Floodless in SEATTLE A Scalable Ethernet Architecture for Large Enterprises By Changhoon Kim, Ma/hew Caesar, and Jennifer Rexford

Size: px
Start display at page:

Download "Floodless in SEATTLE A Scalable Ethernet Architecture for Large Enterprises By Changhoon Kim, Ma/hew Caesar, and Jennifer Rexford"

Transcription

1 Floodless in SEATTLE A Scalable Ethernet Architecture for Large Enterprises By Changhoon Kim, Ma/hew Caesar, and Jennifer Rexford Presented by: Charndeep Grewal Department of Electrical Engineering

2 MoCvaCon IP Networks require significant effort to configure and maintain. Ethernet is very simple, but not does scale well past local networks. SEATTLE is an alternacve network architecture that provides the scalability of IP and the simplicity of Ethernet.

3 Background Ethernet Bridging Each host has a MAC address that is used to send packets. Bridges use a forwarding table to store this informacon, if address not found, flooded on network. Problem Forwarding tables grow in size proporconal to the number of hosts. Control informacon starts comprising a large overhead in network traffic. Malicious hosts can also cause network wide floods.

4 Background Spanning Trees To prevent broadcast storms due to flooding, administrators create a root bridge, then other bridges colleccve compute a spanning tree based on distance to root to route packets. Problem Spanning trees cannot grow large in size. It forces all traffic to traverse single spanning tree, which makes forwarding error prone. Load is also higher on links near the root bridge.

5 Background Bootstrapping Protocols Bootstrapping protocols such as ARP and DHCP rely on broadcascng. DHCP discovery messages are broadcast when host thinks the network a/achment point is changed. Broadcast APR are generated whenever host needs to know MAC address. Problem The problem is broadcast messages must be processed by end hosts, owen not handled by network card but CPU. For portable devices ARP can consume significant fraccon of bandwidth for just handling ARP messages. They also introduce security issues.

6 MoCvaCon The current solucon is to bring IP roucng into Ethernet, but this breaks many of the desired properces. Network administrators now have to subdivide their address space to assign IP prefixes across topologies and subnet. This leads to wasted address space. Large overhead in configura=on, some es=mates put 70% of an enterprises network opera=on cost as maintenance and configura=on. Ensuring service concnuity across locacon changes like virtual machine migracon, which is becoming more prevalent, is challenging.

7 SEATTLE Is it possible to build a protocol that maintains the same configuracon free properces as Ethernet bridging, yet scales to large networks?

8 SEATTLE Open hop, link state, network layer DHT Use a network layer distributed hash tables (DHT) to form a flexible directory service to provide address resolucon. Traffic driven loca=on resolu=on and caching Switches cache responses to queries because typically communicacon is between a small number of hosts. Scalable, prompt cache update protocol Update process is triggered by network layer changes, not Cmeouts or broadcasts.

9 One hop DHT Mapping between MAC/IP address is done through a distributed directory service. A network level approach is taken where mappings are stored at switches to make network recovery awer failure fast and efficient as well as avoid control overhead.

10 One hop DHT SEATTLE enables shortest path forwarding by running a link state protocol. SEATTLE s link state protocol maintains only the switch level topology. SEATTLE runs a discovery protocol to determine which links are a/ached to hosts and which are a/ached to switches. DisCnguishing between different kind of links is done by sending control messages that Ethernet hosts do not respond to.

11 Hashing key values into switches To publish a (k,v) pair, a switch first uses a hash funccon F to find out which switch it will map to k to, using a switch idencfier F(k) = r k. (k,v) F(k) r k It then tells switch r k to store the mapping (k,v). r k becomes the resolver for k.

12 Hashing key values into switches A different switch may look up the value of k by using the same hash funccon to idencfy which switch is the resolver for a different k; because all switches know all the other switches idencfiers via link state a advercsement.

13 Topology Changes When a switch fails, the link state map changes. That means the old resolver r k old is different than r k new. To deal with this the original switch (k,v) that published k, monitors the liveliness of the resolver. When s k determines r k old and r k new are different it republishes to r k new and the old (k,v) is removed form r k old awer a Cmeout.

14 MulC level, one hop, DHT The above approach doesn t work if you want to provide strong fault isolacon or divide up administracve control. A network is divide into several regions and each region is connected to the backbone via it s own border switch like OSPF.

15 Host Address ResoluCon In convenconal Ethernet, hosts broadcast ARP request to lookup a MAC address. In SEATTLE switches used F(ip). Host A arrives at switch s a. Switch learns ip a, the IP address of host a. Computes F(ip a ) = v a, where v a is the idencfier of another switch. s a then tells v a of (ip a, mac a ) then v a becomes the IP resolver for a. Not that the hosts locacon resolve F(mac a ) might be different than the locacon resolver F(ip a ).

16 Host LocaCon ResoluCon

17 Handling Host Dynamics Host may change physical loca=on (wireless) Host h moves from s h old to s h new. s h new does a insert MACto locacon entry. MAC may change (NIC replacement) h s access switch s h inserts IP to MAC entry contain h s new MAC address. Change of IP (DHCP lease over) s h deletes old IP to MAC mapping and inserts new one.

