UAV ASSISTED DISRUPTION TOLERANT ROUTING

Size: px
Start display at page:

Download "UAV ASSISTED DISRUPTION TOLERANT ROUTING"

Transcription

1 UAV ASSISTED DISRUPTION TOLERANT ROUTING Michael Le, Joon-Sang Park, and Mario Gerla Computer Science Department University of California, Los Angeles Los Angeles, CA proposed DTN UAV Assisted routing protocol will make it possible for far flung mobile nodes to communicate in environments where they normally would not be able to due to practical constraints such as the lack of energy and the lack of long range high capacity network interfaces. This paper is structured as follows. Section 2 describes the scenario that we envision in more detail, Section 3 describes the DTN UAV Assisted routing protocol, Section 4 discusses the simulation results, and Section 5 concludes this paper. Abstract In order to provide network connectivity in highly partitioned ad-hoc networks, we propose a routing strategy that incorporates an existing ad-hoc routing protocol, Ad hoc On Demand Distance Vector (AODV), with Disruption Tolerant Networking (DTN) a la storecarry-forward mechanisms using Unmanned Aerial Vehicles (UA Vs) as carriers. This paper focuses on the design, implementation, and evaluation of the routing strategy. The major contribution of this work is the implementation of our DTN aware routing protocol on top of existing and mostly unmodified AODV We show the advantage of the DTN protocol through simulation using ns-2. II. Environment Description The environment that we envision consists of islands of mobile ground nodes that are spread wide apart with practically no network connection between any two islands. Between these islands of mobile ground nodes are the UAVs. These UAVs do not exist for the sole purpose of carrying messages as in [5] but are there for a different and possibly independent reason. We do not assume that we have control over the motion of the UAVs. Our routing protocol makes use of these UAVs for communication and to create network connections between disjoint islands of mobile ground nodes. The mobile ground nodes are equipped with short range high bandwidth air interfaces and the UAVs have both short range high bandwidth as well as long range, low bandwidth interfaces. We assume that the UAV long range air interfaces are mainly for UAV motion control and management; but, can also carry a small amount of data traffic. Geo location is available (using GPS or other localization means) on UAVs but not in the ground nodes. The network is assumed to be always connected via a combination of long and short range links (with aggregate low rate); it is only intermittently I. Introduction This paper focuses on the design and evaluation of a routing strategy for highly partitioned ad-hoc networks. These networks have the characteristics of being sparse with intermittent end to end connectivity due to mobility and limited range of the communication hardware [1,2,5]. The routing strategy that we are proposing uses Ad hoc On Demand Distance Vector (AODV) [4] as the underlying routing protocol with very minor augmentation for Disruption Tolerant Networking (DTN) support. The DTN part of our protocol basically uses UAVs as message ferries to store, carry, and forward messages to the destination when it is impossible and or impractical to directly transmit the messages through intermediate nodes [5]. The * This work was supported in part by the National Science Foundation under Grant No and the US Army under MURI award W91 1NF Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding agencies. 1

