External Memory Algorithms and Data Structures. Winter 2004/2005

Size: px
Start display at page:

Download "External Memory Algorithms and Data Structures. Winter 2004/2005"

Transcription

1 External Memory Algorithms and Data Structures Winter 2004/2005 Riko Jacob Peter Widmayer Assignments: Yoshio Okamoto EMADS 04/ 05: Course Description Page 1

2 External Memory Algorithms and Data Structures Winter 2004/2005 Riko Jacob Peter Widmayer Assignments: Yoshio Okamoto based on a lecture in Aarhus, DK, by Gerth Stølting Brodal and Rolf Fagerberg EMADS 04/ 05: Course Description Page 1

3 Course Lectures: Based on articles. Theoretical. New stuff: Aim: General principles and methods. EMADS 04/ 05: Course Description Page 2

4 Course Lectures: Based on articles. Theoretical. New stuff: Aim: General principles and methods. Homepage: EMADS 04/ 05: Course Description Page 2

5 Analysis of algorithms The standard model: Memory CPU EMADS 04/ 05: Course Description Page 3

6 Analysis of algorithms The standard model: Memory CPU Add: 1 unit of time Mult: 1 unit of time Branch: 1 unit of time MemAccess: 1 unit of time EMADS 04/ 05: Course Description Page 3

7 Reality Memory hierarchy: RAM CPU Cache2 Reg. Cache1 Disk Tertiary Storage EMADS 04/ 05: Course Description Page 4

8 Reality Memory hierarchy: RAM CPU Cache2 Reg. Cache1 Disk Tertiary Storage Access time Volume Registers 1 cycle 1 Kb Cache 5 cycles 512 Kb RAM 50 cycles 512 Mb Disk 20,000,000 cycles 80 Gb EMADS 04/ 05: Course Description Page 4

9 Reality Memory hierarchy: RAM CPU Cache2 Reg. Cache1 Disk Tertiary Storage Access time Volume Registers 1 cycle 1 Kb Cache 5 cycles 512 Kb RAM 50 cycles 512 Mb Disk 20,000,000 cycles 80 Gb CPU speed improves faster than RAM access time and much faster than disk access time EMADS 04/ 05: Course Description Page 4

10 Reality Many real-life problems of Gigabyte, Terabyte, and even Petabyte size: Databases weather geology/geograpy astrology financial WWW phone companies Geographic Information Systems (maps). Computer graphics, animation. VLSI design. EMADS 04/ 05: Course Description Page 5

11 I/O bottleneck I/O is the bottleneck I/O should be optimized (not instruction count) EMADS 04/ 05: Course Description Page 6

12 Analysis of algorithms New I/O-model: CPU Memory 1 Block Memory 2 EMADS 04/ 05: Course Description Page 7

13 Analysis of algorithms New I/O-model: CPU Memory 1 Block Memory 2 Parameters: N = no. of elements in problem. M = no. of elements that fit in RAM. B = no. of elements in a block on disk. D = no. of disks (copies of Memory 2) EMADS 04/ 05: Course Description Page 7

14 Analysis of algorithms New I/O-model: CPU Memory 1 Block Memory 2 Parameters: N = no. of elements in problem. M = no. of elements that fit in RAM. B = no. of elements in a block on disk. D = no. of disks (copies of Memory 2) Cost: Number of I/O s (block transfers) between Memory 1 and Memory 2. EMADS 04/ 05: Course Description Page 7

15 Generic Example Consider two O(n) algorithms: 1. Memory accessed randomly page fault at each memory access. 2. Memory accessed sequentially page fault every B memory accesses. EMADS 04/ 05: Course Description Page 8

16 Generic Example Consider two O(n) algorithms: 1. Memory accessed randomly page fault at each memory access. 2. Memory accessed sequentially page fault every B memory accesses. EMADS 04/ 05: Course Description Page 8

17 Generic Example Consider two O(n) algorithms: 1. Memory accessed randomly page fault at each memory access. 2. Memory accessed sequentially page fault every B memory accesses. EMADS 04/ 05: Course Description Page 8

18 Generic Example Consider two O(n) algorithms: 1. Memory accessed randomly page fault at each memory access. 2. Memory accessed sequentially page fault every B memory accesses. EMADS 04/ 05: Course Description Page 8

19 Generic Example Consider two O(n) algorithms: 1. Memory accessed randomly page fault at each memory access. 2. Memory accessed sequentially page fault every B memory accesses. EMADS 04/ 05: Course Description Page 8

20 Generic Example Consider two O(n) algorithms: 1. Memory accessed randomly page fault at each memory access. 2. Memory accessed sequentially page fault every B memory accesses. EMADS 04/ 05: Course Description Page 8