18 Backward CompaCbility From end hosts perspeccve, the way hosts interact with the network to bootstrap themselves must be the same as Ethernet.

19 Bootstrapping Hosts To discover a new host MAC the same learning mechanism discussed earlier is used but it is only enabled on ports connected to end hosts. SEATTLE switches snoop gratuitous ARPs. If no gratuitous APR was issued, it an scll get IP address by snooping DHCP messages. When a DHCP discovery message is received, it delivers the answer to the DHCP server via unicast.

20 SimulaCons Network administrators won t give up informacon. Used real traces from Lawrence Berkeley NaConal Lab as well as synthecc traces made on assumpcons on workload characterisccs. 4 sets of trace were collected over a period of minutes. To and from ~9,000 end hosts distributed over 22 subnets.

21 4 Topologies for SimulaCon 1. Campus: ~40k students, 517 routers 2. AP Small: Small access provider, 87 routers 3. AP large: Large network, 315 routers 4. DC: Data Center of 4 full meshed core routers each connect to a mesh of 21 switches.

22 SensiCvity to cache eviccon Cmeout If a switch removes host informacon before locally a/ached host does the switch needs to perform locacon lookup to forward data packets. Therefore the simulacon was to evict unused entries awer a Cmeout then look at how many packets needed locacon resolucon for AP large topology. The simulacon showed that even for small Cmeout values of 60 seconds, 99.98% of packets were forwarded without a lookup. Timeouts larger than 600 seconds needed 0 lookups.

23 SensiCvity to cache eviccon Cmeout If a switch removes host informacon before locally a/ached host does the switch needs to perform locacon lookup to forward data packets. Therefore the simulacon was to evict unused entries awer a Cmeout then look at how many packets needed locacon resolucon for APlarge topology. The simulacon showed that even for small Cmeout values of 60 seconds, 99.98% of packets were forwarded without a lookup. Timeouts larger than 600 seconds needed 0 lookups.

24 Forwarding Table Size Event though cache increases table size by 1.5, it scll gives a 16x smaller table than Ethernet and no caching results in a 22x smaller table.

25 Control Overhead SEATTLE is much be/er here since it uses unicast and does not use network wide flooding. Caching degrades performance again, but using caching only increases control overhead from 0.1 to 1 packet per second. Even with that hit, it s 1000x be/er than Ethernet.

26 Effects of Network Charges In this simulacon they caused switches to fail randomly. SEATTLE wins here because it can use all the links in the topology to forward packets. While Ethernet can only forward over a spanning tree. Also awer switch failure the tree must be recomputed.

27 Effects of host mobility For high mobility, Ethernet is worse. This happens because Ethernet takes Cme to evict stale locacon informacon and learn new host informacon. Some hosts broadcast gratuitous ARP but this increases overhead.

28 ExperimentaCon Results SEATTLE requires less overall packet processing Cme* on paths longer than 3.03 switches level hops. A typical campus network is 4 hops for vast majority of host pairs. * Packet processing Cme is from the Cme the packet arrives to the switches inbound queue and to the Cme its ready to be moved to the outbound queue.

29 Forwarding Table Size Measured over a one second interval, Sea/le scll has a smaller forwarding table size (1.5x).

30 Control Overhead Spikes are due to scanning a/acks. Ethernet uses network wide floods. SEATTLE uses 1 unicast lookup to resolver then discards packet.

31 Returning to the quescon posed Is it possible to build a protocol that maintains the same configuracon free properces as Ethernet bridging, yet scales to large networks?

Floodless in SEATTLE: A Scalable Ethernet Architecture for Large Enterprises

Floodless in SEATTLE: A Scalable Ethernet Architecture for Large Enterprises Floodless in SEATTLE: A Scalable Ethernet Architecture for Large Enterprises Full paper available at http://www.cs.princeton.edu/~chkim Changhoon Kim, Matthew Caesar, and Jennifer Rexford Outline of Today

More information

Floodless in SEATTLE: A Scalable Ethernet Architecture for Large Enterprises

Floodless in SEATTLE: A Scalable Ethernet Architecture for Large Enterprises Floodless in SEATTLE: A Scalable Ethernet Architecture for Large Enterprises Changhoon Kim Princeton University Princeton, NJ chkim@cs.princeton.edu Matthew Caesar University of Illinois Urbana-Champaign,

More information

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Switching 2 Page 1 Objectives MAC address table Describe the features

More information

Missing pieces + Putting the pieces together

Missing pieces + Putting the pieces together Missing pieces + Putting the pieces together CS 168, Fall 2014 Sylvia Ratnasamy Material thanks to Ion Stoica, Scott Shenker, Jennifer Rexford, Nick McKeown, and many other colleagues Today Switched Ethernet

More information

Lecture 9: Switched Ethernet Features: STP and VLANs

Lecture 9: Switched Ethernet Features: STP and VLANs Lecture 9: Switched Ethernet Features: STP and VLANs Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE426: Communication Networks Ethernet Switch Features The following features

More information

Better Approach To Mobile Adhoc Networking

Better Approach To Mobile Adhoc Networking Better Approach To Mobile Adhoc Networking batman-adv - Kernel Space L2 Mesh Routing Martin Hundebøll Aalborg University, Denmark March 28 th, 2014 History of batman-adv The B.A.T.M.A.N. protocol initiated