2 connected by short range links (and high data rate). Not all the ground nodes are directly connected to a UAV, thus several hops may be needed for a ground node to reach a UAV. A diagram of our scenario can be seen in Figure. 1. Adt tro ieintaifto SUASV Sde y Cact I1~LoW. b>andodth F-1 Desiinabon Side Sky Cartac., Aj r t1o OiwUhdX lntftfe -Short rhe -High Sndh * A X. irt * ai Oud X Air irte - ru N3dleI The source-side-sky-contact performs the store-carryforwarding. While the source-side-sky-contact is ferrying the data, it probes the destination at very low rate. This is done by conventional RREQ/RREP handshaking. When a UAV ferrying data receives a RREP through the high bandwidth interface, it hands data over to the node transmitted the RREP using the high bandwidth interface and the data will be delivered to the destination through the path found by the last RREQ/RREP handshaking. There can be various store-carry-forward policies that can be implemented in the UAV. This store-carry-forward policy deals with the issues of when and where to forward a message once a message arrives at a UAV. For instance, if a UAV carrying the data flies by another UAV which is expected to meet the data destination in the near future, it might be better to hand over the data. Here, we implement the simplest policy, no hand-over of data between UAVs, and leave different store-carry-forward policy as future work. All messages flowing through the UAVs are first examined by the DTN routing agent to determine if the message is a control or data message. Control messages, such as AODV's RREQ/RREP, are forwarded immediately by the UAV by passing it down to the AODV layer after inserting additional information for forwarding decision. We assume that we know if a data packet is received through the long range low bandwidth interface or short range high bandwidth interface. Otherwise, the DTN routing agent indicates in the packet before sending. Data packets are passed down to the AODV layer for forwarding if the next hop can be reached with a short range high bandwidth interface. hrt range g1h bahnd h Figure 1. Network environment III. Routing Protocol Description Our routing strategy has two main parts: conventional reactive/proactive ad-hoc routing on the ground and DTN routing in the sky. Although our proposed routing strategy does not warrant a specific routing protocol on the ground, in this paper we use AODV to describe how to combine the reactive ad-hoc routing on the ground with DTN routing in the sky to create one cohesive routing protocol for the networking scenario. Detail of the AODV routing protocol can be gleaned from [4]. Our proposal requires no modification of AODV running on ground nodes. When a node tries to find a path to another node, it floods the network with RREQ; RREQ packets propagate through the low bandwidth, long range links as well as radio and high bandwidth, short range links. The destination replies with RREP which will follow the reverse path. We call the ground node that transmits the RREP to the UAV the destination-sideground-contact and the UAV that the RREP first encounter the destination-side-sky-contact. The RREP packet flows through the UAV network and it is transmitted to the island of ground nodes in which the source resides. We call the UAV transmitting the RREP to the ground the source-side-sky-contact. Once the source gets the RREP, it starts sending out data. IV. Simulation Results We implemented the protocol in ns-2 [3] and conducted a set of experiments. We used without RTS/CTS as the MAC Layer. The rate for the carrier sense and capture threshold of the MAC is set to the default values in ns-2. The bandwidth for the control packet is also set to the default value, which is 1Mbps. We used the free space propagation model in ns-2. The first two simulation scenarios have a topology of 500m x 500m while the rest have a topology of 700m x 700m all mapped on a 2-D grid. 2

3 Our simulation consists of mobile UAVs and ground nodes. The UAV nodes have two network interfaces: one interface is a long range narrow band with a transmission range of 250 meters and a bandwidth of 10Kbps while the second interface is a short range wide band with a transmission range of 60 meters and a bandwidth of 11Mbps. The above numbers are purely hypothetical, as no experimental data on UAV to UAV range and bandwidth was available at the time of this writing. Most of the time, the long range interface is only used to transmit control packets to set up a path. Each UAV also has buffer that can contain up to 500 packets. As we discussed above, the UAV performs the carry aspect of transmission and has a large buffer to accommodate the throughput demand. As mentioned earlier, the ground nodes contain one short range wide band interface with the same configuration as its counterpart in the UAV. We used a CBR traffic generator with the data rate of 10Kbps. Each of our simulation run is 1 hour long. Each results graph compares the sender throughput versus the actual throughput in each scenario. The sender throughput is measured by counting the number of packets being sent by the application. Since we used a constant bit rate traffic model, the sender is constantly sending, and so the number of packets sent is linearly increasing with time. We do not take into account packets being dropped at the source interface due to buffer overflow. The receiver throughput is measured by counting the number of packets actually received at the application layer. We consider a set of rather simple scenarios focusing on showing the basic DTN function of our protocol. The first scenario is the UAV shuttling scenario where two ground nodes are separated by more than the range of their network interface and two UAVs (triangles) are flying back and forth between the two ground nodes as illustrated in Figure 2.(b). The result of the UAV shuttling experiment in Figure 2 shows that the receiver throughput almost matches the sender throughput which is possible since the two UAVs are constantly taking turn shuttling messages from source to destination. However, there is a chance of the sender being disconnected from both UAVs and data is lost when this happens and thus there is discrepancy between the sender throughput and the receiver throughput. Also since the size of the UAV's buffer is limited, some messages that cannot be buffered at the UAV are dropped, thus further decreasing the receiver throughput. Shuttling: AJVas Carry -9 rc, a. I.- W.0 E z :DOO :OO 25DO Time (sec) Figure 2.(a). : Sender vs. Receiver s d Figure 2.(b). Scenario: Two ground nodes (circles) are separated by more than the range of their network interface. There are two UAVs (triangles) that start at opposite side of each other and fly back and forth between the two ground nodes. Figure 2. UAV Shuttling Scenario To measure the benefits of our store-carryforward policy versus the forward-only policy using long range radios, we ran the third simulation experiment using the scenario shown in Figure 2.(b) and the results are shown in Figure 3. The graph shows the actual throughput of using our store-carry-forward policy versus the forward-only policy. Our store-carryforward policy is to hold a message unless the next hop is a short range hop with high bandwidth interface. As can be seen from Figure 3, our store-carry-forward policy clearly out performs the forward-only policy despite the carry and forward delay. Since the long range interface has an extremely small bandwidth, it is 3