21 Generic Example Consider two O(n) algorithms: 1. Memory accessed randomly page fault at each memory access. 2. Memory accessed sequentially page fault every B memory accesses. EMADS 04/ 05: Course Description Page 8

22 Generic Example Consider two O(n) algorithms: 1. Memory accessed randomly page fault at each memory access. 2. Memory accessed sequentially page fault every B memory accesses. EMADS 04/ 05: Course Description Page 8

23 Generic Example Consider two O(n) algorithms: 1. Memory accessed randomly page fault at each memory access. 2. Memory accessed sequentially page fault every B memory accesses. EMADS 04/ 05: Course Description Page 8

24 Generic Example Consider two O(n) algorithms: 1. Memory accessed randomly page fault at each memory access. 2. Memory accessed sequentially page fault every B memory accesses. O(N) I/Os vs. O(N/B) I/Os Typically, B EMADS 04/ 05: Course Description Page 8

25 Specific Examples QuickSort sequential access vs. HeapSort random access QuickSort: HeapSort: O(N log 2 (N/M)/B) O(N log 2 (N/M)) EMADS 04/ 05: Course Description Page 9

26 Course Contents (approximate): The I/O model(s). Algorithms, data structures, and lower bounds for basic problems: Permuting Sorting Searching I/O efficient algorithms and data structures for problems from computational geometry, strings, graphs. EMADS 04/ 05: Course Description Page 10

27 Course Contents (approximate): The I/O model(s). Algorithms, data structures, and lower bounds for basic problems: Permuting Sorting Searching I/O efficient algorithms and data structures for problems from computational geometry, strings, graphs. Along the way I: Generic principles for designing I/O-efficient algorithms. Along the way II: Hands-on experience via projects. EMADS 04/ 05: Course Description Page 10

Cache-Oblivious Algorithms A Unified Approach to Hierarchical Memory Algorithms

Cache-Oblivious Algorithms A Unified Approach to Hierarchical Memory Algorithms Cache-Oblivious Algorithms A Unified Approach to Hierarchical Memory Algorithms Aarhus University Cache-Oblivious Current Trends Algorithms in Algorithms, - A Unified Complexity Approach to Theory, Hierarchical

More information

Introduction to I/O Efficient Algorithms (External Memory Model)

Introduction to I/O Efficient Algorithms (External Memory Model) Introduction to I/O Efficient Algorithms (External Memory Model) Jeff M. Phillips August 30, 2013 Von Neumann Architecture Model: CPU and Memory Read, Write, Operations (+,,,...) constant time polynomially

More information

Sorting atomic items. Chapter 5

Sorting atomic items. Chapter 5 Sorting atomic items Chapter 5 Sorting on 2-level memory model Atomic items occupy constant-fixed number of memory cells (no variable length). Usually 4 or 8 bytes. Sequence S of n atomic items with n>m

More information

Succinct Data Structures: Theory and Practice

Succinct Data Structures: Theory and Practice Succinct Data Structures: Theory and Practice March 16, 2012 Succinct Data Structures: Theory and Practice 1/15 Contents 1 Motivation and Context Memory Hierarchy Succinct Data Structures Basics Succinct

More information

Hierarchical Memory. Modern machines have complicated memory hierarchy

Hierarchical Memory. Modern machines have complicated memory hierarchy Hierarchical Memory Modern machines have complicated memory hierarchy Levels get larger and slower further away from CPU Data moved between levels using large blocks Lecture 2: Slow IO Review Disk access

More information

BRICS Research Activities Algorithms

BRICS Research Activities Algorithms BRICS Research Activities Algorithms Gerth Stølting Brodal BRICS Retreat, Sandbjerg, 21 23 October 2002 1 Outline of Talk The Algorithms Group Courses Algorithm Events Expertise within BRICS Examples Algorithms

More information

Computer Organization

Computer Organization University of Pune S.E. I.T. Subject code: 214442 Computer Organization Part 20 : Memory Organization Basics UNIT IV Tushar B. Kute, Department of Information Technology, Sandip Institute of Technology

More information

Massive Data Algorithmics

Massive Data Algorithmics Massive Data Algorithmics University of Aarhus Department of Computer Science Faglig Dag, January 17, 2008 running time The core problem... Normal algorithm I/O-efficient algorithm data size Main memory

More information

Computer Organization

Computer Organization University of Pune S.E. I.T. Subject code: 214442 Computer Organization Part 20 : Memory Organization Basics UNIT IV Tushar B. Kute, Department of Information Technology, Sandip Institute of Technology

More information

Cache-Oblivious String Dictionaries

Cache-Oblivious String Dictionaries Cache-Oblivious String Dictionaries Gerth Stølting Brodal University of Aarhus Joint work with Rolf Fagerberg #"! Outline of Talk Cache-oblivious model Basic cache-oblivious techniques Cache-oblivious

