Designing MPI and PGAS Libraries for Exascale Systems: The MVAPICH2 Approach

Size: px
Start display at page:

Download "Designing MPI and PGAS Libraries for Exascale Systems: The MVAPICH2 Approach"

Transcription

1 Designing MPI and PGAS Libraries for Exascale Systems: The MVAPICH2 Approach Talk at OpenFabrics Workshop (March 217) by Dhabaleswar K. (DK) Panda The Ohio State University

2 OFA (March 17) 2 High-End Computing (HEC): Towards Exascale-Era 15-3 PFlops in ? 1 EFlops in 221? Expected to have an ExaFlop system in 221!

3 Drivers of Modern HPC Cluster Architectures Multi-core Processors High Performance Interconnects - InfiniBand <1usec latency, 1Gbps Bandwidth> Multi-core/many-core technologies Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE) Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD Accelerators (NVIDIA GPGPUs and Intel Xeon Phi) Accelerators / Coprocessors high compute density, high performance/watt >1 TFlop DP on a chip Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc. SSD, NVMe-SSD, NVRAM Sunway TaihuLight K - Computer Tianhe 2 Titan OFA (March 17) 3

4 Three Major Computing Categories Scientific Computing Message Passing Interface (MPI), including MPI + OpenMP, is the Dominant Programming Model Many discussions towards Partitioned Global Address Space (PGAS) UPC, OpenSHMEM, CAF, UPC++ etc. Hybrid Programming: MPI + PGAS (OpenSHMEM, UPC) Deep Learning Caffe, CNTK, TensorFlow, and many more Big Data/Enterprise/Commercial Computing Focuses on large data and data analysis Spark and Hadoop (HDFS, HBase, MapReduce) Memcached is also used for Web 2. OFA (March 17) 4

5 Parallel Programming Models Overview P1 P2 P3 P1 P2 P3 P1 P2 P3 Shared Memory Memory Memory Memory Logical shared memory Memory Memory Memory Shared Memory Model Distributed Memory Model Partitioned Global Address Space (PGAS) SHMEM, DSM MPI (Message Passing Interface) Global Arrays, UPC, Chapel, X1, CAF, Programming models provide abstract machine models Models can be mapped on different types of systems e.g. Distributed Shared Memory (DSM), MPI within a node, etc. PGAS models and Hybrid MPI+PGAS models are gradually receiving importance OFA (March 17) 5

6 OFA (March 17) 6 Partitioned Global Address Space (PGAS) Models Key features - Simple shared memory abstractions - Light weight one-sided communication - Easier to express irregular communication Different approaches to PGAS - Languages - Libraries Unified Parallel C (UPC) OpenSHMEM Co-Array Fortran (CAF) UPC++ X1 Global Arrays Chapel

7 OFA (March 17) 7 Hybrid (MPI+PGAS) Programming Application sub-kernels can be re-written in MPI/PGAS based on communication characteristics Benefits: Best of Distributed Computing Model Best of Shared Memory Computing Model HPC Application Kernel 1 MPI Kernel 2 PGAS MPI Kernel 3 MPI Kernel N PGAS MPI

8 Overview of the MVAPICH2 Project High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE) MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.), Started in 21, First version available in 22 MVAPICH2-X (MPI + PGAS), Available since 211 Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 214 Support for Virtualization (MVAPICH2-Virt), Available since 215 Support for Energy-Awareness (MVAPICH2-EA), Available since 215 Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 215 Used by more than 2,75 organizations in 83 countries More than 412, (>.4 million) downloads from the OSU site directly Empowering many TOP5 clusters (Nov 16 ranking) 1st, 1,649,6-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China 13th, 241,18-core (Pleiades) at NASA 17th, 462,462-core (Stampede) at TACC 4th, 74,52-core (Tsubame 2.5) at Tokyo Institute of Technology Available with software stacks of many vendors and Linux Distros (RedHat and SuSE) Empowering Top5 systems for over a decade System-X from Virginia Tech (3 rd in Nov 23, 2,2 processors, TFlops) -> Sunway TaihuLight (1 st in Jun 16, 1M cores, 1 PFlops) OFA (March 17) 8

9 45 MVAPICH2 Release Timeline and Downloads Number of Downloads MV.9.4 MV2.9. MV2.9.8 MV2 1. MV 1. MV MV 1.1 MV2 1.4 MV2 1.5 MV2 1.6 MV2 1.7 MV2 1.8 MV2 1.9 MV2-GDR 2.b MV2-MIC 2. MV2 2.1 MV2-Virt 2.1rc2 MV2-GDR 2.2rc1 MV2-X 2.2 MV2 2.3a 1 5 Sep-4 Feb-5 Jul-5 Dec-5 May-6 Oct-6 Mar-7 Aug-7 Jan-8 Jun-8 Nov-8 Apr-9 Sep-9 Feb-1 Jul-1 Dec-1 May-11 Oct-11 Mar-12 Aug-12 Jan-13 Jun-13 Timeline OFA (March 17) 9 Nov-13 Apr-14 Sep-14 Feb-15 Jul-15 Dec-15 May-16 Oct-16 Mar-17

10 Architecture of MVAPICH2 Software Family High Performance Parallel Programming Models Message Passing Interface (MPI) PGAS (UPC, OpenSHMEM, CAF, UPC++) Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk) High Performance and Scalable Communication Runtime Diverse APIs and Mechanisms Point-topoint Primitives Collectives Algorithms Job Startup Energy- Awareness Remote Memory Access I/O and File Systems Fault Tolerance Virtualization Active Messages Introspection & Analysis Support for Modern Networking Technology (InfiniBand, iwarp, RoCE, Omni-Path) Support for Modern Multi-/Many-core Architectures (Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL), NVIDIA GPGPU) Transport Protocols RC XRC UD DC UMR ODP Modern Features SR- IOV Multi Rail Transport Mechanisms Shared Memory CMA IVSHMEM Modern Features MCDRAM * NVLink * CAPI * * Upcoming OFA (March 17) 1

11 OFA (March 17) 11 MVAPICH2 Software Family High-Performance Parallel Programming Libraries MVAPICH2 MVAPICH2-X MVAPICH2-GDR MVAPICH2-Virt MVAPICH2-EA MVAPICH2-MIC Microbenchmarks OMB Tools OSU INAM OEMT Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and MPI+PGAS programming models with unified communication runtime Optimized MPI for clusters with NVIDIA GPUs High-performance and scalable MPI for hypervisor and container based HPC cloud Energy aware and High-performance MPI Optimized MPI for clusters with Intel KNC Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) libraries for CPUs and GPUs Network monitoring, profiling, and analysis for clusters with MPI and scheduler integration Utility to measure the energy consumption of MPI applications

12 OFA (March 17) 12 MVAPICH2 2.3a Released on 3/29/217 Major Features and Enhancements Based on and ABI compatible with MPICH 3.2 Support collective offload using Mellanox's SHArP for Allreduce Enhance tuning framework for Allreduce using SHArP Introduce capability to run MPI jobs across multiple InfiniBand subnets Introduce basic support for executing MPI jobs in Singularity Enhance collective tuning for Intel Knight's Landing and Intel Omni-path Enhance process mapping support for multi-threaded MPI applications Introduce MV2_CPU_BINDING_POLICY=hybrid Introduce MV2_THREADS_PER_PROCESS On-demand connection management for PSM-CH3 and PSM2-CH3 channels Enhance PSM-CH3 and PSM2-CH3 job startup to use non-blocking PMI calls Enhance debugging support for PSM-CH3 and PSM2-CH3 channels Improve performance of architecture detection Introduce run time parameter MV2_SHOW_HCA_BINDING to show process to HCA binding Enhance MV2_SHOW_CPU_BINDING to enable display of CPU bindings on all nodes Deprecate OFA-IB-Nemesis channel Update to hwloc version

