# Goals of Today s Lecture. Adaptors Communicating

Size: px
Start display at page:

Transcription

3 4-bit/5-bit (100Mb/s ) Goal: address inefficiency of Manchester encoding, while avoiding long periods of no transition Solution: Use 5 bits to encode every sequence of four bits such that No 5 bit code has more than one leading 0 or two trailing 0 s Use NRZI to then encode the 5 bit codes Efficiency is 80% 5 Minute Break 4-bit 5-bit 4-bit 5-bit Questions Before We Proceed? 14 Framing Specify how blocks of data are transmitted between two nodes connected on the same physical media Service provided by the data link layer Implemented by the network adaptor Challenges Decide when a frame starts & ends How hard can that be? Simple Approach to Framing: Counting Sender: begin frame with byte(s) giving length Receiver: extract this length and count 53! Frame content! 53 bytes of data 21! Frame content! 21 bytes of data How can this go wrong? On occasion, the count gets corrupted 58! Frame content! 21! Frame 94! content! Bogus new frame length; bytes of data misdelivered desynchronization Framing: Sentinels Delineate frame with special pattern Both can be the same, e.g., Problem: what if sentinel occurs within frame? Solution: escape the special characters Sender: insert a 0 after five 1s in data portion Receiver: when it sees five 1s makes a decision on next two bits: ! Frame content! ! If next bit 0 (this is a stuffed bit), remove it If next bit, look at next bit If 0, this is end of frame (receiver has seen ) If 1 this is an error, discard frame (receiver as seen ) Example Sender: stuff bits Receiver: identify & remove stuffed bits Five 1s insert a 0 Five 1s and next bit 0 remove it Five 1s, and next two bits 10 end/start frame

4 -Based Framing (SONET) SONET (Synchronous Optical NETwork) SONET endpoints maintain clock synchronization Frames have fixed size (e.g., 125 µsec) No ambiguity about start & stop of frame But may be wasteful NRZ encoding 19 To avoid long sequences of 0 s or 1 s payload is XORed with special 127-bit pattern w/ many 0-1/1-0 transitions What problem can that lead to? Error Detection Errors are unavoidable Electrical interference, thermal noise, etc. Error detection Transmit extra (redundant) information 20 Use redundant information to detect errors Extreme case: send two copies of the data Trade-off: accuracy vs. overhead Techniques for detecting errors Parity checking Checksum Cyclic Redundancy Check (CRC) Error Detection: Parity Add an extra bit to a 7-bit code Odd parity: ensure an odd number of 1s E.g., becomes Even parity: ensure an even number of 1s 21 E.g., becomes Overhead: 1/7 th Power: Detects all 1-bit errors But: can t detect an even number of bit errors in a word Can use more bits to gain more power Error Detection Techniques, con t 22 Internet Checksum Treat data as a sequence of 16-bit words Compute ones-complement sum of all the 16-bit words Intermingles integrity of a large group of data Overhead: 16 bits Power: Catches 1-bit errors, most other errors But not, for example, same bit flipped in two different words Cyclic Redundancy Check (CRC) Family of quite powerful, principled algorithms Detects wide range of bit corruption patterns seen in practice Used by most modern link layers See K&R Section Point-to-Point vs. Broadcast Media Point-to-point: dedicated pairwise communication Long-distance fiber link Point-to-point link between switch and host Broadcast: shared wire or medium Traditional wireless LAN Multiple Access Algorithm Single shared broadcast channel Avoid having multiple nodes speaking at once Otherwise, collisions lead to garbled data Multiple access mechanism Distributed algorithm for sharing the channel Algorithm determines which node can transmit Classes of techniques Channel partitioning: divide channel into pieces Taking turns: scheme for trading off who gets to transmit Random access: allow collisions, and then recover Optimizes for the common case of only one sender

