressed Cache-Oblivious String B-tree A Compressed Cache-Oblivious String B-tree PAOLO FERRAGINA, Department of Computer Science, University of Pisa ROSSANO VENTURINI, Department of Computer Science, University of Pisa In this paper we study

More information

Main Memory and the CPU Cache

Main Memory and the CPU Cache Main Memory and the CPU Cache CPU cache Unrolled linked lists B Trees Our model of main memory and the cost of CPU operations has been intentionally simplistic The major focus has been on determining

More information

An introduction to suffix trees and indexing

An introduction to suffix trees and indexing An introduction to suffix trees and indexing Tomáš Flouri Solon P. Pissis Heidelberg Institute for Theoretical Studies December 3, 2012 1 Introduction Introduction 2 Basic Definitions Graph theory Alphabet

More information

Engineering a Cache-Oblivious Sorting Algorithm

Engineering a Cache-Oblivious Sorting Algorithm 2.2 Engineering a Cache-Oblivious Sorting Algorithm 2.2 GERTH STØLTING BRODAL University of Aarhus ROLF FAGERBERG University of Southern Denmark, Odense and KRISTOFFER VINTHER Systematic Software Engineering

More information

Cache-Oblivious and Data-Oblivious Sorting and Applications

Cache-Oblivious and Data-Oblivious Sorting and Applications Cache-Oblivious and Data-Oblivious Sorting and Applications T-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi Jan, 2018 External Memory Model Cache efficiency: # of blocks Time: # of words Memory

More information

Engineering a Cache-Oblivious Sorting Algorithm

Engineering a Cache-Oblivious Sorting Algorithm Engineering a Cache-Oblivious Sorting Algorithm Gerth Stølting Brodal, Rolf Fagerberg Kristoffer Vinther Abstract This paper is an algorithmic engineering study of cacheoblivious sorting. We investigate

More information

Cache-Adaptive Analysis

Cache-Adaptive Analysis Cache-Adaptive Analysis Michael A. Bender1 Erik Demaine4 Roozbeh Ebrahimi1 Jeremy T. Fineman3 Rob Johnson1 Andrea Lincoln4 Jayson Lynch4 Samuel McCauley1 1 3 4 Available Memory Can Fluctuate in Real Systems

More information

Engineering a Cache-Oblivious Sorting Algorithm

Engineering a Cache-Oblivious Sorting Algorithm Alcom-FT Technical Report Series ALCOMFT-TR-03-101 Engineering a Cache-Oblivious Sorting Algorithm Gerth Stølting Brodal, Rolf Fagerberg Kristoffer Vinther Abstract The cache-oblivious model of computation

More information

Cache-Oblivious R-Trees

Cache-Oblivious R-Trees Cache-Oblivious R-Trees Lars Arge BRICS, Department of Computer Science, University of Aarhus IT-Parken, Aabogade 34, DK-8200 Aarhus N, Denmark. large@daimi.au.dk Mark de Berg Department of Computing Science,

More information

4. Suffix Trees and Arrays

4. Suffix Trees and Arrays 4. Suffix Trees and Arrays Let T = T [0..n) be the text. For i [0..n], let T i denote the suffix T [i..n). Furthermore, for any subset C [0..n], we write T C = {T i i C}. In particular, T [0..n] is the

More information

MITOCW watch?v=v3omvlzi0we

MITOCW watch?v=v3omvlzi0we MITOCW watch?v=v3omvlzi0we The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Lecture 7 February 26, 2010

Lecture 7 February 26, 2010 6.85: Advanced Data Structures Spring Prof. Andre Schulz Lecture 7 February 6, Scribe: Mark Chen Overview In this lecture, we consider the string matching problem - finding all places in a text where some

More information

External Memory Algorithms and Data Structures. Winter 2004/2005

External Memory Algorithms and Data Structures. Winter 2004/2005 External Memory Algorithms and Data Structures Winter 2004/2005 Riko Jacob Peter Widmayer Assignments: Yoshio Okamoto EMADS 04/ 05: Course Description Page 1 External Memory Algorithms and Data Structures