13 OFA (March 17) 13 Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale Scalability for million to billion processors Support for highly-efficient inter-node and intra-node communication Support for advanced IB mechanisms (UMR and ODP) Extremely minimal memory footprint (DCT) Scalable Job Start-up Dynamic and Adaptive Tag Matching Collective Support with SHArP Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, UPC++, ) Integrated Support for GPGPUs Energy-Awareness InfiniBand Network Analysis and Monitoring (INAM) Virtualization and HPC Cloud

14 One-way Latency: MPI over IB with MVAPICH2 Latency (us) 1.8 Small Message Latency Latency (us) Large Message Latency TrueScale-QDR ConnectX-3-FDR ConnectIB-DualFDR ConnectX-4-EDR Omni-Path Message Size (bytes) Message Size (bytes) TrueScale-QDR GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch ConnectX-3-FDR GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch ConnectIB-Dual FDR GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch ConnectX-4-EDR GHz Deca-core (Haswell) Intel PCI Gen3 with IB Switch Omni-Path GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch OFA (March 17) 14

15 Bandwidth (MBytes/sec) Bandwidth: MPI over IB with MVAPICH2 14 Unidirectional Bandwidth 12, , , ,356 3,373 Bandwidth (MBytes/sec) Bidirectional Bandwidth TrueScale-QDR ConnectX-3-FDR ConnectIB-DualFDR ConnectX-4-EDR Omni-Path 24,136 21,983 21,227 12,161 6,228 Message Size (bytes) Message Size (bytes) TrueScale-QDR GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch ConnectX-3-FDR GHz Deca-core (IvyBridge) Intel PCI Gen3 with IB switch ConnectIB-Dual FDR GHz Deca-core (Haswell) Intel PCI Gen3 with IB switch ConnectX-4-EDR GHz Deca-core (Haswell) Intel PCI Gen3 IB switch Omni-Path GHz Deca-core (Haswell) Intel PCI Gen3 with Omni-Path switch OFA (March 17) 15

16 MVAPICH2 Two-Sided Intra-Node Performance (Shared memory and Kernel-based Zero-copy Support (LiMIC and CMA)) Latency (us) 1.5 Latency Intra-Socket Inter-Socket.45 us.18 us Intel Ivy-bridge K Message Size (Bytes) 1 5 Bandwidth (MB/s)15 Bandwidth (Intra-socket) intra-socket-cma intra-socket-shmem intra-socket-limic 14,25 MB/s 1 5 Bandwidth (MB/s)15 Bandwidth (Inter-socket) inter-socket-cma inter-socket-shmem inter-socket-limic 13,749 MB/s Message Size (Bytes) Message Size (Bytes) OFA (March 17) 16

17 User-mode Memory Registration (UMR) Introduced by Mellanox to support direct local and remote noncontiguous memory access Avoid packing at sender and unpacking at receiver Available since MVAPICH2-X 2.2b Latency (us) Small & Medium Message Latency UMR Default 4K 16K 64K 256K 1M 2M 4M 8M 16M Message Size (Bytes) Message Size (Bytes) Connect-IB (54 Gbps): 2.8 GHz Dual Ten-core (IvyBridge) Intel PCI Gen3 with Mellanox IB FDR switch Latency (us) Large Message Latency UMR Default M. Li, H. Subramoni, K. Hamidouche, X. Lu and D. K. Panda, High Performance MPI Datatype Support with User-mode Memory Registration: Challenges, Designs and Benefits, CLUSTER, 215 OFA (March 17) 17

18 Minimizing Memory Footprint by Direct Connect (DC) Transport Node 3 P6 P7 Node P Node 2 P4 P1 IB Network P5 Node 1 P2 P3 Constant connection cost (One QP for any peer) Full Feature Set (RDMA, Atomics etc) Separate objects for send (DC Initiator) and receive (DC Target) DC Target identified by DCT Number Messages routed with (DCT Number, LID) Requires same DC Key to enable communication Available since MVAPICH2-X 2.2a NAMD - Apoa1: Large data set RC DC-Pool UD XRC 97 RC DC-Pool UD XRC Number of Processes Number of Processes H. Subramoni, K. Hamidouche, A. Venkatesh, S. Chakraborty and D. K. Panda, Designing MPI Library with Dynamic Connected Transport (DCT) of InfiniBand : Early Experiences. IEEE International Supercomputing Conference (ISC 14) OFA (March 17) 18 Connection Memory (KB) Memory Footprint for Alltoall Normalized Execution Time

19 Towards High Performance and Scalable Startup at Exascale Memory Required to Store Endpoint Information P P M O a b c M PGAS State of the art MPI State of the art PGAS/MPI Optimized Job Startup Performance d e O a b c d e On-demand Connection PMIX_Ring PMIX_Ibarrier PMIX_Iallgather Shmem based PMI Near-constant MPI and OpenSHMEM initialization time at any process count 1x and 3x improvement in startup time of MPI and OpenSHMEM respectively at 16,384 processes Memory consumption reduced for remote endpoint information by O(processes per node) 1GB Memory saved per node with 1M processes and 16 processes per node a On-demand Connection Management for OpenSHMEM and OpenSHMEM+MPI. S. Chakraborty, H. Subramoni, J. Perkins, A. A. Awan, and D K Panda, 2th International Workshop on High-level Parallel Programming Models and Supportive Environments (HIPS 15) b PMI Extensions for Scalable MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, J. Perkins, M. Arnold, and D K Panda, Proceedings of the 21st European MPI Users' Group Meeting (EuroMPI/Asia 14) c d Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and D K Panda, 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 15) e SHMEMPMI Shared Memory based PMI for Improved Performance and Scalability. S. Chakraborty, H. Subramoni, J. Perkins, and D K Panda, 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 16) OFA (March 17) 19

20 Time Taken for MPI_Init (seconds) Scalable Job Startup with Non-blocking PMI Co-designing Resource Manager and MPI library K 4K 16K Hello World - MV Default SLURM MPI_Init - MV Default SLURM Hello World - MV Optimized SLURM MPI_Init - MV Optimized SLURM Number of Processes Near-constant MPI_Init at any scale MPI_Init is 59 times faster Hello World (MPI_Init + MPI_Finalize) takes 5.7 times less time with 8,192 processes (512 nodes) 16,384 processes, 1,24 Nodes (Sandy Bridge + FDR) Time Taken (Seconds) 3 Resource Manager Independent Design Hello World MPI_Init K 4K 16K 64K Number of Processes Non-blocking PMI implementation in mpirun_rsh On-demand connection management for PSM and Omni-path Efficient intra-node startup for Knights Landing MPI_Init takes 5.8 seconds Hello World takes 21 seconds 65,536 processes, 1,24 Nodes (KNL + Omni-Path) New designs available in MVAPICH2-2.3a and as patch for SLURM and SLURM OFA (March 17) 2

21 On-Demand Paging (ODP) Introduced by Mellanox to avoid pinning the pages of registered memory regions ODP-aware runtime could reduce the size of pin-down buffers while maintaining performance Available in MVAPICH2-X 2.2 ExecutionTime (s) Pin-down ODP Applications (64 Processes) M. Li, K. Hamidouche, X. Lu, H. Subramoni, J. Zhang, and D. K. Panda, Designing MPI Library with On-Demand Paging (ODP) of InfiniBand: Challenges and Benefits, SC, 216 OFA (March 17) 21