5 Channel Partitioning: TDMA TDMA: Time Division Multiple Access Access to channel in "rounds" Each station gets fixed length slot in each round Time-slot length is packet transmission time Unused slots go idle Example: 6-station LAN with slots 0, 3, and 4 Channel Partitioning: FDMA FDMA: Frequency Division Multiple Access Channel spectrum divided into frequency bands Each station assigned fixed frequency band Unused transmission time in frequency bands go idle Example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle Rounds Slots = FDM cable frequency bands time Taking Turns MAC protocols data 27 Polling Master node invites slave nodes to transmit in turn data poll master Concerns: Polling overhead Latency slaves Single point of failure (master) Token passing Control token passed from one node to next sequentially Node must have token to send Concerns: Token overhead Latency Single point of failure (token) Random Access Protocols When node has packet to send Transmit at full channel data rate No a priori coordination among nodes Two or more transmitting nodes collision 28 Data lost Random access MAC protocol specifies: How to detect collisions How to recover from collisions Examples ALOHA and Slotted ALOHA CSMA, CSMA/CD, CSMA/CA Key Ideas of Random Access Where it all Started: AlohaNet Carrier sense 29 Listen before speaking, and don t interrupt Checking if someone else is already sending data and waiting till the other node is done Collision detection If someone else starts talking at the same time, stop Realizing when two nodes are transmitting at once by detecting that the data on the wire is garbled Randomness Don t start talking again right away Waiting for a random time before trying again Norm Abramson left Stanford in search of surfing Set up first radio-based data communication system connecting the Hawaiian islands Hub at Alohanet HQ (Univ. Hawaii, Oahu) Other sites spread among the islands Had two radio channels: Random access: sites sent data on this channel Broadcast: only used by hub to rebroadcast incoming data 30 5

6 Slotted ALOHA Slotted ALOHA Assumptions All frames same size Time divided into equal slots (time to transmit a frame) Nodes are synchronized Nodes begin to transmit frames only at start of slots No carrier sense If two or more nodes transmit, all nodes detect collision Operation When node obtains fresh frame, transmits in next slot No collision: node can send new frame in next slot Collision: node retransmits frame in each subsequent slot with probability p until success Pros Single active node can continuously transmit at full rate of channel Highly decentralized: only slots in nodes need to be in sync Simple Cons Collisions, wasting slots Idle slots Nodes may be able to detect collision in less than time to transmit packet synchronization Efficiency of Slotted Aloha CSMA (Carrier Sense Multiple Access) What is the maximum fraction of successful transmissions? Suppose N stations have packets to send Each transmits in slot with probability p Probability of successful transmission S is (very approximate analysis!): by a particular node i: S i = p (1-p) (N-1) by exactly one of N nodes S = Prob (only one transmits) = N p (1-p) (N-1) <= 1/e = 0.37 but must have p proportional to 1/N 33 Collisions hurt the efficiency of ALOHA protocol 34 Utilization 1/e 37% CSMA: listen before transmit If channel sensed idle: transmit entire frame If channel sensed busy, defer transmission Human analogy: don t interrupt others! CSMA Collisions CSMA/CD (Collision Detection) Collisions can still occur: propagation delay means two nodes may not hear each other s transmission in time. At time t 1, D still hasn t heard B s signal sent at the earlier time t 0, so D goes ahead and transmits: failure of carrier sense. Collision: entire packet transmission time wasted 35 CSMA/CD: carrier sensing, deferral as in CSMA 36 Collisions detected within short time Colliding transmissions aborted, reducing wastage Collision detection Easy in wired LANs: measure signal strengths, compare transmitted, received signals Difficult in wireless LANs Reception shut off while transmitting Even if on, might not be able to hear the other sender, even though the receiver can Leads to use of collision avoidance instead 6