4 more beneficial to just hold on to the packets and deliver everything at once rather than try to forward "at all cost" using long range radios. Shutding: Carr Vs. Forward Through put is shared by two senders. In Figure 5, the second sender has lower throughput than the first sender and this is due to the second UAV's buffer being full after carrying messages from the first sender leaving no room for the second source. Multple Islands E t 000 Sende w Time (secj Figure 3. : Carry Vs. Forward Figure 4 shows our protocol in action when there is an intermediate island of ground nodes that separate the source ground node from the destination ground node. The transmitted message must traverse multiple UAVs (with an intermediate island of ground nodes) before reaching the destination. To transmit a message in this scenario, first the UAV has to carry and hand off the message to the middle island and have the ground nodes in that island forward the message up to the UAVs that can reach the final destination. The low receiver throughput is mainly attributed to the disconnection of the sender from UAVs. Since there is only one UAV flying between the leftmost island and the island in the middle, the sender (and also all other nodes in the same island) is disconnected from the UAV from time to time. The throughput is further decreased due to the limited amount of UAVs to do the actual shuttling. Figure 5 shows the results of the same scenario as in Figure 4 but with multiple sources at the first and second island while the destinations are at the third island. In this multiple source and destination scenario, the reasons for the discrepancy between the sender throughput and receiver throughput again are disconnection of the source from UAVs and limited buffer space. The receiver throughput in this multiple source and destination cases is lower than the one sender and receiver case since the limited UAV storage z 5000 IN Trime (sec) Figure 4.a. : Sender vs. Receiver Figure 4.b. Multiple Islands Scenario: Three islands of ground nodes (circles) with multiple ground nodes per island. The distance between the first and second island is 120m and between the second and third island is 300m. 3 UAVs (triangles) total, with one UAV hovering at the first island. The second UAV is shuttling between the second and third island. The third UAV is hovering at the third island. Figure 4. Transmitting Across Multiple Islands Throughout these simulation experiments we have made some observations regarding the interaction of AODV and our DTN routing protocol. As mentioned above, the UAV requires the ability to send out RREQ using the AODV agent during the flight to route and keep track of the destination's location. The rate of this request cannot be determined independently by the UAV since the AODV protocol has its own policy of when and how often these RREQ can be sent out into the network. Even if there is a better route to the destination using only short range high bandwidth links, if there is no provision in the AODV to 4

5 constantly update the paths and there are no path failures, no new path will ever be constructed and the UAV will miss the chance of discovering more optimum paths to the destination. In addition, AODV picks a path based on hop count and not channel bandwidth as would be desired, so the notion of optimum path for DTN and AODV is not the same. Since the UAV forwarding policy is greatly affected by what route is available to destination, the rate of sending out RREQ will greatly affect the overall performance of the protocol. Currently there is no provision to allow a node to forward messages to a UAV despite no path being discovered. This is not a problem given our connectivity assumption mentioned above, but might be an area where further improvements may be necessary. order to prevent this type of message loss. Another problem related to AODV's caching behavior is how to make sure AODV does not send out messages it has cached when a new route has been constructed. This new route might not be desirable according to the DTN policy and so the UAV must be able to control the caching behavior of the AODV layer and prevent cached messages from being automatically sent. It is clear that better interaction between AODV and UAV DTN policy is necessary for improved performance. V. Conclusions In this paper we have presented a routing strategy for highly partitioned mobile ad hoc networks. The routing strategy uses AODV as the underlying routing protocol with very minor augmentation for DTN support. One immediate future work is to use GPS information and trajectory calculation of UAVs during route discovery and data forwarding. This would require a more elaborate geo-information exchange scheme to support mobility and latency. Additionally, different forwarding policies mentioned in Section 3 can be simulated to provide a clearer picture of the drawbacks and benefits of each policy. Multiple Source and Destination.4.. Qfi ru + 15 Sendler I eg F eiw 1 Sender2 Reeiver 2 _ 10 :z References 40 Time (sec) [1] K. Fall. A Delay-Tolerant Network Architecture for Challenged Internets. In Proceedings of ACM Figure 5. Multiple Islands with Multiple Source and Destination. Same scenario as in Figure 4.b but with one source is at the first island and second source is at the island in the middle. Two destination ground nodes are at the third island. SIGCOMM [2] S. Jain, K. Fall, R. Patra. Routing in a Delay Tolerant Network. In Proceedings ofacm SIGCOMM [3] ns-2. [4] C. E. Perkins, E. M. Royer. Ad hoc On-Demand Distance Vector Routing. In Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, [5] W. Zhao, M. Ammar, E. Zegura. A Message Ferrying Approach for Data Delivery in Sparse Mobile Ad Hoc Networks. In Proceedings ofacm MobiHoc A potential problem that may lead to messages being lost is the AODV's caching behavior. Some packets might be caught in AODV's cache (instead of DTN storage) but AODV will discard any messages that it had cached due to a route failure after some time period. The UAV has knowledge of DTN policy and can thus decide the optimum time to keep the buffered messages in AODV's cache before sending them back to DTN storage. There must be some cross layer interaction between the UAV DTN middleware and the lower layers, such as the AODV or even the MAC, in 5