22 Dynamic and Adaptive Tag Matching Challenge Tag matching is a significant overhead for receivers Existing Solutions are - Static and do not adapt dynamically to communication pattern - Do not consider memory overhead Solution A new tag matching design - Dynamically adapt to communication patterns - Use different strategies for different ranks - Decisions are based on the number of request object that must be traversed before hitting on the required one Results Better performance than other state-of-the art tagmatching schemes Minimum memory consumption Will be available in future MVAPICH2 releases Normalized Total Tag Matching Time at 512 Processes Normalized to Default (Lower is Better) Normalized Memory Overhead per Process at 512 Processes Compared to Default (Lower is Better) Adaptive and Dynamic Design for MPI Tag Matching; M. Bayatpour, H. Subramoni, S. Chakraborty, and D. K. Panda; IEEE Cluster 216. [Best Paper Nominee] OFA (March 17) 22

23 Latency (us) Advanced Allreduce Collective Designs Using Switch Offload Mechanism (SHArP) Mesh Refinement Latency (sec) *PPN: Processes Per Node 12 1 MVAPICH2 MVAPICH2-SHArP osu_allreduce (OSU Micro Benchmark) with 448 processes (28 *PPN 16 Nodes) Small-Messages Latency (us) MVAPICH2 MVAPICH2-SHArP Medium-Messages 1K 2K 4K 8K 16K 32K Message Size (Bytes) Message Size (Bytes) Avg of Mesh Refinement Latency for miniamr Application (28 PPN) 224 Processes (8 Nodes, 28 PPN) MVAPICH2 MVAPICH2-SHArP 2.8x 26% 16K 32K 64K Mesh Refinements Levels Mesh Refinement Latency (sec) Processes (16 Nodes, 28 PPN) MVAPICH2 MVAPICH2-SHArP 22% 16K 32K 64K Mesh Refinements Levels 39% Basic Support Available in MVAPICH2 2.3a OFA (March 17) 23

24 OFA (March 17) 24 Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale Scalability for million to billion processors Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, UPC++, ) Integrated Support for GPGPUs Energy-Awareness InfiniBand Network Analysis and Monitoring (INAM) Virtualization and HPC Cloud

25 MVAPICH2-X for Hybrid MPI + PGAS Applications Current Model Separate Runtimes for OpenSHMEM/UPC/UPC++/CAF and MPI Possible deadlock if both runtimes are not progressed Consumes more network resource Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF Available with since 212 (starting with MVAPICH2-X 1.9) OFA (March 17) 25

26 UPC++ Support in MVAPICH2-X Time (ms) GASNet_MPI GASNET_IBV MV2-X 1K 2K 4K 8K 16K 32K 64K 128K256K512K 1M 14x MPI + {UPC++} Application UPC++ Runtime GASNet Interfaces Conduit (MPI) MPI Runtime MPI + {UPC++} Application UPC++ Interface MPI Interfaces MVAPICH2-X Unified Communication Runtime (UCR) Message Size (bytes) Network Inter-node Broadcast (64 nodes 1:ppn) Full and native support for hybrid MPI + UPC++ applications Better performance compared to IBV and MPI conduits OSU Micro-benchmarks (OMB) support for UPC++ Available since MVAPICH2-X (2.2rc1) OFA (March 17) 26

27 Application Level Performance with Graph5 and Sort Time (s) Graph5 Execution Time MPI-Simple MPI-CSC MPI-CSR Hybrid (MPI+OpenSHMEM) 4K 8K 16K No. of Processes 7.6X J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph5 Benchmark with Hybrid MPI+OpenSHMEM Programming Models, International Supercomputing Conference (ISC 13), June 213 J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation, Int'l Conference on Parallel Processing (ICPP '12), September X Performance of Hybrid (MPI+ OpenSHMEM) Graph5 Design 8,192 processes - 2.4X improvement over MPI-CSR - 7.6X improvement over MPI-Simple 16,384 processes - 1.5X improvement over MPI-CSR - 13X improvement over MPI-Simple J. Jose, K. Kandalla, S. Potluri, J. Zhang and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, Int'l Conference on Partitioned Global Address Space Programming Models (PGAS '13), October 213. Time (seconds) MPI Sort Execution Time Hybrid 5GB-512 1TB-1K 2TB-2K 4TB-4K Input Data - No. of Processes Performance of Hybrid (MPI+OpenSHMEM) Sort Application 4,96 processes, 4 TB Input Size - MPI 248 sec;.16 TB/min - Hybrid 1172 sec;.36 TB/min - 51% improvement over MPI-design OFA (March 17) 27 51%

28 OFA (March 17) 28 Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale Scalability for million to billion processors Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, UPC++, ) Integrated Support for GPGPUs CUDA-aware MPI GPUDirect RDMA (GDR) Support Energy-Awareness InfiniBand Network Analysis and Monitoring (INAM) Virtualization and HPC Cloud

29 MPI + CUDA - Naive Data movement in applications with standard MPI and CUDA interfaces At Sender: CPU cudamemcpy(s_hostbuf, s_devbuf,...); MPI_Send(s_hostbuf, size,...); At Receiver: MPI_Recv(r_hostbuf, size,...); cudamemcpy(r_devbuf, r_hostbuf,...); PCIe GPU NIC Switch High Productivity and Low Performance OFA (March 17) 29

30 MPI + CUDA - Advanced Pipelining at user level with non-blocking MPI and CUDA interfaces At Sender: for (j = ; j < pipeline_len; j++) cudamemcpyasync(s_hostbuf + j * blk, s_devbuf + j * blksz, ); for (j = ; j < pipeline_len; j++) { while (result!= cudasucess) { result = cudastreamquery( ); if(j > ) MPI_Test( ); } MPI_Isend(s_hostbuf + j * block_sz, blksz...); } MPI_Waitall(); <<Similar at receiver>> Low Productivity and High Performance CPU PCIe GPU NIC Switch OFA (March 17) 3

31 GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU Standard MPI interfaces used for unified data movement Takes advantage of Unified Virtual Addressing (>= CUDA 4.) Overlaps data movement from GPU with RDMA transfers At Sender: MPI_Send(s_devbuf, size, ); At Receiver: MPI_Recv(r_devbuf, size, ); inside MVAPICH2 High Performance and High Productivity OFA (March 17) 31

32 CUDA-Aware MPI: MVAPICH2-GDR Releases Support for MPI communication from NVIDIA GPU device memory High performance RDMA-based inter-node point-to-point communication (GPU-GPU, GPU-Host and Host-GPU) High performance intra-node point-to-point communication for multi-gpu adapters/node (GPU-GPU, GPU-Host and Host-GPU) Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node communication for multiple GPU adapters/node Optimized and tuned collectives for GPU device buffers MPI datatype support for point-to-point and collective communication from GPU device buffers Unified memory OFA (March 17) 32

33 Latency (us) Performance of MVAPICH2-GPU with GPU-Direct RDMA (GDR) Bi-Bandwidth (MB/s) us K Message Size (bytes) GPU-GPU Internode Bi-Bandwidth MV2-GDR2.2 MV2-GDR2.b MV2 w/o GDR K 4K GPU-GPU internode latency MV2-GDR2.2 MV2-GDR2.b MV2 w/o GDR 3X 1x Message Size (bytes) 11x Bandwidth (MB/s) 2X GPU-GPU Internode Bandwidth MV2-GDR2.2 MV2-GDR2.b MV2 w/o GDR K 4K Message Size (bytes) 11X MVAPICH2-GDR-2.2 Intel Ivy Bridge (E5-268 v2) node - 2 cores NVIDIA Tesla K4c GPU Mellanox Connect-X4 EDR HCA CUDA 8. Mellanox OFED 3. with GPU-Direct-RDMA OFA (March 17) 33 2X