7 CSMA/CD Collision Detection Both B and D can tell that collision occurred. This lets them (1) know that they need to resend the frame, and (2) recognize that there s contention and adopt a strategy for dealing with it. Note: for this to work, we need restrictions on minimum frame size and maximum distance 37 Three Ways to Share the Media Channel partitioning MAC protocols (TDMA, FDMA): 38 Share channel efficiently and fairly at high load Inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node! Taking turns protocols Eliminates empty slots without causing collisions Overhead in acquiring the token Vulnerable to failures (e.g., failed node or lost token) Random access MAC protocols Efficient at low load: single node can fully utilize channel High load: collision overhead Next Lecture + bridges/hubs/switches K&R 5.5,

### Message, Segment, Packet, and Frame Link-layer services Encoding, framing, error detection, transmission control Error correction and flow control

Links EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/ Announcements Homework

Links 1 Goals of Today s Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared media Channel partitioning Taking turns Random access Shared

### Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Links Reading: Chapter 2 CS 375: Computer Networks Thomas Bressoud 1 Goals of Todayʼs Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared

Your Future?! Who is planning to go to grad school (in CS)? Links and LANs! Who is interested in research possibilities? EE 122: Intro to Communication Networks Fall 2010 (MW 4-5:30 in 101 Barker) Scott

### CS 455/555 Intro to Networks and Communications. Link Layer

CS 455/555 Intro to Networks and Communications Link Layer Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu http://www.cs.odu.edu/~mweigle/cs455-s13 1 Link Layer

### The Link Layer and LANs. Chapter 6: Link layer and LANs

The Link Layer and LANs EECS3214 2018-03-14 4-1 Chapter 6: Link layer and LANs our goals: understand principles behind link layer services: error detection, correction sharing a broadcast channel: multiple

### Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007. All material copyright 1996-2007 J.F Kurose and K.W. Ross, All Rights

### Data Link Layer: Overview, operations

Data Link Layer: Overview, operations Chapter 3 1 Outlines 1. Data Link Layer Functions. Data Link Services 3. Framing 4. Error Detection/Correction. Flow Control 6. Medium Access 1 1. Data Link Layer

### ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.4: Multiple Access Protocols Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527

### Data Link Layer: Multi Access Protocols

Digital Communication in the Modern World Data Link Layer: Multi Access Protocols http://www.cs.huji.ac.il/~com1 com1@cs.huji.ac.il Some of the slides have been borrowed from: Computer Networking: A Top

### CSC 4900 Computer Networks: The Link Layer

CSC 4900 Computer Networks: The Link Layer Professor Henry Carter Fall 2017 Last Time We talked about intra-as routing protocols: Which routing algorithm is used in RIP? OSPF? What techniques allow OSPF

### Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과.

Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과 ahn@venus.uos.ac.kr Data Link Layer Goals: understand principles behind data link layer services: error detection, correction sharing a broadcast channel: multiple

### Outline. Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties

Outline Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties Layered Network Architectures - OSI framework descriptions of layers

### CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018

CS 43: Computer Networks 27: Media Access Contd. December 3, 2018 Last Class The link layer provides lots of functionality: addressing, framing, media access, error checking could be used independently

### 1-1. Switching Networks (Fall 2010) EE 586 Communication and. November 8, Lecture 30

EE 586 Communication and Switching Networks (Fall 2010) Lecture 30 November 8, 2010 1-1 Announcements Quiz on Wednesday Next Monday hands-on training on Contiki OS Bring your laptop 4-2 Multiple Access

### CS 43: Computer Networks Media Access. Kevin Webb Swarthmore College November 30, 2017

CS 43: Computer Networks Media Access Kevin Webb Swarthmore College November 30, 2017 Multiple Access Links & Protocols Two classes of links : point-to-point dial-up access link between Ethernet switch,

Chapter 5: Link layer our goals: v understand principles behind link layer services: error detection, correction sharing a broadcast channel: multiple access link layer addressing local area networks:

### Links. COS 461: Computer Networks Spring Mike Freedman h?p://

Links COS 461: Computer Networks Spring 2011 Mike Freedman h?p://www.cs.princeton.edu/courses/archive/spring11/cos461/ 2 Link layer protocols Outline Encoding, framing, error detecjon MulJple access links:

### Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection:

1 Topics 2 LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS Multiple access: CSMA/CD, CSMA/CA, token passing, channelization LAN: characteristics, i basic principles i Protocol architecture Topologies

### CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 16

CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 16 1 Final project demo Please do the demo next week to the TAs. So basically you may need

### Lecture 6. Data Link Layer (cont d) Data Link Layer 1-1

Links Reading: Chapter 2 COS 461: Computer Networks Spring 2009 (MW 1:30 2:50 in COS 105) Mike Freedman hgp://www.cs.princeton.edu/courses/archive/spring09/cos461/ 1 Goals of Today s Lecture Link layer

### Lecture 8 The Data Link Layer part I. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 8 The Data Link Layer part I Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router,

### Lecture 19. Principles behind data link layer services Framing Multiple access protocols

Link Layer Lecture 19 Principles behind data link layer services Framing Multiple access protocols ALOHA *The slides are adapted from ppt slides (in substantially unaltered form) available from Computer

### CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks Link Layer: Intro, Errors, Multiple Access Sec 6.1, 6.2, 6.3 Prof. Lina Battestilli Fall 2017 Chapter 6: Link layer Goals: understand principles behind

### Lecture 8 Link Layer: functionality, error detection, media access algorithm

Lecture 8 Link Layer: functionality, error detection, media access algorithm From Kurose & Ross Book slightly modified by Romaric Duvignau duvignau@chalmers.se Thanks and enjoy! JFK/KWR All material copyright

### Computer Networks. Today. Principles of datalink layer services Multiple access links Adresavimas, ARP LANs Wireless LANs VU MIF CS 1/48 2/48

Computer Networks VU MIF CS 1/48 Today Principles of datalink layer services Multiple access links Adresavimas, ARP LANs Wireless LANs 2/48 1 Link layer: introduction terminology: hosts and routers: nodes

### Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 5 Link Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and can

### CSCD 330 Network Programming

CSCD 330 Network Programming Spring 2018 Lecture 17 Link Layer Hardware and Protocols Who is this? Reading: Chapter 5 in text Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved,

### Physical Layer. Medium Access Links and Protocols. Point-to-Point protocols. Modems: Signaling. Modems Signaling. Srinidhi Varadarajan

P Physical Layer Srinidhi Varadarajan Medium Access Links and Protocols Three types of links : point-to-point (single wire, e.g. PPP, SLIP) broadcast (shared wire or medium; e.g, Ethernet, Wavelan, etc.)

### Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs A note on the use of these ppt slides: All material copyright 1996-2007 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 4 th edition.

Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction

### High Level View. EE 122: Ethernet and Random Access protocols. Medium Access Protocols

High Level View EE 122: Ethernet and 802.11 Ion Stoica September 18, 2002 Goal: share a communication medium among multiple hosts connected to it Problem: arbitrate between connected hosts Solution goals:

### Multiple Access and Spanning Tree

Multiple Access and Spanning Tree EE122 Fall 2012 Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson and other colleagues at Princeton

### Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 6 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

### ECE 158A: Lecture 13. Fall 2015

ECE 158A: Lecture 13 Fall 2015 Random Access and Ethernet! Random Access! Basic idea: Exploit statistical multiplexing Do not avoid collisions, just recover from them When a node has packet to send Transmit

### EE 122: Ethernet and

EE 122: Ethernet and 802.11 Ion Stoica September 18, 2002 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose) High Level View Goal: share a communication medium among multiple hosts

### Ethernet. EE 122: Intro to Communication Networks. Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz

Ethernet EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks

roadcast Links, ddressing and Media ccess Control Message M C Message M Link Layer In a broadcast, there are two additional issues that must be resolved How do the nodes agree on who gets to use the next?