More information

CACHE-OBLIVIOUS SEARCHING AND SORTING IN MULTISETS

CACHE-OBLIVIOUS SEARCHING AND SORTING IN MULTISETS CACHE-OLIVIOUS SEARCHIG AD SORTIG I MULTISETS by Arash Farzan A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Mathematics in Computer

More information

String Matching. Pedro Ribeiro 2016/2017 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) String Matching 2016/ / 42

String Matching. Pedro Ribeiro 2016/2017 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) String Matching 2016/ / 42 String Matching Pedro Ribeiro DCC/FCUP 2016/2017 Pedro Ribeiro (DCC/FCUP) String Matching 2016/2017 1 / 42 On this lecture The String Matching Problem Naive Algorithm Deterministic Finite Automata Knuth-Morris-Pratt

More information

9. Which situation is true regarding a cascading cut that produces c trees for a Fibonacci heap?

9. Which situation is true regarding a cascading cut that produces c trees for a Fibonacci heap? 1 1 Name Test 1 - Closed Book Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each 1. During which operation on a leftist heap may subtree swaps be needed? A. DECREASE-KEY

More information

Cache-Oblivious Algorithms

Cache-Oblivious Algorithms Cache-Oblivious Algorithms Matteo Frigo, Charles Leiserson, Harald Prokop, Sridhar Ramchandran Slides Written and Presented by William Kuszmaul THE DISK ACCESS MODEL Three Parameters: B M P Block Size

More information

Table of Contents. Chapter 1: Introduction to Data Structures... 1

Table of Contents. Chapter 1: Introduction to Data Structures... 1 Table of Contents Chapter 1: Introduction to Data Structures... 1 1.1 Data Types in C++... 2 Integer Types... 2 Character Types... 3 Floating-point Types... 3 Variables Names... 4 1.2 Arrays... 4 Extraction

More information

DATA STRUCTURES + SORTING + STRING

DATA STRUCTURES + SORTING + STRING DATA STRUCTURES + SORTING + STRING COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming

More information

4. Suffix Trees and Arrays

4. Suffix Trees and Arrays 4. Suffix Trees and Arrays Let T = T [0..n) be the text. For i [0..n], let T i denote the suffix T [i..n). Furthermore, for any subset C [0..n], we write T C = {T i i C}. In particular, T [0..n] is the

More information

On Dynamic Range Reporting in One Dimension

On Dynamic Range Reporting in One Dimension On Dynamic Range Reporting in One Dimension Christian Mortensen 1 Rasmus Pagh 1 Mihai Pǎtraşcu 2 1 IT U. Copenhagen 2 MIT STOC May 22, 2005 Range Reporting in 1D Maintain a set S, S = n, under: INSERT(x):

More information

Applications of Succinct Dynamic Compact Tries to Some String Problems

Applications of Succinct Dynamic Compact Tries to Some String Problems Applications of Succinct Dynamic Compact Tries to Some String Problems Takuya Takagi 1, Takashi Uemura 2, Shunsuke Inenaga 3, Kunihiko Sadakane 4, and Hiroki Arimura 1 1 IST & School of Engineering, Hokkaido

More information

Cache-Oblivious Data Structures and Algorithms for Undirected Breadth-First Search and Shortest Paths

Cache-Oblivious Data Structures and Algorithms for Undirected Breadth-First Search and Shortest Paths Cache-Oblivious Data Structures and Algorithms for Undirected Breadth-First Search and Shortest Paths Gerth Stølting Brodal 1,,, Rolf Fagerberg 2,, Ulrich Meyer 3,,, and Norbert Zeh 4 1 BRICS, Department

More information

Multi-core Computing Lecture 2

Multi-core Computing Lecture 2 Multi-core Computing Lecture 2 MADALGO Summer School 2012 Algorithms for Modern Parallel and Distributed Models Phillip B. Gibbons Intel Labs Pittsburgh August 21, 2012 Multi-core Computing Lectures: Progress-to-date