34 Average Time Steps per second (TPS) Application-Level Evaluation (HOOMD-blue) K Particles Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K2c + Mellanox Connect-IB) HoomdBlue Version 1..5 GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_ MV2_IBA_EAGER_THRESHOLD=32768 MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT= X Number of Processes Average Time Steps per second (TPS) K Particles MV2 MV2+GDR Number of Processes OFA (March 17) 34 2X

35 Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland Normalized Execution Time Wilkes GPU Cluster Default Callback-based Event-based Number of GPUs Normalized Execution Time CSCS GPU cluster Default Callback-based Event-based Number of GPUs 2X improvement on 32 GPUs nodes 3% improvement on 96 GPU nodes (8 GPUs/node) Cosmo model: /tasks/operational/meteoswiss/ On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee, H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data Movement Processing on Modern GPU-enabled Systems, IPDPS 16 OFA (March 17) 35

36 OFA (March 17) 36 Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale Scalability for million to billion processors Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, UPC++, ) Integrated Support for GPGPUs Energy-Awareness InfiniBand Network Analysis and Monitoring (INAM)

37 OFA (March 17) 37 Energy-Aware MVAPICH2 & OSU Energy Management Tool (OEMT) MVAPICH2-EA 2.1 (Energy-Aware) A white-box approach New Energy-Efficient communication protocols for pt-pt and collective operations Intelligently apply the appropriate Energy saving techniques Application oblivious energy saving OEMT A library utility to measure energy consumption for MPI applications Works with all MPI runtimes PRELOAD option for precompiled applications Does not require ROOT permission: A safe kernel module to read only a subset of MSRs Publicly available since August 15

38 OFA (March 17) 38 MVAPICH2-EA: Application Oblivious Energy-Aware-MPI (EAM) An energy efficient runtime that provides energy savings without application knowledge Uses automatically and transparently the best energy lever Provides guarantees on maximum degradation with 5-41% savings at <= 5% degradation Pessimistic MPI applies energy reduction lever to each MPI call 1 A Case for Application-Oblivious Energy-Efficient MPI Runtime A. Venkatesh, A. Vishnu, K. Hamidouche, N. Tallent, D. K. Panda, D. Kerbyson, and A. Hoise, Supercomputing 15, Nov 215 [Best Student Paper Finalist]

39 OFA (March 17) 39 Overview of A Few Challenges being Addressed by the MVAPICH2 Project for Exascale Scalability for million to billion processors Unified Runtime for Hybrid MPI+PGAS programming (MPI + OpenSHMEM, MPI + UPC, CAF, UPC++, ) Integrated Support for GPGPUs Energy-Awareness InfiniBand Network Analysis and Monitoring (INAM)

40 OFA (March 17) 4 Overview of OSU INAM A network monitoring and analysis tool that is capable of analyzing traffic on the InfiniBand network with inputs from the MPI runtime Monitors IB clusters in real time by querying various subnet management entities and gathering input from the MPI runtimes OSU INAM v.9.1 released on 5/13/16 Significant enhancements to user interface to enable scaling to clusters with thousands of nodes Improve database insert times by using 'bulk inserts Capability to look up list of nodes communicating through a network link Capability to classify data flowing over a network link at job level and process level granularity in conjunction with MVAPICH2-X 2.2rc1 Best practices guidelines for deploying OSU INAM on different clusters Capability to analyze and profile node-level, job-level and process-level activities for MPI communication Point-to-Point, Collectives and RMA Ability to filter data based on type of counters using drop down list Remotely monitor various metrics of MPI processes at user specified granularity "Job Page" to display jobs in ascending/descending order of various performance metrics in conjunction with MVAPICH2-X Visualize the data transfer happening in a live or historical fashion for entire network, job or set of nodes

41 OSU INAM Features --- Clustered View (1,879 nodes, 212 switches, 4,377 network links) Finding Routes Between Nodes Show network topology of large clusters Visualize traffic pattern on different links Quickly identify congested links/links in error state See the history unfold play back historical state of the network OFA (March 17) 41

42 OSU INAM Features (Cont.) Job level view Visualizing a Job (5 Nodes) Show different network metrics (load, error, etc.) for any live job Play back historical data for completed jobs to identify bottlenecks Node level view - details per process or per node CPU utilization for each rank/node Bytes sent/received for MPI operations (pt-to-pt, collective, RMA) Network metrics (e.g. XmitDiscard, RcvError) per rank/node Estimated Process Level Link Utilization Estimated Link Utilization view Classify data flowing over a network link at different granularity in conjunction with MVAPICH2-X 2.2rc1 Job level and Process level OFA (March 17) 42

43 Major Computing Categories Scientific Computing Message Passing Interface (MPI), including MPI + OpenMP, is the Dominant Programming Model Many discussions towards Partitioned Global Address Space (PGAS) UPC, OpenSHMEM, CAF, UPC++ etc. Hybrid Programming: MPI + PGAS (OpenSHMEM, UPC) Deep Learning Caffe, CNTK, TensorFlow, and many more OFA (March 17) 43

44 Deep Learning and MPI: State-of-the-art Deep Learning is going through a resurgence Excellent accuracy for deep/convolutional neural networks Public availability of versatile datasets like MNIST, CIFAR, and ImageNet Widespread popularity of accelerators like Nvidia GPUs DL frameworks and applications Caffe, Microsoft CNTK, Google TensorFlow and many more.. Most of the frameworks are exploiting GPUs to accelerate training Diverse range of applications Image Recognition, Cancer Detection, Self-Driving Cars, Speech Processing etc. Can MPI runtimes like MVAPICH2 provide efficient support for Deep Learning workloads? MPI runtimes typically deal with relatively small-sizes message (order of kilobytes) CPU-based communication buffers Relative Search Interest Deep Learning - Google Trends Years Deep Learning - Google Trends OFA (March 17) 44

45 Deep Learning: New Challenges for MPI Runtimes Deep Learning frameworks are a different game altogether Unusually large message sizes (order of megabytes) Most communication based on GPU buffers How to address these newer requirements? GPU-specific Communication Libraries (NCCL) NVidia's NCCL library provides inter-gpu communication CUDA-Aware MPI (MVAPICH2-GDR) Provides support for GPU-based communication Can we exploit CUDA-Aware MPI and NCCL to support Deep Learning applications? Hierarchical Communication (Knomial + NCCL ring) OFA (March 17) 45

46 Efficient Broadcast: MVAPICH2-GDR and NCCL NCCL has some limitations Only works for a single node, thus, no scale-out on multiple nodes Degradation across IOH (socket) for scale-up (within a node) We propose optimized MPI_Bcast Communication of very large GPU buffers (order of megabytes) Scale-out on large number of dense multi-gpu nodes Hierarchical Communication that efficiently exploits: K 32K 256K 2M 16M 128M 2 CUDA-Aware MPI_Bcast in MV2-GDR 1 NCCL Broadcast primitive Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning, A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda, Number of GPUs The 23rd European MPI Users' Group Meeting (EuroMPI 16), Sep 216 [Best Paper Runner-Up] Performance Benefits: Microsoft CNTK DL framework (25% avg. improvement ) OFA (March 17) 46 Latency (us) Log Scale Time (seconds) 3 MV2-GDR Message Size MV2-GDR MV2-GDR-Opt Performance Benefits: OSU Micro-benchmarks MV2-GDR-Opt 1x