Chapter V: Link Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross Link layer services framing, link access: encapsulate datagram

### Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 5 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

### CMPE 150: Introduction to Computer Networks

CMPE 150: Introduction to Computer Networks Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 18 Project Deliverables: Project demo. Code (documented). Demo schedule: Judith: Monday 03.18

### MULTIPLE ACCESS PROTOCOLS 2. 1

MULTIPLE ACCESS PROTOCOLS AND WIFI 1 MULTIPLE ACCESS PROTOCOLS 2. 1 MULTIPLE ACCESS LINKS, PROTOCOLS Two types of links : point-to-point broadcast (shared wire or medium) POINT-TO-POINT PPP for dial-up

### CC451 Computer Networks

CC451 Computer Networks Lecture 9 Link Layer 5: DataLink Layer 5-1 Chapter 5 Link Layer and LANs A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students,

### Medium Access Control

Medium Access Control Mark Handley UCL Computer Science CS 3035/GZ01 Context: OSI Layer 2, S&K Link Layer email WWW phone...! SMTP HTTP RTP...! TCP UDP!! IP!! ethernet PPP! CSMA async sonet...! copper

### CSCD 330 Network Programming Fall 2012

CSCD 330 Network Programming Fall 2012 Lecture 17 Link Layer Hardware and Protocols Who is this? Reading: Chapter 5 in text Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved,

### Computer Networks Medium Access Control. Mostafa Salehi Fall 2008

Computer Networks Medium Access Control Mostafa Salehi Fall 2008 2008 1 Outline Issues ALOHA Network Ethernet Token Ring Wireless 2 Main Issues Local Area Network (LAN) : Three or more machines are physically

### Multiple Access Links and Protocols

Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

### SC250 Computer Networking I. Link Layer. Prof. Matthias Grossglauser LCA/I&C.

SC250 Computer Networking I Link Layer Prof. Matthias Grossglauser LCA/I&C http://lcawww.epfl.ch 1 Objectives Understand principles behind data link layer services: sharing a broadcast channel: multiple

### CS 4453 Computer Networks Winter

CS 4453 Computer Networks Chapter 2 OSI Network Model 2015 Winter OSI model defines 7 layers Figure 1: OSI model Computer Networks R. Wei 2 The seven layers are as follows: Application Presentation Session

### CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 09 CMSC417 Set 4 1

CSMC 417 Computer Networks Prof. Ashok K Agrawala 2009 Ashok Agrawala Set 4 1 The Data Link Layer 2 Data Link Layer Design Issues Services Provided to the Network Layer Framing Error Control Flow Control

Link Layer: Introduction daptors ommunicating hosts and routers are nodes links connect nodes wired links wireless links layer-2 packet is a frame, encapsulates datagram datagram controller sending host

### Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis

Computer Network Fundamentals Spring 2008 Week 3 MAC Layer Andreas Terzis Outline MAC Protocols MAC Protocol Examples Channel Partitioning TDMA/FDMA Token Ring Random Access Protocols Aloha and Slotted

### CHAPTER 7 MAC LAYER PROTOCOLS. Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College

CHAPTER 7 MAC LAYER PROTOCOLS Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College MEDIUM ACCESS CONTROL - MAC PROTOCOLS When the two stations transmit data

### Link Layer and LANs. CMPS 4750/6750: Computer Networks

Link Layer and LANs CMPS 4750/6750: Computer Networks 1 Outline overview (6.1) multiple access (6.3) link addressing: ARP (6.4.1) a day in the life of a web request (6.7) 2 Link layer: introduction terminology:

### CS162 Operating Systems and Systems Programming Lecture 21. Networking. April 8, 2010 Ion Stoica

CS162 Operating Systems and Systems Programming Lecture 21 Networking April 8, 2010 Ion Stoica http://inst.eecs.berkeley.edu/~cs162 Distributed file systems Authorization Networking Broadcast Goals for

### Master Course Computer Networks IN2097

Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

### Module 10 Data Link Layer CS655! 10-1!

Module 10 Data Link Layer CS655! 10-1! Please note: Most of these slides come from this book. Note their copyright notice below! A note on the use of these ppt slides: We re making these slides freely

### Goals for Today s Class. EE 122: Networks & Protocols. What Global (non-digital) Communication Network Do You Use Every Day?