More information

Computer Networks. Routing

Computer Networks. Routing Computer Networks Routing Topics Link State Routing (Continued) Hierarchical Routing Broadcast Routing Sending distinct packets Flooding Multi-destination routing Using spanning tree Reverse path forwarding

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Original slides by Cisco Press & Priscilla Oppenheimer Selection Criteria for Switching and Routing Protocols Network traffic

More information

CS4450. Computer Networks: Architecture and Protocols. Lecture 20 Pu+ng ALL the Pieces Together. Spring 2018 Rachit Agarwal

CS4450. Computer Networks: Architecture and Protocols. Lecture 20 Pu+ng ALL the Pieces Together. Spring 2018 Rachit Agarwal CS4450 Computer Networks: Architecture and Protocols Lecture 20 Pu+ng ALL the Pieces Together Spring 2018 Rachit Agarwal What is a computer network? A set of network elements connected together, that implement

More information

Missing pieces + Putting the pieces together

Missing pieces + Putting the pieces together Missing pieces + Putting the pieces together EE 122, Fall 2013 Sylvia Ratnasamy http://inst.eecs.berkeley.edu/~ee122/ Material thanks to Ion Stoica, Scott Shenker, Jennifer Rexford, Nick McKeown, and many

More information

Inter-networking. Problem. 3&4-Internetworking.key - September 20, LAN s are great but. We want to connect them together. ...

Inter-networking. Problem. 3&4-Internetworking.key - September 20, LAN s are great but. We want to connect them together. ... 1 Inter-networking COS 460 & 540 2 Problem 3 LAN s are great but We want to connect them together...across the world Inter-networking 4 Internet Protocol (IP) Routing The Internet Multicast* Multi-protocol

More information

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013

CS 5114 Network Programming Languages Control Plane. Nate Foster Cornell University Spring 2013 CS 5 Network Programming Languages Control Plane http://www.flickr.com/photos/rofi/0979/ Nate Foster Cornell University Spring 0 Based on lecture notes by Jennifer Rexford and Michael Freedman Announcements

More information

Homework 2: IP Due: 11:59 PM, Oct 20, 2016

Homework 2: IP Due: 11:59 PM, Oct 20, 2016 C68 Computer Networks Fonseca Contents Homework : IP Due: :59 PM, Oct 0, 06 IP Forwarding Spanning Tree BGP IP Forwarding Consider this diagram and answer the following questions: H H 00... 00... 00...

More information

Troubleshooting High CPU Caused by the BGP Scanner or BGP Router Process

Troubleshooting High CPU Caused by the BGP Scanner or BGP Router Process Troubleshooting High CPU Caused by the BGP Scanner or BGP Router Process Document ID: 107615 Contents Introduction Before You Begin Conventions Prerequisites Components Used Understanding BGP Processes

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

Switching & ARP Week 3

Switching & ARP Week 3 Switching & ARP Week 3 Module : Computer Networks Lecturer: Lucy White lbwhite@wit.ie Office : 324 Many Slides courtesy of Tony Chen 1 Ethernet Using Switches In the last few years, switches have quickly

More information

Copyright Link Technologies, Inc.

Copyright Link Technologies, Inc. 3/15/2011 Mikrotik Certified Trainer / Engineer MikroTik Certified Dude Consultant Consulting Since 1997 Enterprise Class Networks WAN Connectivity Certifications Cisco, Microsoft, MikroTik BGP/OSPF Experience

More information

What is Multicasting? Multicasting Fundamentals. Unicast Transmission. Agenda. L70 - Multicasting Fundamentals. L70 - Multicasting Fundamentals

What is Multicasting? Multicasting Fundamentals. Unicast Transmission. Agenda. L70 - Multicasting Fundamentals. L70 - Multicasting Fundamentals What is Multicasting? Multicasting Fundamentals Unicast transmission transmitting a packet to one receiver point-to-point transmission used by most applications today Multicast transmission transmitting

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Five Designing a Network Topology Original slides copyright by Cisco Press & Priscilla Oppenheimer Network Topology Design Issues Hierarchy Redundancy Modularity Well-defined

More information

DGS-1510 Series Gigabit Ethernet SmartPro Switch Web UI Reference Guide

DGS-1510 Series Gigabit Ethernet SmartPro Switch Web UI Reference Guide 6. Layer 3 Features ARP ARP Gratuitous ARP IPv4 Interface IPv4 Static/Default Route IPv4 Route Table IPv6 General Prefix IPv6 Interface IPv6 Neighbor IPv6 Static/Default Route IPv6 Route Table ARP Aging

More information

Course Routing Classification Properties Routing Protocols 1/39

Course Routing Classification Properties Routing Protocols 1/39 Course 8 3. Routing Classification Properties Routing Protocols 1/39 Routing Algorithms Types Static versus dynamic Single-path versus multipath Flat versus hierarchical Host-intelligent versus router-intelligent