47 Large Message Optimized Collectives for Deep Learning MV2-GDR provides optimized collectives for large message sizes Optimized Reduce, Allreduce, and Bcast Good scaling with large number of GPUs Available with MVAPICH2- GDR 2.2GA Latency (ms) Latency (ms) Latency (ms) Reduce 192 GPUs Message Size (MB) Allreduce 64 GPUs Message Size (MB) Bcast 64 GPUs Message Size (MB) No. of GPUs OFA (March 17) 47 Latency (ms) Latency (ms) Latency (ms) Reduce 64 MB No. of GPUs Allreduce MB No. of GPUs Bcast 128 MB

48 OSU-Caffe: Scalable Deep Learning Caffe : A flexible and layered Deep Learning framework. Benefits and Weaknesses Multi-GPU Training within a single node Performance degradation for GPUs across different sockets Limited Scale-out OSU-Caffe: MPI-based Parallel Training Enable Scale-up (within a node) and Scale-out (across multi-gpu nodes) network on ImageNet dataset Awan, K. Hamidouche, J. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU Clusters, PPoPP, Sep 217 OSU-Caffe is publicly available from: Training Time (seconds) GoogLeNet (ImageNet) on 128 GPUs 5 Invalid use case No. of GPUs Caffe OSU-Caffe (124) OSU-Caffe (248) OFA (March 17) 48

49 OFA (March 17) 49 MVAPICH2 Plans for Exascale Performance and Memory scalability toward 1M cores Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF ) MPI + Task* Enhanced Optimization for GPU Support and Accelerators Enhanced communication schemes for upcoming architectures Knights Landing with MCDRAM* NVLINK* CAPI* Extended topology-aware collectives Extended Energy-aware designs and Virtualization Support Extended Support for MPI Tools Interface (as in MPI 3.1) Extended Checkpoint-Restart and migration support with SCR Support for * features will be available in future MVAPICH2 Releases

50 OFA (March 17) 5 Two More Presentations Thursday (3/3/17) at 9:am Building Efficient HPC Clouds with MVAPICH2 and RDMA-Hadoop over SR-IOV IB Clusters Friday (3/31/17) at 11:am NVM-aware RDMA-Based Communication and I/O Schemes for High-Perf Big Data Analytics

51 OFA (March 17) 51 Funding Acknowledgments Funding Support by Equipment Support by

52 Personnel Acknowledgments Current Students A. Awan (Ph.D.) R. Biswas (M.S.) M. Bayatpour (Ph.D.) S. Chakraborthy (Ph.D.) C.-H. Chu (Ph.D.) S. Guganani (Ph.D.) J. Hashmi (Ph.D.) H. Javed (Ph.D.) M. Li (Ph.D.) D. Shankar (Ph.D.) H. Shi (Ph.D.) J. Zhang (Ph.D.) Current Research Scientists X. Lu H. Subramoni Current Research Specialist J. Smith Past Students A. Augustine (M.S.) P. Balaji (Ph.D.) S. Bhagvat (M.S.) A. Bhat (M.S.) D. Buntinas (Ph.D.) L. Chai (Ph.D.) B. Chandrasekharan (M.S.) N. Dandapanthula (M.S.) V. Dhanraj (M.S.) T. Gangadharappa (M.S.) K. Gopalakrishnan (M.S.) W. Huang (Ph.D.) W. Jiang (M.S.) J. Jose (Ph.D.) S. Kini (M.S.) M. Koop (Ph.D.) K. Kulkarni (M.S.) R. Kumar (M.S.) S. Krishnamoorthy (M.S.) K. Kandalla (Ph.D.) P. Lai (M.S.) J. Liu (Ph.D.) M. Luo (Ph.D.) A. Mamidala (Ph.D.) G. Marsh (M.S.) V. Meshram (M.S.) A. Moody (M.S.) S. Naravula (Ph.D.) R. Noronha (Ph.D.) X. Ouyang (Ph.D.) S. Pai (M.S.) S. Potluri (Ph.D.) R. Rajachandrasekar (Ph.D.) G. Santhanaraman (Ph.D.) A. Singh (Ph.D.) J. Sridhar (M.S.) S. Sur (Ph.D.) H. Subramoni (Ph.D.) K. Vaidyanathan (Ph.D.) A. Vishnu (Ph.D.) J. Wu (Ph.D.) W. Yu (Ph.D.) Past Research Scientist K. Hamidouche S. Sur Past Programmers D. Bureddy M. Arnold J. Perkins Past Post-Docs D. Banerjee X. Besseron H.-W. Jin J. Lin M. Luo E. Mancini S. Marcarelli J. Vienne H. Wang OFA (March 17) 52

53 OFA (March 17) 53 Thank You! Network-Based Computing Laboratory The MVAPICH2 Project The High-Performance Deep Learning Project

Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X

Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X Intel Nerve Center (SC 7) Presentation Dhabaleswar K (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu Parallel

More information

Designing MPI and PGAS Libraries for Exascale Systems: The MVAPICH2 Approach

Designing MPI and PGAS Libraries for Exascale Systems: The MVAPICH2 Approach Designing MPI and PGAS Libraries for Exascale Systems: The MVAPICH2 Approach Talk at OpenFabrics Workshop (April 216) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

High-Performance and Scalable Designs of Programming Models for Exascale Systems

High-Performance and Scalable Designs of Programming Models for Exascale Systems High-Performance and Scalable Designs of Programming Models for Exascale Systems Keynote Talk at HPCAC, Switzerland (April 217) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Presentation at Mellanox Theater () Dhabaleswar K. (DK) Panda - The Ohio State University panda@cse.ohio-state.edu Outline Communication

More information

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning Talk at Mellanox Theater (SC 16) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Scalability and Performance of MVAPICH2 on OakForest-PACS

Scalability and Performance of MVAPICH2 on OakForest-PACS Scalability and Performance of MVAPICH2 on OakForest-PACS Talk at JCAHPC Booth (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

High-Performance MPI and Deep Learning on OpenPOWER Platform

High-Performance MPI and Deep Learning on OpenPOWER Platform High-Performance MPI and Deep Learning on OpenPOWER Platform Talk at OpenPOWER SUMMIT (Mar 18) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

The MVAPICH2 Project: Latest Developments and Plans Towards Exascale Computing

The MVAPICH2 Project: Latest Developments and Plans Towards Exascale Computing The MVAPICH2 Project: Latest Developments and Plans Towards Exascale Computing Presentation at Mellanox Theatre (SC 16) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning

Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning Efficient and Scalable Multi-Source Streaming Broadcast on Clusters for Deep Learning Ching-Hsiang Chu 1, Xiaoyi Lu 1, Ammar A. Awan 1, Hari Subramoni 1, Jahanzeb Hashmi 1, Bracy Elton 2 and Dhabaleswar

More information

Overview of the MVAPICH Project: Latest Status and Future Roadmap

Overview of the MVAPICH Project: Latest Status and Future Roadmap Overview of the MVAPICH Project: Latest Status and Future Roadmap MVAPICH2 User Group (MUG) Meeting by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning 5th ANNUAL WORKSHOP 209 Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning Hari Subramoni Dhabaleswar K. (DK) Panda The Ohio State University The Ohio State University E-mail:

More information

MVAPICH2 MPI Libraries to Exploit Latest Networking and Accelerator Technologies

MVAPICH2 MPI Libraries to Exploit Latest Networking and Accelerator Technologies MVAPICH2 MPI Libraries to Exploit Latest Networking and Accelerator Technologies Talk at NRL booth (SC 216) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, and Dhabaleswar K. Panda Network-Based Computing Laboratory Department