More information

Algorithm Performance Factors. Memory Performance of Algorithms. Processor-Memory Performance Gap. Moore s Law. Program Model of Memory I

Algorithm Performance Factors. Memory Performance of Algorithms. Processor-Memory Performance Gap. Moore s Law. Program Model of Memory I Memory Performance of Algorithms CSE 32 Data Structures Lecture Algorithm Performance Factors Algorithm choices (asymptotic running time) O(n 2 ) or O(n log n) Data structure choices List or Arrays Language

More information

Data Storage and Query Answering. Data Storage and Disk Structure (2)

Data Storage and Query Answering. Data Storage and Disk Structure (2) Data Storage and Query Answering Data Storage and Disk Structure (2) Review: The Memory Hierarchy Swapping, Main-memory DBMS s Tertiary Storage: Tape, Network Backup 3,200 MB/s (DDR-SDRAM @200MHz) 6,400

More information

The Cost of Address Translation

The Cost of Address Translation The Cost of Address Translation Tomasz Jurkiewicz Kurt Mehlhorn Pat Nicholson Max Planck Institute for Informatics full version of paper by TJ and KM available at arxiv preliminary version presented at

More information

Memory Hierarchies. Instructor: Dmitri A. Gusev. Fall Lecture 10, October 8, CS 502: Computers and Communications Technology

Memory Hierarchies. Instructor: Dmitri A. Gusev. Fall Lecture 10, October 8, CS 502: Computers and Communications Technology Memory Hierarchies Instructor: Dmitri A. Gusev Fall 2007 CS 502: Computers and Communications Technology Lecture 10, October 8, 2007 Memories SRAM: value is stored on a pair of inverting gates very fast

More information

External Sorting. Chapter 13. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

External Sorting. Chapter 13. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 External Sorting Chapter 13 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Sort? v A classic problem in computer science! v Data requested in sorted order e.g., find students in increasing

More information

Lecture 9 March 15, 2012

Lecture 9 March 15, 2012 6.851: Advanced Data Structures Spring 2012 Prof. Erik Demaine Lecture 9 March 15, 2012 1 Overview This is the last lecture on memory hierarchies. Today s lecture is a crossover between cache-oblivious

More information

Report Seminar Algorithm Engineering

Report Seminar Algorithm Engineering Report Seminar Algorithm Engineering G. S. Brodal, R. Fagerberg, K. Vinther: Engineering a Cache-Oblivious Sorting Algorithm Iftikhar Ahmad Chair of Algorithm and Complexity Department of Computer Science

More information

CS542. Algorithms on Secondary Storage Sorting Chapter 13. Professor E. Rundensteiner. Worcester Polytechnic Institute

CS542. Algorithms on Secondary Storage Sorting Chapter 13. Professor E. Rundensteiner. Worcester Polytechnic Institute CS542 Algorithms on Secondary Storage Sorting Chapter 13. Professor E. Rundensteiner Lesson: Using secondary storage effectively Data too large to live in memory Regular algorithms on small scale only

More information

Lecture 24 November 24, 2015

Lecture 24 November 24, 2015 CS 229r: Algorithms for Big Data Fall 2015 Prof. Jelani Nelson Lecture 24 November 24, 2015 Scribes: Zhengyu Wang 1 Cache-oblivious Model Last time we talked about disk access model (as known as DAM, or

More information

Data Storage and Disk Structure

Data Storage and Disk Structure Data Storage and Disk Structure A Simple Implementation of DBMS One file per table Students(name, id, dept) in a file Students A meta symbol # to separate attributes Smith#123#CS Johnson#522#EE Database

More information

Massive Data Algorithmics. Lecture 1: Introduction

Massive Data Algorithmics. Lecture 1: Introduction . Massive Data Massive datasets are being collected everywhere Storage management software is billion-dollar industry . Examples Phone: AT&T 20TB phone call database, wireless tracking Consumer: WalMart

More information

ICS 691: Advanced Data Structures Spring Lecture 8

ICS 691: Advanced Data Structures Spring Lecture 8 ICS 691: Advanced Data Structures Spring 2016 Prof. odari Sitchinava Lecture 8 Scribe: Ben Karsin 1 Overview In the last lecture we continued looking at arborally satisfied sets and their equivalence to

More information

The History of I/O Models Erik Demaine

The History of I/O Models Erik Demaine The History of I/O Models Erik Demaine MASSACHUSETTS INSTITUTE OF TECHNOLOGY Memory Hierarchies in Practice CPU 750 ps Registers 100B Level 1 Cache 100KB Level 2 Cache 1MB 10GB 14 ns Main Memory 1EB-1ZB

More information

ADDRESS TRANSLATION AND TLB

ADDRESS TRANSLATION AND TLB ADDRESS TRANSLATION AND TLB Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 3 submission deadline: Nov.