More information

Chapter 3 Part 2 Switching and Bridging. Networking CS 3470, Section 1

Chapter 3 Part 2 Switching and Bridging. Networking CS 3470, Section 1 Chapter 3 Part 2 Switching and Bridging Networking CS 3470, Section 1 Refresher We can use switching technologies to interconnect links to form a large network What is a hub? What is a switch? What is

More information

Network Layer (Routing)

Network Layer (Routing) Network Layer (Routing) Topics Network service models Datagrams (packets), virtual circuits IP (Internet Protocol) Internetworking Forwarding (Longest Matching Prefix) Helpers: ARP and DHCP Fragmentation

More information

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. Broch et al Presented by Brian Card

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. Broch et al Presented by Brian Card A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols Broch et al Presented by Brian Card 1 Outline Introduction NS enhancements Protocols: DSDV TORA DRS AODV Evaluation Conclusions

More information

Internetwork Expert s CCNP Bootcamp. Hierarchical Campus Network Design Overview

Internetwork Expert s CCNP Bootcamp. Hierarchical Campus Network Design Overview Internetwork Expert s CCNP Bootcamp Hierarchical Campus Network Design Overview http:// Hierarchical Campus Network Design Overview Per Cisco, a three layer hierarchical model to design a modular topology

More information

Ethane: taking control of the enterprise

Ethane: taking control of the enterprise Ethane: taking control of the enterprise Martin Casado et al Giang Nguyen Motivation Enterprise networks are large, and complex, and management is distributed. Requires substantial manual configuration.

More information

MTA_98-366_Vindicator930

MTA_98-366_Vindicator930 MTA_98-366_Vindicator930 Number: 98-366 Passing Score: 700 Time Limit: 45 min File Version: 1.0 http://www.gratisexam.com/ Microsoft Technology Associate Networking Fundamentals MTA 98-366 Exam A QUESTION

More information

Networking interview questions

Networking interview questions Networking interview questions What is LAN? LAN is a computer network that spans a relatively small area. Most LANs are confined to a single building or group of buildings. However, one LAN can be connected

More information

Configuring IP Unicast Routing

Configuring IP Unicast Routing Finding Feature Information, page 2 Information About, page 2 Information About IP Routing, page 2 How to Configure IP Routing, page 9 How to Configure IP Addressing, page 10 Monitoring and Maintaining

More information

CS 457 Lecture 11 More IP Networking. Fall 2011

CS 457 Lecture 11 More IP Networking. Fall 2011 CS 457 Lecture 11 More IP Networking Fall 2011 IP datagram format IP protocol version number header length (bytes) type of data max number remaining hops (decremented at each router) upper layer protocol

More information

Configuring Transparent Bridging

Configuring Transparent Bridging Configuring Transparent Bridging Document ID: 10676 Contents Introduction Before You Begin Conventions Prerequisites Components Used Bridging Transparent Bridging Configuration Examples Example 1: Simple

More information

cs/ee 143 Communication Networks

cs/ee 143 Communication Networks cs/ee 143 Communication Networks Chapter 4 Internetworking Text: Walrand & Parekh, 2010 Steven Low CMS, EE, Caltech Warning These notes are not self-contained, probably not understandable, unless you also

More information

Campus Networking Workshop. Layer 2 engineering Spanning Tree and VLANs

Campus Networking Workshop. Layer 2 engineering Spanning Tree and VLANs Campus Networking Workshop Layer 2 engineering Spanning Tree and VLANs Switching Loop When there is more than one path between two switches What are the potential problems? Switching Loop If there is more

More information

Performing Path Traces

Performing Path Traces About Path Trace, page 1 Performing a Path Trace, page 13 Collecting QoS and Interface Statistics in a Path Trace, page 15 About Path Trace With Path Trace, the controller reviews and collects network

More information

NoSQL Databases. Vincent Leroy

NoSQL Databases. Vincent Leroy NoSQL Databases Vincent Leroy 1 Database Large-scale data processing First 2 classes: Hadoop, Spark Perform some computacon/transformacon over a full dataset Process all data SelecCve query Access a specific

More information

Configuring IP Unicast Routing

Configuring IP Unicast Routing CHAPTER 39 This chapter describes how to configure IP Version 4 (IPv4) unicast routing on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack. A switch

More information

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs.

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Internetworking Multiple networks are a fact of life: Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Fault isolation,

More information

Index. Numerics. Index p priority (QoS) definition Q VLAN standard w as a region 5-54

Index. Numerics. Index p priority (QoS) definition Q VLAN standard w as a region 5-54 Index Numerics 802.1p priority (QoS) 802.1Q VLAN standard 5-7 802.1w as a region 5-54 A active path 5-5 address IP 7-8 advertisement 3-3 applicable products 1-ii ARP age setting 7-10 cache 7-4 cache table

More information

Multicast Technology White Paper

Multicast Technology White Paper Multicast Technology White Paper Keywords: Multicast, IGMP, IGMP Snooping, PIM, MBGP, MSDP, and SSM Mapping Abstract: The multicast technology implements high-efficiency point-to-multipoint data transmission

More information

LECTURE 9. Ad hoc Networks and Routing

LECTURE 9. Ad hoc Networks and Routing 1 LECTURE 9 Ad hoc Networks and Routing Ad hoc Networks 2 Ad Hoc Networks consist of peer to peer communicating nodes (possibly mobile) no infrastructure. Topology of the network changes dynamically links