More information

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries How to Boost the Performance of Your MPI and PGAS s with MVAPICH2 Libraries A Tutorial at the MVAPICH User Group (MUG) Meeting 18 by The MVAPICH Team The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

High Performance MPI Support in MVAPICH2 for InfiniBand Clusters

High Performance MPI Support in MVAPICH2 for InfiniBand Clusters High Performance MPI Support in MVAPICH2 for InfiniBand Clusters A Talk at NVIDIA Booth (SC 11) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

High-Performance Training for Deep Learning and Computer Vision HPC

High-Performance Training for Deep Learning and Computer Vision HPC High-Performance Training for Deep Learning and Computer Vision HPC Panel at CVPR-ECV 18 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning Talk at Mellanox booth (SC 218) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Overview of the MVAPICH Project: Latest Status and Future Roadmap

Overview of the MVAPICH Project: Latest Status and Future Roadmap Overview of the MVAPICH Project: Latest Status and Future Roadmap MVAPICH2 User Group (MUG) Meeting by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Designing HPC, Big Data, and Deep Learning Middleware for Exascale Systems: Challenges and Opportunities

Designing HPC, Big Data, and Deep Learning Middleware for Exascale Systems: Challenges and Opportunities Designing HPC, Big Data, and Deep Learning Middleware for Exascale Systems: Challenges and Opportunities DHABALESWAR K PANDA DK Panda is a Professor and University Distinguished Scholar of Computer Science

More information

High-Performance Broadcast for Streaming and Deep Learning

High-Performance Broadcast for Streaming and Deep Learning High-Performance Broadcast for Streaming and Deep Learning Ching-Hsiang Chu chu.368@osu.edu Department of Computer Science and Engineering The Ohio State University OSU Booth - SC17 2 Outline Introduction

More information

High-performance and Scalable MPI+X Library for Emerging HPC Clusters & Cloud Platforms

High-performance and Scalable MPI+X Library for Emerging HPC Clusters & Cloud Platforms High-performance and Scalable MPI+X Library for Emerging HPC Clusters & Cloud Platforms Talk at Intel HPC Developer Conference (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters Exploiting InfiniBand and Direct Technology for High Performance Collectives on Clusters Ching-Hsiang Chu chu.368@osu.edu Department of Computer Science and Engineering The Ohio State University OSU Booth

More information

Supporting PGAS Models (UPC and OpenSHMEM) on MIC Clusters

Supporting PGAS Models (UPC and OpenSHMEM) on MIC Clusters Supporting PGAS Models (UPC and OpenSHMEM) on MIC Clusters Presentation at IXPUG Meeting, July 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X

Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X IXPUG 7 PresentaNon J. Hashmi, M. Li, H. Subramoni and DK Panda The Ohio State University E-mail: {hashmi.29,li.292,subramoni.,panda.2}@osu.edu

More information

Support Hybrid MPI+PGAS (UPC/OpenSHMEM/CAF) Programming Models through a Unified Runtime: An MVAPICH2-X Approach

Support Hybrid MPI+PGAS (UPC/OpenSHMEM/CAF) Programming Models through a Unified Runtime: An MVAPICH2-X Approach Support Hybrid MPI+PGAS (UPC/OpenSHMEM/CAF) Programming Models through a Unified Runtime: An MVAPICH2-X Approach Talk at OSC theater (SC 15) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail:

More information

Scaling with PGAS Languages

Scaling with PGAS Languages Scaling with PGAS Languages Panel Presentation at OFA Developers Workshop (2013) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Addressing Emerging Challenges in Designing HPC Runtimes: Energy-Awareness, Accelerators and Virtualization

Addressing Emerging Challenges in Designing HPC Runtimes: Energy-Awareness, Accelerators and Virtualization Addressing Emerging Challenges in Designing HPC Runtimes: Energy-Awareness, Accelerators and Virtualization Talk at HPCAC-Switzerland (Mar 16) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail:

More information

Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters

Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters Designing High Performance Heterogeneous Broadcast for Streaming Applications on Clusters 1 Ching-Hsiang Chu, 1 Khaled Hamidouche, 1 Hari Subramoni, 1 Akshay Venkatesh, 2 Bracy Elton and 1 Dhabaleswar

More information

High-Performance MPI Library with SR-IOV and SLURM for Virtualized InfiniBand Clusters

High-Performance MPI Library with SR-IOV and SLURM for Virtualized InfiniBand Clusters High-Performance MPI Library with SR-IOV and SLURM for Virtualized InfiniBand Clusters Talk at OpenFabrics Workshop (April 2016) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

The MVAPICH2 Project: Pushing the Frontier of InfiniBand and RDMA Networking Technologies Talk at OSC/OH-TECH Booth (SC 15)

The MVAPICH2 Project: Pushing the Frontier of InfiniBand and RDMA Networking Technologies Talk at OSC/OH-TECH Booth (SC 15) The MVAPICH2 Project: Pushing the Frontier of InfiniBand and RDMA Networking Technologies Talk at OSC/OH-TECH Booth (SC 15) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Kandalla, Mark Arnold and Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory

More information

Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems

Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems Designing Efficient HPC, Big Data, Deep Learning, and Cloud Computing Middleware for Exascale Systems Keynote Talk at HPCAC China Conference by Dhabaleswar K. (DK) Panda The Ohio State University E mail:

More information

Designing High-Performance MPI Libraries for Multi-/Many-core Era

Designing High-Performance MPI Libraries for Multi-/Many-core Era Designing High-Performance MPI Libraries for Multi-/Many-core Era Talk at IXPUG-Fall Conference (September 18) J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni and D. K Panda The Ohio State University

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K.

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda Department of Computer Science and Engineering The Ohio

More information

Designing Shared Address Space MPI libraries in the Many-core Era

Designing Shared Address Space MPI libraries in the Many-core Era Designing Shared Address Space MPI libraries in the Many-core Era Jahanzeb Hashmi hashmi.29@osu.edu (NBCL) The Ohio State University Outline Introduction and Motivation Background Shared-memory Communication

More information

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning GPU Technology Conference GTC 217 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Overview of the MVAPICH Project: Latest Status and Future Roadmap

Overview of the MVAPICH Project: Latest Status and Future Roadmap Overview of the MVAPICH Project: Latest Status and Future Roadmap MVAPICH2 User Group (MUG) Meeting by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks

GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks Presented By : Esthela Gallardo Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, Jonathan Perkins, Hari Subramoni,

More information

Job Startup at Exascale:

Job Startup at Exascale: Job Startup at Exascale: Challenges and Solutions Hari Subramoni The Ohio State University http://nowlab.cse.ohio-state.edu/ Current Trends in HPC Supercomputing systems scaling rapidly Multi-/Many-core

More information

CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters

CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters Ching-Hsiang Chu, Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan and Dhabaleswar K. (DK) Panda Speaker: Sourav Chakraborty

More information

How to Tune and Extract Higher Performance with MVAPICH2 Libraries?