Computation of Multiple Node Disjoint Paths

Computation of Multiple Node Disjoint Paths Chapter 5 Computation of Multiple Node Disjoint Paths 5.1 Introduction In recent years, on demand routing protocols have attained more attention in mobile Ad Hoc networks as compared to other routing schemes

More information

Experiment and Evaluation of a Mobile Ad Hoc Network with AODV Routing Protocol

Experiment and Evaluation of a Mobile Ad Hoc Network with AODV Routing Protocol Experiment and Evaluation of a Mobile Ad Hoc Network with AODV Routing Protocol Kalyan Kalepu, Shiv Mehra and Chansu Yu, Department of Electrical and Computer Engineering Cleveland State University 2121

More information

A Graph-based Approach to Compute Multiple Paths in Mobile Ad Hoc Networks

A Graph-based Approach to Compute Multiple Paths in Mobile Ad Hoc Networks A Graph-based Approach to Compute Multiple Paths in Mobile Ad Hoc Networks Gunyoung Koh, Duyoung Oh 1 and Heekyoung Woo 2 1 School of Electrical Engineering and Computer Science Seoul National University,

More information

Secure Enhanced Authenticated Routing Protocol for Mobile Ad Hoc Networks

Secure Enhanced Authenticated Routing Protocol for Mobile Ad Hoc Networks Journal of Computer Science 7 (12): 1813-1818, 2011 ISSN 1549-3636 2011 Science Publications Secure Enhanced Authenticated Routing Protocol for Mobile Ad Hoc Networks 1 M.Rajesh Babu and 2 S.Selvan 1 Department

More information

Store-and-Forward Performance in a DTN

Store-and-Forward Performance in a DTN Store-and-Forward Performance in a DTN Mooi-Choo Chuah, Peng Yang, Brian D. Davison, Liang Cheng Department of Computer Science and Engineering Lehigh University 19 Memorial Drive West, Bethlehem, PA 18015,

More information

Impact of Hello Interval on Performance of AODV Protocol

Impact of Hello Interval on Performance of AODV Protocol Impact of Hello Interval on Performance of AODV Nisha Bhanushali Priyanka Thakkar Prasanna Shete ABSTRACT The multi-hop ad hoc networks are self organizing networks with dynamic topology. The reactive

More information

AODV-PA: AODV with Path Accumulation

AODV-PA: AODV with Path Accumulation -PA: with Path Accumulation Sumit Gwalani Elizabeth M. Belding-Royer Department of Computer Science University of California, Santa Barbara fsumitg, ebeldingg@cs.ucsb.edu Charles E. Perkins Communications

More information

A COMPARISON OF IMPROVED AODV ROUTING PROTOCOL BASED ON IEEE AND IEEE

A COMPARISON OF IMPROVED AODV ROUTING PROTOCOL BASED ON IEEE AND IEEE Journal of Engineering Science and Technology Vol. 4, No. 2 (2009) 132-141 School of Engineering, Taylor s University College A COMPARISON OF IMPROVED AODV ROUTING PROTOCOL BASED ON IEEE 802.11 AND IEEE

More information

Mobile Ad-hoc and Sensor Networks Lesson 04 Mobile Ad-hoc Network (MANET) Routing Algorithms Part 1