More information

EEC-682/782 Computer Networks I

EEC-682/782 Computer Networks I EEC-682/782 Computer Networks I Lecture 15 Wenbing Zhao w.zhao1@csuohio.edu http://academic.csuohio.edu/zhao_w/teaching/eec682.htm (Lecture nodes are based on materials supplied by Dr. Louise Moser at

More information

IT220 Network Standards & Protocols. Unit 8: Chapter 8 The Internet Protocol (IP)

IT220 Network Standards & Protocols. Unit 8: Chapter 8 The Internet Protocol (IP) IT220 Network Standards & Protocols Unit 8: Chapter 8 The Internet Protocol (IP) IT220 Network Standards & Protocols REMINDER Student Evaluations 4 Objectives Identify the major needs and stakeholders

More information

VXLAN Overview: Cisco Nexus 9000 Series Switches

VXLAN Overview: Cisco Nexus 9000 Series Switches White Paper VXLAN Overview: Cisco Nexus 9000 Series Switches What You Will Learn Traditional network segmentation has been provided by VLANs that are standardized under the IEEE 802.1Q group. VLANs provide

More information

Communication Networks

Communication Networks Communication Networks Spring 2018 Q&A Session Rüdiger Birkner Tobias Bühler https://comm-net.ethz.ch/ ETH Zürich August 6 2018 Old exam from 2016 3 hours instead of 2.5 Topics which we did not discuss

More information

Cisco Express Forwarding Overview

Cisco Express Forwarding Overview Cisco Express Forwarding () is advanced, Layer 3 IP switching technology. optimizes network performance and scalability for networks with large and dynamic traffic patterns, such as the Internet, on networks

More information

IP Multicast. What is multicast?

IP Multicast. What is multicast? IP Multicast 1 What is multicast? IP(v4) allows a host to send packets to a single host (unicast), or to all hosts (broadcast). Multicast allows a host to send packets to a subset of all host called a

More information

Operation Manual DHCP. Table of Contents

Operation Manual DHCP. Table of Contents Table of Contents Table of Contents Chapter 1 DHCP Overview... 1-1 1.1 DHCP Principles... 1-1 1.1.1 BOOTP Relay Agent... 1-3 1.1.2 DHCP and BOOTP Relay Agent... 1-4 1.2 General DHCP Configuration... 1-4

More information

itexamdump 최고이자최신인 IT 인증시험덤프 일년무료업데이트서비스제공

itexamdump 최고이자최신인 IT 인증시험덤프   일년무료업데이트서비스제공 itexamdump 최고이자최신인 IT 인증시험덤프 http://www.itexamdump.com 일년무료업데이트서비스제공 Exam : EW0-300 Title : Extreme Networks Specialist... Vendors : Extreme Networks Version : DEMO Get Latest & Valid EW0-300 Exam's Question

More information

Scalable and Efficient Self-configuring Networks. Changhoon Kim

Scalable and Efficient Self-configuring Networks. Changhoon Kim Scalable and Efficient Self-configuring Networks Changhoon Kim chkim@cs.princeton.edu Today s Networks Face New Challenges Networks growing rapidly in size Up to tens of thousands to millions of hosts

More information

Multicast Communications. Slide Set were original prepared by Dr. Tatsuya Susa

Multicast Communications. Slide Set were original prepared by Dr. Tatsuya Susa Multicast Communications Slide Set were original prepared by Dr. Tatsuya Susa Outline 1. Advantages of multicast 2. Multicast addressing 3. Multicast Routing Protocols 4. Multicast in the Internet 5. IGMP

More information

Data Link Layer. Our goals: understand principles behind data link layer services: instantiation and implementation of various link layer technologies

Data Link Layer. Our goals: understand principles behind data link layer services: instantiation and implementation of various link layer technologies Data Link Layer Our goals: understand principles behind data link layer services: link layer addressing instantiation and implementation of various link layer technologies 1 Outline Introduction and services

More information

CSCI Computer Networks

CSCI Computer Networks CSCI-1680 - Computer Networks Link Layer III: LAN & Switching Chen Avin Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca Today: Link Layer (cont.)

More information

Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions

Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions Tuomo Karhapää tuomo.karhapaa@otaverkko.fi Otaverkko Oy Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks Part II: Local Area Networks LAN Bridges CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Repeaters, Bridges & Routers Why Connecting

More information

Addressing and Switching in the Link Layer

Addressing and Switching in the Link Layer Addressing and Switching in the Link Layer Stefano Vissicchio UCL Computer Science COMP00 Recap: We have done a full pass on the stack email WWW phone...! SMTP HTTP RTP...! TCP UDP!! IP! When and how to

More information

Configuring IP Unicast Routing

Configuring IP Unicast Routing 28 CHAPTER This chapter describes how to configure IP unicast routing on the Catalyst 3750 Metro switch. Note For more detailed IP unicast configuration information, refer to the Cisco IOS IP and IP Routing

More information

Internetworking. different kinds of network technologies that can be interconnected by routers and other networking devices to create an internetwork