How to Tune and Extract Higher Performance with MVAPICH2 Libraries? How to Tune and Extract Higher Performance with MVAPICH2 Libraries? An XSEDE ECSS webinar by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters

Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Designing HPC, Deep Learning, and Cloud Middleware for Exascale Systems

Designing HPC, Deep Learning, and Cloud Middleware for Exascale Systems Designing HPC, Deep Learning, and Cloud Middleware for Exascale Systems Keynote Talk at HPCAC Stanford Conference (Feb 18) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth

Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth by D.K. Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda Outline Overview of MVAPICH2-GPU

More information

MVAPICH2 and MVAPICH2-MIC: Latest Status

MVAPICH2 and MVAPICH2-MIC: Latest Status MVAPICH2 and MVAPICH2-MIC: Latest Status Presentation at IXPUG Meeting, July 214 by Dhabaleswar K. (DK) Panda and Khaled Hamidouche The Ohio State University E-mail: {panda, hamidouc}@cse.ohio-state.edu

More information

High-Performance and Scalable Designs of Programming Models for Exascale Systems Talk at HPC Advisory Council Stanford Conference (2015)

High-Performance and Scalable Designs of Programming Models for Exascale Systems Talk at HPC Advisory Council Stanford Conference (2015) High-Performance and Scalable Designs of Programming Models for Exascale Systems Talk at HPC Advisory Council Stanford Conference (215) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

The MVAPICH2 Project: Latest Developments and Plans Towards Exascale Computing

The MVAPICH2 Project: Latest Developments and Plans Towards Exascale Computing The MVAPICH2 Project: Latest Developments and Plans Towards Exascale Computing Presentation at OSU Booth (SC 18) by Hari Subramoni The Ohio State University E-mail: subramon@cse.ohio-state.edu http://www.cse.ohio-state.edu/~subramon

More information

MVAPICH2-GDR: Pushing the Frontier of MPI Libraries Enabling GPUDirect Technologies

MVAPICH2-GDR: Pushing the Frontier of MPI Libraries Enabling GPUDirect Technologies MVAPICH2-GDR: Pushing the Frontier of MPI Libraries Enabling GPUDirect Technologies GPU Technology Conference (GTC 218) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Overview of MVAPICH2 and MVAPICH2- X: Latest Status and Future Roadmap

Overview of MVAPICH2 and MVAPICH2- X: Latest Status and Future Roadmap Overview of MVAPICH2 and MVAPICH2- X: Latest Status and Future Roadmap MVAPICH2 User Group (MUG) MeeKng by Dhabaleswar K. (DK) Panda The Ohio State University E- mail: panda@cse.ohio- state.edu h

More information

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy and D. K. Panda Presented by Dr. Xiaoyi

More information

Designing Convergent HPC, Deep Learning and Big Data Analytics Software Stacks for Exascale Systems

Designing Convergent HPC, Deep Learning and Big Data Analytics Software Stacks for Exascale Systems Designing Convergent HPC, Deep Learning and Big Data Analytics Software Stacks for Exascale Systems Talk at HPCAC-AI Switzerland Conference (April 19) by Dhabaleswar K. (DK) Panda The Ohio State University

More information

MVAPICH2 Project Update and Big Data Acceleration

MVAPICH2 Project Update and Big Data Acceleration MVAPICH2 Project Update and Big Data Acceleration Presentation at HPC Advisory Council European Conference 212 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Designing Software Libraries and Middleware for Exascale Systems: Opportunities and Challenges

Designing Software Libraries and Middleware for Exascale Systems: Opportunities and Challenges Designing Software Libraries and Middleware for Exascale Systems: Opportunities and Challenges Talk at Brookhaven National Laboratory (Oct 214) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail:

More information

Coupling GPUDirect RDMA and InfiniBand Hardware Multicast Technologies for Streaming Applications

Coupling GPUDirect RDMA and InfiniBand Hardware Multicast Technologies for Streaming Applications Coupling GPUDirect RDMA and InfiniBand Hardware Multicast Technologies for Streaming Applications GPU Technology Conference GTC 2016 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Communication Frameworks for HPC and Big Data

Communication Frameworks for HPC and Big Data Communication Frameworks for HPC and Big Data Talk at HPC Advisory Council Spain Conference (215) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Designing HPC, Big Data, Deep Learning, and Cloud Middleware for Exascale Systems: Challenges and Opportunities

Designing HPC, Big Data, Deep Learning, and Cloud Middleware for Exascale Systems: Challenges and Opportunities Designing HPC, Big Data, Deep Learning, and Cloud Middleware for Exascale Systems: Challenges and Opportunities Keynote Talk at SEA Symposium (April 18) by Dhabaleswar K. (DK) Panda The Ohio State University

More information

MVAPICH2: A High Performance MPI Library for NVIDIA GPU Clusters with InfiniBand

MVAPICH2: A High Performance MPI Library for NVIDIA GPU Clusters with InfiniBand MVAPICH2: A High Performance MPI Library for NVIDIA GPU Clusters with InfiniBand Presentation at GTC 213 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Exploiting Computation and Communication Overlap in MVAPICH2 and MVAPICH2-GDR MPI Libraries

Exploiting Computation and Communication Overlap in MVAPICH2 and MVAPICH2-GDR MPI Libraries Exploiting Computation and Communication Overlap in MVAPICH2 and MVAPICH2-GDR MPI Libraries Talk at Overlapping Communication with Computation Symposium (April 18) by Dhabaleswar K. (DK) Panda The Ohio

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda Department of Computer Science and Engineering

More information

MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits

MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits Ashish Kumar Singh, Sreeram Potluri, Hao Wang, Krishna Kandalla, Sayantan Sur, and Dhabaleswar K. Panda Network-Based

More information

Optimized Non-contiguous MPI Datatype Communication for GPU Clusters: Design, Implementation and Evaluation with MVAPICH2

Optimized Non-contiguous MPI Datatype Communication for GPU Clusters: Design, Implementation and Evaluation with MVAPICH2 Optimized Non-contiguous MPI Datatype Communication for GPU Clusters: Design, Implementation and Evaluation with MVAPICH2 H. Wang, S. Potluri, M. Luo, A. K. Singh, X. Ouyang, S. Sur, D. K. Panda Network-Based

More information

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries A Tutorial at MVAPICH User Group 217 by The MVAPICH Team The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Designing OpenSHMEM and Hybrid MPI+OpenSHMEM Libraries for Exascale Systems: MVAPICH2-X Experience

Designing OpenSHMEM and Hybrid MPI+OpenSHMEM Libraries for Exascale Systems: MVAPICH2-X Experience Designing OpenSHMEM and Hybrid MPI+OpenSHMEM Libraries for Exascale Systems: MVAPICH2-X Experience Talk at OpenSHMEM Workshop (August 216) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail:

More information

Accelerating Big Data Processing with RDMA- Enhanced Apache Hadoop

Accelerating Big Data Processing with RDMA- Enhanced Apache Hadoop Accelerating Big Data Processing with RDMA- Enhanced Apache Hadoop Keynote Talk at BPOE-4, in conjunction with ASPLOS 14 (March 2014) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Job Startup at Exascale: Challenges and Solutions

Job Startup at Exascale: Challenges and Solutions Job Startup at Exascale: Challenges and Solutions Sourav Chakraborty Advisor: Dhabaleswar K (DK) Panda The Ohio State University http://nowlab.cse.ohio-state.edu/ Current Trends in HPC Tremendous increase

More information

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management SigHPC BigData BoF (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

In the multi-core age, How do larger, faster and cheaper and more responsive memory sub-systems affect data management? Dhabaleswar K.