More information

ADDRESS TRANSLATION AND TLB

ADDRESS TRANSLATION AND TLB ADDRESS TRANSLATION AND TLB Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 4 submission deadline: Mar.

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 29: an Introduction to Virtual Memory Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Virtual memory used to protect applications

More information

I/O Efficieny of Highway Hierarchies

I/O Efficieny of Highway Hierarchies I/O Efficieny of Highway Hierarchies Riko Jacob Sushant Sachdeva Departement of Computer Science ETH Zurich, Technical Report 531, September 26 Abstract Recently, Sanders and Schultes presented a shortest

More information

External Memory. Philip Bille

External Memory. Philip Bille External Memory Philip Bille Outline Computationals models Modern computers (word) RAM I/O Cache-oblivious Shortest path in implicit grid graphs RAM algorithm I/O algorithms Cache-oblivious algorithm Computational

More information

Storage Devices for Database Systems

Storage Devices for Database Systems Storage Devices for Database Systems 5DV120 Database System Principles Umeå University Department of Computing Science Stephen J. Hegner hegner@cs.umu.se http://www.cs.umu.se/~hegner Storage Devices for

More information

Master Thesis Preparation. Algorithms. Gerth Stølting Brodal

Master Thesis Preparation. Algorithms. Gerth Stølting Brodal Master Thesis Preparation Algorithms Gerth Stølting Brodal Overview Algorithms group at DAIMI Who? Where? Courses Research Master thesis in Algorithms Types of thesis Recent thesis topics Algorithms Group

More information

EECS 482 Introduction to Operating Systems

EECS 482 Introduction to Operating Systems EECS 482 Introduction to Operating Systems Winter 2018 Baris Kasikci Slides by: Harsha V. Madhyastha OS Abstractions Applications Threads File system Virtual memory Operating System Next few lectures:

More information

COMP 273 Winter physical vs. virtual mem Mar. 15, 2012

COMP 273 Winter physical vs. virtual mem Mar. 15, 2012 Virtual Memory The model of MIPS Memory that we have been working with is as follows. There is your MIPS program, including various functions and data used by this program, and there are some kernel programs

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 21: Memory Hierarchy Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Ideally, computer memory would be large and fast

More information

C has been and will always remain on top for performancecritical

C has been and will always remain on top for performancecritical Check out this link: http://spectrum.ieee.org/static/interactive-the-top-programminglanguages-2016 C has been and will always remain on top for performancecritical applications: Implementing: Databases

More information

COMPUTER SYSTEM. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U

COMPUTER SYSTEM. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U. COMPUTER SYSTEM IB DP Computer science Standard Level ICS3U C A N A D I A N I N T E R N A T I O N A L S C H O O L O F H O N G K O N G 5.1 Introduction 5.2 Components of a Computer System Algorithm The Von Neumann architecture is based on the following three characteristics:

More information

Recap: Machine Organization

Recap: Machine Organization ECE232: Hardware Organization and Design Part 14: Hierarchy Chapter 5 (4 th edition), 7 (3 rd edition) http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy,

More information

Module Outline. CPU Memory interaction Organization of memory modules Cache memory Mapping and replacement policies.

Module Outline. CPU Memory interaction Organization of memory modules Cache memory Mapping and replacement policies. M6 Memory Hierarchy Module Outline CPU Memory interaction Organization of memory modules Cache memory Mapping and replacement policies. Events on a Cache Miss Events on a Cache Miss Stall the pipeline.

More information

Lecture-14 (Memory Hierarchy) CS422-Spring

Lecture-14 (Memory Hierarchy) CS422-Spring Lecture-14 (Memory Hierarchy) CS422-Spring 2018 Biswa@CSE-IITK The Ideal World Instruction Supply Pipeline (Instruction execution) Data Supply - Zero-cycle latency - Infinite capacity - Zero cost - Perfect

More information

High Performance Computing Lecture 26. Matthew Jacob Indian Institute of Science

High Performance Computing Lecture 26. Matthew Jacob Indian Institute of Science High Performance Computing Lecture 26 Matthew Jacob Indian Institute of Science Agenda 1. Program execution: Compilation, Object files, Function call and return, Address space, Data & its representation

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 28: More Virtual Memory Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Virtual memory used to protect applications from

More information

Memory hierarchy and cache

Memory hierarchy and cache Memory hierarchy and cache QUIZ EASY 1). What is used to design Cache? a). SRAM b). DRAM c). Blend of both d). None. 2). What is the Hierarchy of memory? a). Processor, Registers, Cache, Tape, Main memory,

More information

Lab Determining Data Storage Capacity

Lab Determining Data Storage Capacity Lab 1.3.2 Determining Data Storage Capacity Objectives Determine the amount of RAM (in MB) installed in a PC. Determine the size of the hard disk drive (in GB) installed in a PC. Determine the used and