Goals for Today s Class EE 122: & Protocols Ion Stoica TAs: Junda Liu, DK Moon, David Zats http://inst.eecs.berkeley.edu/~ee122/fa09 (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues

### Random Access. 1. Aloha. 2. Slotted Aloha 3. CSMA 4. CSMA/CD

Random Access 1. Aloha 2. Slotted Aloha 3. CSMA 4. CSMA/CD Background Communication medium B No Collision collision A C Modern Local Area Networks (LANs) operate as follows Users are connected to communication

Chapter V: Link Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross Link layer: introduction terminology: hosts and routers: nodes

### Medium Access Control

Medium Access Control Brad Karp (slides contributed by Kyle Jamieson) UCL Computer Science CS 3035/GZ01 14 th October 2014 Context: OSI Layer 2, S&K Link Layer email WWW phone...! SMTP HTTP RTP...! TCP

### Master Course Computer Networks IN2097

Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Dr. Nils

### Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Five Problems Encoding/decoding Framing Error Detection Error Correction Media Access Five Problems Encoding/decoding Framing

### Computer Network. Direct Link Networks Reliable Transmission. rev /2/2004 1

Computer Network Direct Link Networks Reliable Transmission rev 1.01 24/2/2004 1 Outline Direct link networks (Ch. 2) Encoding Framing Error detection Reliable delivery Media access control Network Adapter

### Chapter 4 Network Layer

Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Network

### Goal and Outline. Computer Networking. What Do We Need? Today s Story Lecture 3: Packet Switched Networks Peter Steenkiste

Goal and Outline 15-441 15-641 Computer Networking Lecture 3: Packet Switched Networks Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15 441 F16 Goal: gain a basic understanding of how you can build a

### transferring datagram from one node data-link layer has responsibility of to adjacent node over a link 5-1 TDTS06 Computer networks

TDTS06 Computer networks Lecture 7: The link layer I Link Layer: Introduction Some terminology: hosts and routers are nodes communication channels that connect adjacent nodes along communication path are

### CS 3516: Computer Networks

Welcome to CS 3516: Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: AK219 Fall 2018 A-term 1 Some slides are originally from the course materials of the textbook Computer

### Chapter 6 The Link Layer and LANs

Chapter 6 The Link Layer and LANs A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the

### Multiple Access. Data Communications and Networking

Multiple Access In the previous part we discussed data link control, a mechanism which provides a link with reliable communication. In the protocols we described, we assumed that there is an available

### Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

### Goal of Today s Lecture. EE 122: Designing IP. The Internet Hourglass. Our Story So Far (Context) Our Story So Far (Context), Con t

Goal of Today s Lecture EE 122: Designing IP Ion Stoica TAs: Junda Liu, DK Moon, David Zats http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues

### ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.1: Link Layer Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer

Link Layer and LANs Instructor: Anirban Mahanti Office: ICT 745 Email: mahanti@cpsc.ucalgary.ca Class Location: ICT 121 Lectures: MWF 12:00 12:50 hours Notes derived from Computer Networking: A Top Down

Chapter 6: Link layer and LANs our goals: understand principles behind layer services: error detection, sharing a broadcast channel: multiple access layer addressing local area networks: ernet, VLANs instantiation,

### CSE 461: Multiple Access. Homework: Chapter 2, problems 1, 8, 12, 18, 23, 24, 35, 43, 46, and 58

CSE 461: Multiple Access Homework: Chapter 2, problems 1, 8, 12, 18, 23, 24, 35, 43, 46, and 58 Next Topic Key Focus: How do multiple parties share a wire? This is the Medium Access Control (MAC) portion

### Project 3a is out! Goal: implement a basic network firewall. l We give you the VM & framework. l You implement the firewall logic.