More information

Algorithms and Data Structures Group. Gerth Stølting Brodal

Algorithms and Data Structures Group. Gerth Stølting Brodal Algorithms and Data Structures Group Gerth Stølting Brodal Faculty Meeting, Department of Computer Science, Aarhus University, October 3, 2014 VIP Lars Arge (Professor) Gerth Stølting Brodal (Lektor) Peyman

More information

Cache-Oblivious Traversals of an Array s Pairs

Cache-Oblivious Traversals of an Array s Pairs Cache-Oblivious Traversals of an Array s Pairs Tobias Johnson May 7, 2007 Abstract Cache-obliviousness is a concept first introduced by Frigo et al. in [1]. We follow their model and develop a cache-oblivious

More information

CSE 530A. B+ Trees. Washington University Fall 2013

CSE 530A. B+ Trees. Washington University Fall 2013 CSE 530A B+ Trees Washington University Fall 2013 B Trees A B tree is an ordered (non-binary) tree where the internal nodes can have a varying number of child nodes (within some range) B Trees When a key

More information

Succinct and I/O Efficient Data Structures for Traversal in Trees

Succinct and I/O Efficient Data Structures for Traversal in Trees Succinct and I/O Efficient Data Structures for Traversal in Trees Craig Dillabaugh 1, Meng He 2, and Anil Maheshwari 1 1 School of Computer Science, Carleton University, Canada 2 Cheriton School of Computer

More information

Lecture 8 13 March, 2012

Lecture 8 13 March, 2012 6.851: Advanced Data Structures Spring 2012 Prof. Erik Demaine Lecture 8 13 March, 2012 1 From Last Lectures... In the previous lecture, we discussed the External Memory and Cache Oblivious memory models.

More information

Lecture 9 March 4, 2010

Lecture 9 March 4, 2010 6.851: Advanced Data Structures Spring 010 Dr. André Schulz Lecture 9 March 4, 010 1 Overview Last lecture we defined the Least Common Ancestor (LCA) and Range Min Query (RMQ) problems. Recall that an

More information

Background: disk access vs. main memory access (1/2)

Background: disk access vs. main memory access (1/2) 4.4 B-trees Disk access vs. main memory access: background B-tree concept Node structure Structural properties Insertion operation Deletion operation Running time 66 Background: disk access vs. main memory

More information

We have used both of the last two claims in previous algorithms and therefore their proof is omitted.

We have used both of the last two claims in previous algorithms and therefore their proof is omitted. Homework 3 Question 1 The algorithm will be based on the following logic: If an edge ( ) is deleted from the spanning tree, let and be the trees that were created, rooted at and respectively Adding any

More information

SORTING. Practical applications in computing require things to be in order. To consider: Runtime. Memory Space. Stability. In-place algorithms???

SORTING. Practical applications in computing require things to be in order. To consider: Runtime. Memory Space. Stability. In-place algorithms??? SORTING + STRING COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges book.

More information

Suffix links are stored for compact trie nodes only, but we can define and compute them for any position represented by a pair (u, d):

Suffix links are stored for compact trie nodes only, but we can define and compute them for any position represented by a pair (u, d): Suffix links are the same as Aho Corasick failure links but Lemma 4.4 ensures that depth(slink(u)) = depth(u) 1. This is not the case for an arbitrary trie or a compact trie. Suffix links are stored for

More information

Chapter 7. Space and Time Tradeoffs. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 7. Space and Time Tradeoffs. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 7 Space and Time Tradeoffs Copyright 2007 Pearson Addison-Wesley. All rights reserved. Space-for-time tradeoffs Two varieties of space-for-time algorithms: input enhancement preprocess the input