Internetworking. different kinds of network technologies that can be interconnected by routers and other networking devices to create an internetwork UNIT - II Internetworking An internetwork is a collection of individual networks, connected by intermediate networking devices, that functions as a single large network. different kinds of network technologies

More information

ARP Inspection and the MAC Address Table

ARP Inspection and the MAC Address Table This chapter describes how to customize the MAC address table and configure ARP Inspection for bridge groups. About, page 1 Default Settings, page 2 Guidelines for, page 2 Configure ARP Inspection and

More information

1 Connectionless Routing

1 Connectionless Routing UCSD DEPARTMENT OF COMPUTER SCIENCE CS123a Computer Networking, IP Addressing and Neighbor Routing In these we quickly give an overview of IP addressing and Neighbor Routing. Routing consists of: IP addressing

More information

Full file at

Full file at Guide to Networking Essentials, Sixth Edition 2-1 Chapter 2 Network Hardware Essentials At a Glance Instructor s Manual Table of Contents Overview Objectives Tips Quick Quizzes Class Discussion Topics

More information

Link layer: introduction

Link layer: introduction Link layer: introduction terminology: hosts and routers: nodes communication channels that connect adjacent nodes along communication path: links wired links wireless links LANs layer-2 packet: frame,

More information

Telecommunication Protocols Laboratory Course. Lecture 3

Telecommunication Protocols Laboratory Course. Lecture 3 Telecommunication Protocols Laboratory Course Lecture 3 Course map Last time: we discussed protocols of the Medium Access Control (MAC) sub-layer Deal with broadcast channels and their (multi-party) protocols

More information

Multicast EECS 122: Lecture 16

Multicast EECS 122: Lecture 16 Multicast EECS 1: Lecture 16 Department of Electrical Engineering and Computer Sciences University of California Berkeley Broadcasting to Groups Many applications are not one-one Broadcast Group collaboration

More information

Configuring MSDP. MSDP overview. How MSDP works. MSDP peers

Configuring MSDP. MSDP overview. How MSDP works. MSDP peers Contents Configuring MSDP 1 MSDP overview 1 How MSDP works 1 MSDP support for VPNs 6 Protocols and standards 6 MSDP configuration task list 6 Configuring basic MSDP functions 7 Configuration prerequisites

More information

CISCO SYSTEM ADMINISTRATION (41)

CISCO SYSTEM ADMINISTRATION (41) CISCO SYSTEM ADMININSTRATION PAGE 1 OF 11 CONTESTANT ID# Time Rank CISCO SYSTEM ADMINISTRATION (41) Regional 2012 TOTAL POINTS (500) Failure to adhere to any of the following rules will result in disqualification:

More information

Auxiliary protocols. tasks that IP does not handle: Routing table management (RIP, OSPF, etc.). Congestion and error reporting (ICMP).

Auxiliary protocols. tasks that IP does not handle: Routing table management (RIP, OSPF, etc.). Congestion and error reporting (ICMP). Auxiliary protocols IP is helped by a number of protocols that perform specific tasks that IP does not handle: Routing table management (RIP, OSPF, etc.). Congestion and error reporting (ICMP). Multicasting

More information

Example: Configuring DHCP Snooping, DAI, and MAC Limiting on an EX Series Switch with Access to a DHCP Server Through a Second Switch

Example: Configuring DHCP Snooping, DAI, and MAC Limiting on an EX Series Switch with Access to a DHCP Server Through a Second Switch Example: Configuring DHCP Snooping, DAI, and MAC Limiting on an EX Series Switch with Access to a DHCP Server Through a Second Switch Requirements You can configure DHCP snooping, dynamic ARP inspection

More information

CS Networks and Distributed Systems. Lecture 5: Bridging. Revised 1/14/13

CS Networks and Distributed Systems. Lecture 5: Bridging. Revised 1/14/13 CS 3700 Networks and Distributed Systems Lecture 5: Bridging Revised 1/14/13 Just Above the Data Link Layer 2 Application Presentation Session Transport Network Data Link Physical Bridging! How do we connect

More information

Configuring IP Unicast Routing

Configuring IP Unicast Routing CHAPTER 40 This chapter describes how to configure IP Version 4 (IPv4) unicast routing on the Catalyst 3750-E or 3560-E switch. Unless otherwise noted, the term switch refers to a Catalyst 3750-E or 3560-E

More information

CSE 473 Introduction to Computer Networks. Final Exam. Your Name: 12/17/2014 PLEASE WRITE LEGIBLY NO POINTS FOR ILLEGIBLE ANSWERS

CSE 473 Introduction to Computer Networks. Final Exam. Your Name: 12/17/2014 PLEASE WRITE LEGIBLY NO POINTS FOR ILLEGIBLE ANSWERS CSE 47 Introduction to Computer Networks Roch Guérin Final Exam Your Name: 12/17/2014 PLEASE WRITE LEGIBLY NO POINTS FOR ILLEGIBLE ANSWERS 1. [10 points] Bob has been provided with the following pair of

More information

Routing Concepts. IPv4 Routing Forwarding Some definitions Policy options Routing Protocols