Project 3a is out! Goal: implement a basic network firewall We give you the VM & framework. You implement the firewall logic. 1 Get started early What Is Firewall? Blocks malicious traffic Blocks unauthorized

### Multiple Access Protocols

Multiple Access Protocols Computer Networks Lecture 2 http://goo.gl/pze5o8 Multiple Access to a Shared Channel The medium (or its sub-channel) may be shared by multiple stations (dynamic allocation) just

### Computer and Network Security

CIS 551 / TCOM 401 Computer and Network Security Spring 2009 Lecture 6 Announcements First project: Due: 6 Feb. 2009 at 11:59 p.m. http://www.cis.upenn.edu/~cis551/project1.html Plan for Today: Networks:

Reminder: Datalink Functions 15-441 15 441 15-641 Computer Networking Lecture 5 Media Access Control Peter Steenkiste Fall 2015 www.cs.cmu.edu/~prs/15-441-f15 Framing: encapsulating a network layer datagram

### CS 3640: Introduction to Networks and Their Applications

CS 3640: Introduction to Networks and Their Applications Fall 2018, Lecture 7: The Link Layer II Medium Access Control Protocols Instructor: Rishab Nithyanand Teaching Assistant: Md. Kowsar Hossain 1 You

### Redes de Computadores. Medium Access Control

Redes de Computadores Medium Access Control Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto 1 » How to control the access of computers to a communication medium?» What is the ideal Medium

Data Link Layer Overview : 9/7/2007 CSC 257/457 - Fall 2007 1 Internet Architecture Bottom-up: physical: electromagnetic signals on the wire link: data transfer between neighboring network elements network:

### Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Data Link Layer Overview First of four classes on the data link layer Internet Architecture Bottom up: Physical: electromagnetic signals on the wire Link: data transfer between neighboring network elements

### CS 640 Lecture 4: 09/11/2014

CS 640 Lecture 4: 09/11/2014 A) Bandwidth-delay product B) Link layer intro C) Encoding, Framing, Error Detection D) Multiple access Ethernet A. Bandwidth-delay product This in the above example is C *

Data Link Layer Overview First of four classes on the data link layer 9/9/2009 CSC 257/457 - Fall 2009 1 Internet Architecture Bottom-up: physical: electromagnetic signals on the wire link: data transfer

### CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 7

CIS 551 / TCOM 401 Computer and Network Security Spring 2007 Lecture 7 Announcements Reminder: Project 1 is due on Thursday. 2/1/07 CIS/TCOM 551 2 Network Architecture General blueprints that guide the

### CS 716: Introduction to communication networks. - 9 th class; 19 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks - 9 th class; 19 th Aug 2011 Instructor: Sridhar Iyer IIT Bombay Contention-based MAC: ALOHA Users transmit whenever they have data to send Collisions occur,

### Jaringan Komputer. Broadcast Network. Outline. MAC (Medium Access Control) Channel Allocation Problem. Dynamic Channel Allocation

Broadcast Network Jaringan Komputer Medium Access Control Sublayer 2 network categories: point-to-point connections broadcast channels Key issue in broadcast network: how to determine who gets to use the

Chapter 5: DataLink Layer Course on Computer Communication and Networks, CTH/GU The slides are adaptation of the slides made available by the authors of the course s main textbook Slides with darker background

### Medium Access Control

Link Layer and Ethernet 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross traceroute Data Link Layer Multiple

### EITF25 Internet Techniques and Applications L4: Network Access. Stefan Höst

EITF25 Internet Techniques and Applications L4: Network Access Stefan Höst Repetition The link layer protocol should make sure that the data is correctly transmitted over the physical link using error

Data Link Layer Overview First of four classes on the data link layer Internet Architecture Bottom up: Physical: electromagnetic signals on the wire Link: data transfer between neighboring network elements

Data Link Networks Hardware Building Blocks Nodes & Links CS565 Data Link Networks 1 PROBLEM: Physically connecting Hosts 5 Issues 4 Technologies Encoding - encoding for physical medium Framing - delineation