More information

x-fast and y-fast Tries

x-fast and y-fast Tries x-fast and y-fast Tries Outline for Today Bitwise Tries A simple ordered dictionary for integers. x-fast Tries Tries + Hashing y-fast Tries Tries + Hashing + Subdivision + Balanced Trees + Amortization

More information

I/O-Efficient Data Structures for Colored Range and Prefix Reporting

I/O-Efficient Data Structures for Colored Range and Prefix Reporting I/O-Efficient Data Structures for Colored Range and Prefix Reporting Kasper Green Larsen MADALGO Aarhus University, Denmark larsen@cs.au.dk Rasmus Pagh IT University of Copenhagen Copenhagen, Denmark pagh@itu.dk

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Introduction to Parallel Computing George Karypis Sorting Outline Background Sorting Networks Quicksort Bucket-Sort & Sample-Sort Background Input Specification Each processor has n/p elements A ordering

More information

Lecture 5: Suffix Trees

Lecture 5: Suffix Trees Longest Common Substring Problem Lecture 5: Suffix Trees Given a text T = GGAGCTTAGAACT and a string P = ATTCGCTTAGCCTA, how do we find the longest common substring between them? Here the longest common

More information

An optimal and practical cache-oblivious algorithm for computing multiresolution rasters

An optimal and practical cache-oblivious algorithm for computing multiresolution rasters An optimal and practical cache-oblivious algorithm for computing multiresolution rasters Lars Arge, Gerth Stølting Brodal, Jakob Truelsen, Constantinos Tsirogiannis MADALGO, Department of Computer Science,

More information

Effect of memory latency

Effect of memory latency CACHE AWARENESS Effect of memory latency Consider a processor operating at 1 GHz (1 ns clock) connected to a DRAM with a latency of 100 ns. Assume that the processor has two ALU units and it is capable

More information

On the number of string lookups in BSTs (and related algorithms) with digital access

On the number of string lookups in BSTs (and related algorithms) with digital access On the number of string lookups in BSTs (and related algorithms) with digital access Leonor Frias Departament de Llenguatges i Sistemes Informàtics Universitat Politècnica de Catalunya lfrias@lsi.upc.edu

More information

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree.

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree. The Lecture Contains: Index structure Binary search tree (BST) B-tree B+-tree Order file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture13/13_1.htm[6/14/2012

More information

Applications of Suffix Tree

Applications of Suffix Tree Applications of Suffix Tree Let us have a glimpse of the numerous applications of suffix trees. Exact String Matching As already mentioned earlier, given the suffix tree of the text, all occ occurrences

More information

Linear Work Suffix Array Construction

Linear Work Suffix Array Construction Linear Work Suffix Array Construction Juha Karkkainen, Peter Sanders, Stefan Burkhardt Presented by Roshni Sahoo March 7, 2019 Presented by Roshni Sahoo Linear Work Suffix Array Construction March 7, 2019

More information

x-fast and y-fast Tries

x-fast and y-fast Tries x-fast and y-fast Tries Problem Problem Set Set 7 due due in in the the box box up up front. front. That's That's the the last last problem problem set set of of the the quarter! quarter! Outline for Today

More information

On Cartesian trees and range minimum queries

On Cartesian trees and range minimum queries On Cartesian trees and range minimum queries The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Demaine,

More information

CACHE-AWARE AND CACHE-OBLIVIOUS ALGORITHMS

CACHE-AWARE AND CACHE-OBLIVIOUS ALGORITHMS CACHE-AWARE AND CACHE-OBLIVIOUS ALGORITHMS Thesis submitted in partial fulfillment of the requirements for the award of degree of Master of Engineering in Computer Science and Engineering Submitted By

More information

Memory Access Analysis and Optimization Approaches On Splay Trees

Memory Access Analysis and Optimization Approaches On Splay Trees Memory Access Analysis and Optimization Approaches On Splay Trees Wei Jiang Chen Ding Roland Cheng Computer Science Department University of Rochester Rochester, New York wjiang,cding,rcheng @cs.rochester.edu

More information