More information

STORING DATA: DISK AND FILES

STORING DATA: DISK AND FILES STORING DATA: DISK AND FILES CS 564- Spring 2018 ACKs: Dan Suciu, Jignesh Patel, AnHai Doan WHAT IS THIS LECTURE ABOUT? How does a DBMS store data? disk, SSD, main memory The Buffer manager controls how

More information

Algorithm Performance Factors. Memory Performance of Algorithms. Processor-Memory Performance Gap. Moore s Law. Program Model of Memory II

Algorithm Performance Factors. Memory Performance of Algorithms. Processor-Memory Performance Gap. Moore s Law. Program Model of Memory II Memory Performance of Algorithms CSE 32 Data Structures Lecture Algorithm Performance Factors Algorithm choices (asymptotic running time) O(n 2 ) or O(n log n) Data structure choices List or Arrays Language

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L20-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

This calculation converts 3562 from base 10 to base 8 octal. Digits are produced right to left, so the final answer is 6752.

This calculation converts 3562 from base 10 to base 8 octal. Digits are produced right to left, so the final answer is 6752. COMP 222 Spring 2016 Midterm #1 Solutions Average = 83, Median = 87 Range # of Papers 100 2 90s 13 80s 8 70s 3 60s 4

More information

Lecture 2: Memory Systems

Lecture 2: Memory Systems Lecture 2: Memory Systems Basic components Memory hierarchy Cache memory Virtual Memory Zebo Peng, IDA, LiTH Many Different Technologies Zebo Peng, IDA, LiTH 2 Internal and External Memories CPU Date transfer

More information

Electricity: Voltage. Gate: A signal enters the gate at a certain voltage. The gate performs operations on it, and sends it out was a new signal.

Electricity: Voltage. Gate: A signal enters the gate at a certain voltage. The gate performs operations on it, and sends it out was a new signal. Hardware CSCE 101 Electricity: Voltage Gate: A signal enters the gate at a certain voltage. The gate performs operations on it, and sends it out was a new signal. The signals voltage will either be between

More information

Chapter 12: Query Processing

Chapter 12: Query Processing Chapter 12: Query Processing Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Basic Steps in Query Processing 1. Parsing and translation 2. Optimization 3. Evaluation 12.2

More information

External Sorting. Chapter 13. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

External Sorting. Chapter 13. Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 External Sorting Chapter 13 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Sort? A classic problem in computer science! Data requested in sorted order e.g., find students in increasing

More information

Improving System. Performance: Caches

Improving System. Performance: Caches Improving System Performance: Caches December 04 CSC201 Section 002 Fall, 2000 A Motivating Example Application: making a (mechanical) clock dozens of tools and pages of instructions, hundreds of parts

More information

Virtual Memory Nov 9, 2009"

Virtual Memory Nov 9, 2009 Virtual Memory Nov 9, 2009" Administrivia" 2! 3! Motivations for Virtual Memory" Motivation #1: DRAM a Cache for Disk" SRAM" DRAM" Disk" 4! Levels in Memory Hierarchy" cache! virtual memory! CPU" regs"

More information

Cache Memory and Performance

Cache Memory and Performance Cache Memory and Performance Cache Performance 1 Many of the following slides are taken with permission from Complete Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective (CS:APP)

More information

Princeton University. Computer Science 217: Introduction to Programming Systems. The Memory/Storage Hierarchy and Virtual Memory

Princeton University. Computer Science 217: Introduction to Programming Systems. The Memory/Storage Hierarchy and Virtual Memory Princeton University Computer Science 27: Introduction to Programming Systems The Memory/Storage Hierarchy and Virtual Memory Goals of this Lecture Help you learn about: Locality and caching The memory

More information

CSE 373 OCTOBER 23 RD MEMORY AND HARDWARE

CSE 373 OCTOBER 23 RD MEMORY AND HARDWARE CSE 373 OCTOBER 23 RD MEMORY AND HARDWARE MEMORY ANALYSIS Similar to runtime analysis MEMORY ANALYSIS Similar to runtime analysis Consider the worst case MEMORY ANALYSIS Similar to runtime analysis Rather

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L16-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

Virtual Memory Review. Page faults. Paging system summary (so far)

Virtual Memory Review. Page faults. Paging system summary (so far) Lecture 22 (Wed 11/19/2008) Virtual Memory Review Lab #4 Software Simulation Due Fri Nov 21 at 5pm HW #3 Cache Simulator & code optimization Due Mon Nov 24 at 5pm More Virtual Memory 1 2 Paging system

More information

Review of course COMP-251B winter 2010

Review of course COMP-251B winter 2010 Review of course COMP-251B winter 2010 Lecture 1. Book Section 15.2 : Chained matrix product Matrix product is associative Computing all possible ways of parenthesizing Recursive solution Worst-case running-time