Routing Concepts. IPv4 Routing Forwarding Some definitions Policy options Routing Protocols Routing Basics 1 Routing Concepts IPv4 Routing Forwarding Some definitions Policy options Routing Protocols 2 IPv4 Internet uses IPv4 Addresses are 32 bits long Range from 1.0.0.0 to 223.255.255.255 0.0.0.0

More information

Table of Contents 1 PIM Configuration 1-1

Table of Contents 1 PIM Configuration 1-1 Table of Contents 1 PIM Configuration 1-1 PIM Overview 1-1 Introduction to PIM-DM 1-2 How PIM-DM Works 1-2 Introduction to PIM-SM 1-4 How PIM-SM Works 1-5 Introduction to Administrative Scoping in PIM-SM

More information

Introduction. Introduction. Router Architectures. Introduction. Recent advances in routing architecture including

Introduction. Introduction. Router Architectures. Introduction. Recent advances in routing architecture including Router Architectures By the end of this lecture, you should be able to. Explain the different generations of router architectures Describe the route lookup process Explain the operation of PATRICIA algorithm

More information

Virtual Subnet (VS): A Scalable Data Center Interconnection Solution

Virtual Subnet (VS): A Scalable Data Center Interconnection Solution Virtual Subnet (VS): A Scalable Data Center Interconnection Solution draft-xu-virtual-subnet-05 Xiaohu Xu (xuxh@huawei.com) NANOG52, Denver Requirements for Data Center Interconnection To interconnect

More information

Table of Contents 1 MSDP Configuration 1-1

Table of Contents 1 MSDP Configuration 1-1 Table of Contents 1 MSDP Configuration 1-1 MSDP Overview 1-1 Introduction to MSDP 1-1 How MSDP Works 1-2 Protocols and Standards 1-7 MSDP Configuration Task List 1-7 Configuring Basic Functions of MSDP

More information

Good day. Today we will be talking about Local Internetworking What is Internetworking? Internetworking is the connection of different networks.

Good day. Today we will be talking about Local Internetworking What is Internetworking? Internetworking is the connection of different networks. Computer Networks Prof: Sujoy Ghosh Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Local Internetworking Good day. Today we will be talking about

More information

Scale Computer Networking. Scale. Problem 1 Reconnecting LANs. Lecture 8 Bridging, Addressing and Forwarding

Scale Computer Networking. Scale. Problem 1 Reconnecting LANs. Lecture 8 Bridging, Addressing and Forwarding Scale 5- Computer Networking yak yak Lecture 8 Bridging, Addressing and Forwarding What breaks when we keep adding people to the same wire? 9--06 Lecture 8: Bridging/Addressing/Forwarding Scale Problem

More information

vines access-group vines access-group access-list-number no vines access-group access-list-number Syntax Description

vines access-group vines access-group access-list-number no vines access-group access-list-number Syntax Description vines access-group vines access-group To apply an access list to an interface, use the vines access-group command in interface configuration mode. To remove the access list, use the no form of this command.

More information

CIS 632 / EEC 687 Mobile Computing

CIS 632 / EEC 687 Mobile Computing CIS 63 / EEC 687 Mobile Computing IP Software: Routing Prof. Chansu Yu Network Protocols for Wired Network: Ethernet Ethernet address 48-bit, also called hardware/physical/mac/layer address Globally unique:

More information

SYSTEMS ADMINISTRATION USING CISCO (315)

SYSTEMS ADMINISTRATION USING CISCO (315) Page 1 of 10 Contestant Number: Time: Rank: SYSTEMS ADMINISTRATION USING CISCO (315) REGIONAL 2014 TOTAL POINTS (500) Failure to adhere to any of the following rules will result in disqualification: 1.

More information

IN a mobile ad hoc network, nodes move arbitrarily.

IN a mobile ad hoc network, nodes move arbitrarily. IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 6, JUNE 2006 609 Distributed Cache Updating for the Dynamic Source Routing Protocol Xin Yu Abstract On-demand routing protocols use route caches to make

More information

Configuring IP Multicast Routing

Configuring IP Multicast Routing 39 CHAPTER This chapter describes how to configure IP multicast routing on the Catalyst 3560 switch. IP multicasting is a more efficient way to use network resources, especially for bandwidth-intensive

More information

Contents. Overview Multicast = Send to a group of hosts. Overview. Overview. Implementation Issues. Motivation: ISPs charge by bandwidth

Contents. Overview Multicast = Send to a group of hosts. Overview. Overview. Implementation Issues. Motivation: ISPs charge by bandwidth EECS Contents Motivation Overview Implementation Issues Ethernet Multicast IGMP Routing Approaches Reliability Application Layer Multicast Summary Motivation: ISPs charge by bandwidth Broadcast Center

More information

The trace is here: https://kevincurran.org/com320/labs/wireshark/trace-dhcp.pcap

The trace is here: https://kevincurran.org/com320/labs/wireshark/trace-dhcp.pcap Lab Exercise DHCP Objective To see how DHCP (Dynamic Host Configuration Protocol) works. The trace is here: https://kevincurran.org/com320/labs/wireshark/trace-dhcp.pcap Network Setup Recall that DHCP