In the multi-core age, How do larger, faster and cheaper and more responsive memory sub-systems affect data management? Dhabaleswar K. In the multi-core age, How do larger, faster and cheaper and more responsive sub-systems affect data management? Panel at ADMS 211 Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory Department

More information

Intra-MIC MPI Communication using MVAPICH2: Early Experience

Intra-MIC MPI Communication using MVAPICH2: Early Experience Intra-MIC MPI Communication using MVAPICH: Early Experience Sreeram Potluri, Karen Tomko, Devendar Bureddy, and Dhabaleswar K. Panda Department of Computer Science and Engineering Ohio State University

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Gilad Shainer 2nd Annual MVAPICH User Group (MUG) Meeting, August 2014 Complete High-Performance Scalable Interconnect Infrastructure Comprehensive End-to-End Software Accelerators

More information

Unifying UPC and MPI Runtimes: Experience with MVAPICH

Unifying UPC and MPI Runtimes: Experience with MVAPICH Unifying UPC and MPI Runtimes: Experience with MVAPICH Jithin Jose Miao Luo Sayantan Sur D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University,

More information

How to Boost the Performance of your MPI and PGAS Applications with MVAPICH2 Libraries?

How to Boost the Performance of your MPI and PGAS Applications with MVAPICH2 Libraries? How to Boost the Performance of your MPI and PGAS Applications with MVAPICH2 Libraries? A Tutorial at MVAPICH User Group Meeting 216 by The MVAPICH Group The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Programming Models for Exascale Systems

Programming Models for Exascale Systems Programming Models for Exascale Systems Talk at HPC Advisory Council Stanford Conference and Exascale Workshop (214) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

The Future of Supercomputer Software Libraries

The Future of Supercomputer Software Libraries The Future of Supercomputer Software Libraries Talk at HPC Advisory Council Israel Supercomputing Conference by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Smart Interconnect for Next Generation HPC Platforms Gilad Shainer, August 2016, 4th Annual MVAPICH User Group (MUG) Meeting Mellanox Connects the World s Fastest Supercomputer

More information

Designing and Building Efficient HPC Cloud with Modern Networking Technologies on Heterogeneous HPC Clusters

Designing and Building Efficient HPC Cloud with Modern Networking Technologies on Heterogeneous HPC Clusters Designing and Building Efficient HPC Cloud with Modern Networking Technologies on Heterogeneous HPC Clusters Jie Zhang Dr. Dhabaleswar K. Panda (Advisor) Department of Computer Science & Engineering The

More information

High Performance Migration Framework for MPI Applications on HPC Cloud

High Performance Migration Framework for MPI Applications on HPC Cloud High Performance Migration Framework for MPI Applications on HPC Cloud Jie Zhang, Xiaoyi Lu and Dhabaleswar K. Panda {zhanjie, luxi, panda}@cse.ohio-state.edu Computer Science & Engineering Department,

More information

Unified Runtime for PGAS and MPI over OFED

Unified Runtime for PGAS and MPI over OFED Unified Runtime for PGAS and MPI over OFED D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA Outline Introduction

More information

INAM 2 : InfiniBand Network Analysis and Monitoring with MPI

INAM 2 : InfiniBand Network Analysis and Monitoring with MPI INAM 2 : InfiniBand Network Analysis and Monitoring with MPI H. Subramoni, A. A. Mathews, M. Arnold, J. Perkins, X. Lu, K. Hamidouche, and D. K. Panda Department of Computer Science and Engineering The

More information

Accelerating HPL on Heterogeneous GPU Clusters

Accelerating HPL on Heterogeneous GPU Clusters Accelerating HPL on Heterogeneous GPU Clusters Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda Outline

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

Solutions for Scalable HPC

Solutions for Scalable HPC Solutions for Scalable HPC Scot Schultz, Director HPC/Technical Computing HPC Advisory Council Stanford Conference Feb 2014 Leading Supplier of End-to-End Interconnect Solutions Comprehensive End-to-End

More information

MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구

MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구 MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구 Leading Supplier of End-to-End Interconnect Solutions Analyze Enabling the Use of Data Store ICs Comprehensive End-to-End InfiniBand and Ethernet Portfolio

More information

An Assessment of MPI 3.x (Part I)

An Assessment of MPI 3.x (Part I) An Assessment of MPI 3.x (Part I) High Performance MPI Support for Clouds with IB and SR-IOV (Part II) Talk at HP-CAST 25 (Nov 2015) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures

Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures Talk at Bench 2018 by Xiaoyi Lu The Ohio State University E-mail: luxi@cse.ohio-state.edu http://www.cse.ohio-state.edu/~luxi

More information

Enabling Efficient Use of UPC and OpenSHMEM PGAS Models on GPU Clusters. Presented at GTC 15

Enabling Efficient Use of UPC and OpenSHMEM PGAS Models on GPU Clusters. Presented at GTC 15 Enabling Efficient Use of UPC and OpenSHMEM PGAS Models on GPU Clusters Presented at Presented by Dhabaleswar K. (DK) Panda The Ohio State University E- mail: panda@cse.ohio- state.edu hcp://www.cse.ohio-

More information

Optimizing & Tuning Techniques for Running MVAPICH2 over IB

Optimizing & Tuning Techniques for Running MVAPICH2 over IB Optimizing & Tuning Techniques for Running MVAPICH2 over IB Talk at 2nd Annual IBUG (InfiniBand User's Group) Workshop (214) by Hari Subramoni The Ohio State University E-mail: subramon@cse.ohio-state.edu

More information

Software Libraries and Middleware for Exascale Systems

Software Libraries and Middleware for Exascale Systems Software Libraries and Middleware for Exascale Systems Talk at HPC Advisory Council China Workshop (212) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

Exploiting GPUDirect RDMA in Designing High Performance OpenSHMEM for NVIDIA GPU Clusters

Exploiting GPUDirect RDMA in Designing High Performance OpenSHMEM for NVIDIA GPU Clusters 2015 IEEE International Conference on Cluster Computing Exploiting GPUDirect RDMA in Designing High Performance OpenSHMEM for NVIDIA GPU Clusters Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan,

More information

High Performance Computing

High Performance Computing High Performance Computing Dror Goldenberg, HPCAC Switzerland Conference March 2015 End-to-End Interconnect Solutions for All Platforms Highest Performance and Scalability for X86, Power, GPU, ARM and

More information

Designing High Performance Communication Middleware with Emerging Multi-core Architectures

Designing High Performance Communication Middleware with Emerging Multi-core Architectures Designing High Performance Communication Middleware with Emerging Multi-core Architectures Dhabaleswar K. (DK) Panda Department of Computer Science and Engg. The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

UCX: An Open Source Framework for HPC Network APIs and Beyond

UCX: An Open Source Framework for HPC Network APIs and Beyond UCX: An Open Source Framework for HPC Network APIs and Beyond Presented by: Pavel Shamis / Pasha ORNL is managed by UT-Battelle for the US Department of Energy Co-Design Collaboration The Next Generation

More information

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS Adithya Bhat, Nusrat Islam, Xiaoyi Lu, Md. Wasi- ur- Rahman, Dip: Shankar, and Dhabaleswar K. (DK) Panda Network- Based Compu2ng

More information

Accelerate Big Data Processing (Hadoop, Spark, Memcached, & TensorFlow) with HPC Technologies

Accelerate Big Data Processing (Hadoop, Spark, Memcached, & TensorFlow) with HPC Technologies Accelerate Big Data Processing (Hadoop, Spark, Memcached, & TensorFlow) with HPC Technologies Talk at Intel HPC Developer Conference 2017 (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University

More information

High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters

High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters Presentation at Mellanox Theatre (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani

Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani The Ohio State University E-mail: gugnani.2@osu.edu http://web.cse.ohio-state.edu/~gugnani/ Network Based Computing Laboratory SC 17 2 Neuroscience:

More information