More information

6.033 Computer System Engineering

6.033 Computer System Engineering MIT OpenCourseWare http://ocw.mit.edu 6.033 Computer System Engineering Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 6.033 2009 Lecture

More information

Management Information Systems OUTLINE OBJECTIVES. Information Systems: Computer Hardware. Dr. Shankar Sundaresan

Management Information Systems OUTLINE OBJECTIVES. Information Systems: Computer Hardware. Dr. Shankar Sundaresan Management Information Systems Information Systems: Computer Hardware Dr. Shankar Sundaresan (Adapted from Introduction to IS, Rainer and Turban) OUTLINE Introduction The Central Processing Unit Computer

More information

CS162 - Operating Systems and Systems Programming. Address Translation => Paging"

CS162 - Operating Systems and Systems Programming. Address Translation => Paging CS162 - Operating Systems and Systems Programming Address Translation => Paging" David E. Culler! http://cs162.eecs.berkeley.edu/! Lecture #15! Oct 3, 2014!! Reading: A&D 8.1-2, 8.3.1. 9.7 HW 3 out (due

More information

12: Memory Management

12: Memory Management 12: Memory Management Mark Handley Address Binding Program goes through multiple steps from compilation to execution. At some stage, addresses in the program must be bound to physical memory addresses:

More information

Weaving Relations for Cache Performance

Weaving Relations for Cache Performance Weaving Relations for Cache Performance Anastassia Ailamaki Carnegie Mellon Computer Platforms in 198 Execution PROCESSOR 1 cycles/instruction Data and Instructions cycles

More information

CSE 451: Operating Systems Winter Lecture 12 Secondary Storage. Steve Gribble 323B Sieg Hall.

CSE 451: Operating Systems Winter Lecture 12 Secondary Storage. Steve Gribble 323B Sieg Hall. CSE 451: Operating Systems Winter 2001 Lecture 12 Steve Gribble gribble@cs.washington.edu 323B Sieg Hall Secondary storage typically: is anything that is outside of primary memory does not permit direct

More information

COSC 6385 Computer Architecture. - Memory Hierarchies (I)

COSC 6385 Computer Architecture. - Memory Hierarchies (I) COSC 6385 Computer Architecture - Hierarchies (I) Fall 2007 Slides are based on a lecture by David Culler, University of California, Berkley http//www.eecs.berkeley.edu/~culler/courses/cs252-s05 Recap

More information

CS780: Topics in Computer Graphics

CS780: Topics in Computer Graphics CS780: Topics in Computer Graphics Scalable Graphics/Geometric Algorithms Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/sga/ About the Instructor Joined KAIST at July this year

More information

Virtual Memory - Objectives

Virtual Memory - Objectives ECE232: Hardware Organization and Design Part 16: Virtual Memory Chapter 7 http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy Virtual Memory - Objectives

More information

The Memory Hierarchy & Cache

The Memory Hierarchy & Cache Removing The Ideal Memory Assumption: The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs. SRAM The Motivation for The Memory

More information

Administrivia. HW0 scores, HW1 peer-review assignments out. If you re having Cython trouble with HW2, let us know.

Administrivia. HW0 scores, HW1 peer-review assignments out. If you re having Cython trouble with HW2, let us know. Administrivia HW0 scores, HW1 peer-review assignments out. HW2 out, due Nov. 2. If you re having Cython trouble with HW2, let us know. Review on Wednesday: Post questions on Piazza Introduction to GPUs

More information

Topic 18 (updated): Virtual Memory

Topic 18 (updated): Virtual Memory Topic 18 (updated): Virtual Memory COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Virtual Memory Any time you see virtual, think using a level

More information

Engineering a Cache-Oblivious Sorting Algorithm

Engineering a Cache-Oblivious Sorting Algorithm Engineering a Cache-Oblivious Sorting Algorithm Gerth Stølting Brodal, Rolf Fagerberg Kristoffer Vinther Abstract This paper is an algorithmic engineering study of cacheoblivious sorting. We investigate

More information

Preview. Memory Management

Preview. Memory Management Preview Memory Management With Mono-Process With Multi-Processes Multi-process with Fixed Partitions Modeling Multiprogramming Swapping Memory Management with Bitmaps Memory Management with Free-List Virtual

More information

CS 310: Memory Hierarchy and B-Trees

CS 310: Memory Hierarchy and B-Trees CS 310: Memory Hierarchy and B-Trees Chris Kauffman Week 14-1 Matrix Sum Given an M by N matrix X, sum its elements M rows, N columns Sum R given X, M, N sum = 0 for i=0 to M-1{ for j=0 to N-1 { sum +=