More information

Routing Basics. ISP Workshops. Last updated 10 th December 2015

Routing Basics. ISP Workshops. Last updated 10 th December 2015 Routing Basics ISP Workshops Last updated 10 th December 2015 1 Routing Concepts p IPv4 & IPv6 p Routing p Forwarding p Some definitions p Policy options p Routing Protocols 2 IPv4 p Internet still uses

More information

Introduction to the Packet Tracer Interface using a Hub Topology

Introduction to the Packet Tracer Interface using a Hub Topology Introduction to Packet Tracer What is Packet Tracer? Packet Tracer is a protocol simulator developed by Dennis Frezzo and his team at Cisco Systems. Packet Tracer (PT) is a powerful and dynamic tool that

More information

Peer- to- Peer and Social Networks. An overview of Gnutella

Peer- to- Peer and Social Networks. An overview of Gnutella Peer- to- Peer and Social Networks An overview of Gnutella Overlay networks Overlay networks are logical networks defined on top of a physical network. The nodes (peers) are a subset of the real nodes

More information

Question: 3 Which LSA type describes the router ID of ASBR routers located in remote areas?

Question: 3 Which LSA type describes the router ID of ASBR routers located in remote areas? Volume: 65 Questions Question: 1 Which two statements describe aggregate routes? (Choose two.) A. Invalid routing prefixes are not advertised to external peers. B. Internal routing instabilities can be

More information

5.2 Routing Algorithms

5.2 Routing Algorithms CEN445 Network Protocols and Algorithms Chapter 5 Network Layer 5. Routing Algorithms Dr. Mostafa Hassan Dahshan Department of Computer Engineering College of Computer and Information Sciences King Saud

More information

H

H H12-711 Number: H12-711 Passing Score: 600 Time Limit: 120 min File Version: 1.0 Exam A QUESTION 1 The network administrator wants to improve the performance of network transmission, what steps can the

More information

CHAPTER 2 - NETWORK DEVICES

CHAPTER 2 - NETWORK DEVICES CHAPTER 2 - NETWORK DEVICES TRUE/FALSE 1. Repeaters can reformat, resize, or otherwise manipulate the data packet. F PTS: 1 REF: 30 2. Because active hubs have multiple inbound and outbound connections,

More information

Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk SOLUTIONS

Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk SOLUTIONS Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk Date: January 17 th 2006 at 14:00 18:00 SOLUTIONS 1. General (5p) a) Draw the layered

More information

Computer Networks. Routing Algorithms

Computer Networks. Routing Algorithms Computer Networks Routing Algorithms Topics Routing Algorithms Shortest Path (Dijkstra Algorithm) Distance Vector Routing Count to infinity problem Solutions for count to infinity problem Link State Routing

More information

Scalable Enterprise Networks with Inexpensive Switches

Scalable Enterprise Networks with Inexpensive Switches Scalable Enterprise Networks with Inexpensive Switches Minlan Yu minlanyu@cs.princeton.edu Princeton University Joint work with Alex Fabrikant, Mike Freedman, Jennifer Rexford and Jia Wang 1 Enterprises

More information

Request for Comments: S. Gabe Nortel (Northern Telecom) Ltd. May Nortel s Virtual Network Switching (VNS) Overview

Request for Comments: S. Gabe Nortel (Northern Telecom) Ltd. May Nortel s Virtual Network Switching (VNS) Overview Network Working Group Request for Comments: 2340 Category: Informational B. Jamoussi D. Jamieson D. Williston S. Gabe Nortel (Northern Telecom) Ltd. May 1998 Status of this Memo Nortel s Virtual Network

More information

Table of Contents Chapter 1 IPv6 PIM Configuration

Table of Contents Chapter 1 IPv6 PIM Configuration Table of Contents Table of Contents... 1-1 1.1 IPv6 PIM Overview... 1-1 1.1.1 Introduction to IPv6 PIM-DM... 1-2 1.1.2 How IPv6 PIM-DM Works... 1-2 1.1.3 Introduction to IPv6 PIM-SM... 1-5 1.1.4 How IPv6

More information

Internetworking Part 1

Internetworking Part 1 CMPE 344 Computer Networks Spring 2012 Internetworking Part 1 Reading: Peterson and Davie, 3.1 22/03/2012 1 Not all networks are directly connected Limit to how many hosts can be attached Point-to-point:

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2012 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Thursday, Nov 1 st Homework #4 Due Tuesday, Nov 6 th Project #2 Due 2 IPv4 addresses are usually displayed

More information

Table of Contents 1 MSDP Configuration 1-1

Table of Contents 1 MSDP Configuration 1-1 Table of Contents 1 MSDP Configuration 1-1 MSDP Overview 1-1 Introduction to MSDP 1-1 How MSDP Works 1-2 Multi-Instance MSDP 1-7 Protocols and Standards 1-7 MSDP Configuration Task List 1-7 Configuring

More information

Image courtesy Cisco Systems, Inc. Illustration of a Cisco Catalyst switch

Image courtesy Cisco Systems, Inc. Illustration of a Cisco Catalyst switch by Jeff Tyson If you have read other HowStuffWorks articles on networking or the Internet, then you know that a typical network consists of nodes (computers), a connecting medium (wired or wireless) and

More information