More information

Accelerating Foreign-Key Joins using Asymmetric Memory Channels

Accelerating Foreign-Key Joins using Asymmetric Memory Channels Accelerating Foreign-Key Joins using Asymmetric Memory Channels Holger Pirk Stefan Manegold Martin Kersten holger@cwi.nl manegold@cwi.nl mk@cwi.nl Why? Trivia: Joins are important But: Many Joins are (Indexed)

More information

Cache Memory COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Cache Memory COE 403. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Cache Memory COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline The Need for Cache Memory The Basics

More information

CMSC 104 -Lecture 2 John Y. Park, adapted by C Grasso

CMSC 104 -Lecture 2 John Y. Park, adapted by C Grasso CMSC 104 -Lecture 2 John Y. Park, adapted by C Grasso 1 Topics Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Binary to Decimal Converting

More information

Virtual Memory. 11/8/16 (election day) Vote!

Virtual Memory. 11/8/16 (election day) Vote! Virtual Memory 11/8/16 (election day) Vote! Recall: the job of the OS The OS is an interface layer between a user s programs and hardware. Program Operating System Computer Hardware It provides an abstract

More information

goals monitoring, fault tolerance, auto-recovery (thousands of low-cost machines) handle appends efficiently (no random writes & sequential reads)

goals monitoring, fault tolerance, auto-recovery (thousands of low-cost machines) handle appends efficiently (no random writes & sequential reads) Google File System goals monitoring, fault tolerance, auto-recovery (thousands of low-cost machines) focus on multi-gb files handle appends efficiently (no random writes & sequential reads) co-design GFS

More information

Sort vs. Hash Join Revisited for Near-Memory Execution. Nooshin Mirzadeh, Onur Kocberber, Babak Falsafi, Boris Grot

Sort vs. Hash Join Revisited for Near-Memory Execution. Nooshin Mirzadeh, Onur Kocberber, Babak Falsafi, Boris Grot Sort vs. Hash Join Revisited for Near-Memory Execution Nooshin Mirzadeh, Onur Kocberber, Babak Falsafi, Boris Grot 1 Near-Memory Processing (NMP) Emerging technology Stacked memory: A logic die w/ a stack

More information

Virtual Memory. Virtual Memory

Virtual Memory. Virtual Memory Virtual Memory Virtual Memory Main memory is cache for secondary storage Secondary storage (disk) holds the complete virtual address space Only a portion of the virtual address space lives in the physical

More information

Caches and Memory Hierarchy: Review. UCSB CS240A, Winter 2016

Caches and Memory Hierarchy: Review. UCSB CS240A, Winter 2016 Caches and Memory Hierarchy: Review UCSB CS240A, Winter 2016 1 Motivation Most applications in a single processor runs at only 10-20% of the processor peak Most of the single processor performance loss

More information

MEMORY BHARAT SCHOOL OF BANKING- VELLORE

MEMORY BHARAT SCHOOL OF BANKING- VELLORE A memory is just like a human brain. It is used to store data and instructions. Computer memory is the storage space in computer where data is to be processed and instructions required for processing are

More information

Computer Organization

Computer Organization INF 101 Fundamental Information Technology Computer Organization Assistant Prof. Dr. Turgay ĐBRĐKÇĐ Course slides are adapted from slides provided by Addison-Wesley Computing Fundamentals of Information

More information

Algorithms and Data Structures: Lower Bounds for Sorting. ADS: lect 7 slide 1

Algorithms and Data Structures: Lower Bounds for Sorting. ADS: lect 7 slide 1 Algorithms and Data Structures: Lower Bounds for Sorting ADS: lect 7 slide 1 ADS: lect 7 slide 2 Comparison Based Sorting Algorithms Definition 1 A sorting algorithm is comparison based if comparisons

More information

Comparison Based Sorting Algorithms. Algorithms and Data Structures: Lower Bounds for Sorting. Comparison Based Sorting Algorithms

Comparison Based Sorting Algorithms. Algorithms and Data Structures: Lower Bounds for Sorting. Comparison Based Sorting Algorithms Comparison Based Sorting Algorithms Algorithms and Data Structures: Lower Bounds for Sorting Definition 1 A sorting algorithm is comparison based if comparisons A[i] < A[j], A[i] A[j], A[i] = A[j], A[i]

More information

Intro to Computers in Arabic!!!!! MAI ELSHEHALY

Intro to Computers in Arabic!!!!! MAI ELSHEHALY Intro to Computers in Arabic!!!!! DR. MAI ELSHEHALY About this class University requirement Have fun with it! Probably too basic Learn something new! Room not big enough Attendance NOT required! Need a

More information

Algorithms and Data Structures Group. Gerth Stølting Brodal

Algorithms and Data Structures Group. Gerth Stølting Brodal Algorithms and Data Structures Group Gerth Stølting Brodal Faculty Meeting, Department of Computer Science, Aarhus University, October 3, 2014 VIP Lars Arge (Professor) Gerth Stølting Brodal (Lektor) Peyman

More information

Georgia Institute of Technology ECE6102 4/20/2009 David Colvin, Jimmy Vuong

Georgia Institute of Technology ECE6102 4/20/2009 David Colvin, Jimmy Vuong Georgia Institute of Technology ECE6102 4/20/2009 David Colvin, Jimmy Vuong Relatively recent; still applicable today GFS: Google s storage platform for the generation and processing of data used by services

More information

Distributed File Systems Part IV. Hierarchical Mass Storage Systems

Distributed File Systems Part IV. Hierarchical Mass Storage Systems Distributed File Systems Part IV Daniel A. Menascé Hierarchical Mass Storage Systems On-line data requirements Mass Storage Systems Concepts Mass storage system architectures Example systems Performance

More information

CS61C Review of Cache/VM/TLB. Lecture 26. April 30, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson)

CS61C Review of Cache/VM/TLB. Lecture 26. April 30, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) CS6C Review of Cache/VM/TLB Lecture 26 April 3, 999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs6c/schedule.html Outline Review Pipelining Review Cache/VM/TLB Review

More information

CS 201 The Memory Hierarchy. Gerson Robboy Portland State University

CS 201 The Memory Hierarchy. Gerson Robboy Portland State University CS 201 The Memory Hierarchy Gerson Robboy Portland State University memory hierarchy overview (traditional) CPU registers main memory (RAM) secondary memory (DISK) why? what is different between these

More information

CSE 326: Data Structures B-Trees and B+ Trees

CSE 326: Data Structures B-Trees and B+ Trees Announcements (2/4/09) CSE 26: Data Structures B-Trees and B+ Trees Midterm on Friday Special office hour: 4:00-5:00 Thursday in Jaech Gallery (6 th floor of CSE building) This is in addition to my usual

More information

Chapter 1: Introduction Dr. Ali Fanian. Operating System Concepts 9 th Edit9on

Chapter 1: Introduction Dr. Ali Fanian. Operating System Concepts 9 th Edit9on Chapter 1: Introduction Dr. Ali Fanian Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 1.2 Silberschatz, Galvin and Gagne 2013 Organization Lectures Homework Quiz Several homeworks

More information

Fully Persistent B-Trees

Fully Persistent B-Trees rd Annual ACM-SIAM Symposium on Discrete Algorithms, Kyoto, Japan, January 8, 0 Fully Persistent B-Trees Gerth Stølting Brodal Konstantinos Tsakalidis Aarhus University, Denmark Spyros Sioutas Ionian University,

More information

Engineering a Cache-Oblivious Sorting Algorithm

Engineering a Cache-Oblivious Sorting Algorithm Alcom-FT Technical Report Series ALCOMFT-TR-03-101 Engineering a Cache-Oblivious Sorting Algorithm Gerth Stølting Brodal, Rolf Fagerberg Kristoffer Vinther Abstract The cache-oblivious model of computation

More information

Day 3. Storage Devices + Types of Memory + Measuring Memory + Computer Performance

Day 3. Storage Devices + Types of Memory + Measuring Memory + Computer Performance Day 3 Storage Devices + Types of Memory + Measuring Memory + Computer Performance 11-10-2015 12-10-2015 Storage Devices Storage capacity uses several terms to define the increasing amounts of data that

More information

Funnel Heap - A Cache Oblivious Priority Queue

Funnel Heap - A Cache Oblivious Priority Queue Alcom-FT Technical Report Series ALCOMFT-TR-02-136 Funnel Heap - A Cache Oblivious Priority Queue Gerth Stølting Brodal, Rolf Fagerberg Abstract The cache oblivious model of computation is a two-level

More information

Module 1: Basics and Background Lecture 4: Memory and Disk Accesses. The Lecture Contains: Memory organisation. Memory hierarchy. Disks.

Module 1: Basics and Background Lecture 4: Memory and Disk Accesses. The Lecture Contains: Memory organisation. Memory hierarchy. Disks. The Lecture Contains: Memory organisation Example of memory hierarchy Memory hierarchy Disks Disk access Disk capacity Disk access time Typical disk parameters Access times file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture4/4_1.htm[6/14/2012

More information

Finding a Needle in a Haystack. Facebook s Photo Storage Jack Hartner

Finding a Needle in a Haystack. Facebook s Photo Storage Jack Hartner Finding a Needle in a Haystack Facebook s Photo Storage Jack Hartner Paper Outline Introduction Background & Previous Design Design & Implementation Evaluation Related Work Conclusion Facebook Photo Storage

More information

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY 1 Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored

More information