Mobile Ad-hoc and Sensor Networks Lesson 04 Mobile Ad-hoc Network (MANET) Routing Algorithms Part 1 Mobile Ad-hoc and Sensor Networks Lesson 04 Mobile Ad-hoc Network (MANET) Routing Algorithms Part 1 Oxford University Press 2007. All rights reserved. 1 Ad-hoc networks deployment For routing, target detection,

More information

Mobility and Density Aware AODV Protocol Extension for Mobile Adhoc Networks-MADA-AODV

Mobility and Density Aware AODV Protocol Extension for Mobile Adhoc Networks-MADA-AODV Journal of Computer Science 8 (1): 13-17, 2012 ISSN 1549-3636 2011 Science Publications Mobility and Density Aware AODV Protocol Extension for Mobile Adhoc Networks-MADA-AODV 1 S. Deepa and 2 G.M. Kadhar

More information

Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14

Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14 Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14 Routing Algorithms Link- State algorithm Each node maintains a view of the whole network topology Find the shortest path

More information

3. Evaluation of Selected Tree and Mesh based Routing Protocols

3. Evaluation of Selected Tree and Mesh based Routing Protocols 33 3. Evaluation of Selected Tree and Mesh based Routing Protocols 3.1 Introduction Construction of best possible multicast trees and maintaining the group connections in sequence is challenging even in

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK COMPARISON OF MANET REACTIVE ROUTING PROTOCOLS USING OPNET SIMULATOR SANGEETA MONGA

More information

CERIAS Tech Report A Simulation Study on Multi-Rate Mobile Ad Hoc Networks by G Ding, X Wu, B Bhar Center for Education and Research

CERIAS Tech Report A Simulation Study on Multi-Rate Mobile Ad Hoc Networks by G Ding, X Wu, B Bhar Center for Education and Research CERIAS Tech Report 2004-115 A Simulation Study on Multi-Rate Mobile Ad Hoc Networks by G Ding, X Wu, B Bhar Center for Education and Research Information Assurance and Security Purdue University, West

More information

ANewRoutingProtocolinAdHocNetworks with Unidirectional Links

ANewRoutingProtocolinAdHocNetworks with Unidirectional Links ANewRoutingProtocolinAdHocNetworks with Unidirectional Links Deepesh Man Shrestha and Young-Bae Ko Graduate School of Information & Communication, Ajou University, South Korea {deepesh, youngko}@ajou.ac.kr

More information

DATA FORWARDING IN OPPORTUNISTIC NETWORK USING MOBILE TRACES

DATA FORWARDING IN OPPORTUNISTIC NETWORK USING MOBILE TRACES DATA FORWARDING IN OPPORTUNISTIC NETWORK USING MOBILE TRACES B.Poonguzharselvi 1 and V.Vetriselvi 2 1,2 Department of Computer Science and Engineering, College of Engineering Guindy, Anna University Chennai,

More information

Performance Evaluation of Active Route Time-Out parameter in Ad-hoc On Demand Distance Vector (AODV)

Performance Evaluation of Active Route Time-Out parameter in Ad-hoc On Demand Distance Vector (AODV) Performance Evaluation of Active Route Time-Out parameter in Ad-hoc On Demand Distance Vector (AODV) WADHAH AL-MANDHARI, KOICHI GYODA 2, NOBUO NAKAJIMA Department of Human Communications The University

More information

PERFORMANCE EVALUATION OF DSR USING A NOVEL APPROACH

PERFORMANCE EVALUATION OF DSR USING A NOVEL APPROACH PERFORMANCE EVALUATION OF DSR USING A NOVEL APPROACH 1. Prof.S.P. Setti 2. Narasimha Raju K 3. Naresh Kumar K CS&SE Dept., CS&SE Dept., CS&SE Dept., AU College of Engineering, AU College of Engineering,

More information

Performance of Ad-Hoc Network Routing Protocols in Different Network Sizes

Performance of Ad-Hoc Network Routing Protocols in Different Network Sizes Performance of Ad-Hoc Network Routing Protocols in Different Network Sizes Sudheer Kumar 1, Akhilesh Yadav 2 Department of Computer Science and Engineering Kanpur Institute of Technology, Kanpur sudheerkr21@gmail.co

More information

Impulse Radio Ultra Wide Band Based Mobile Adhoc Network Routing Performance Analysis

Impulse Radio Ultra Wide Band Based Mobile Adhoc Network Routing Performance Analysis American Journal of Applied Sciences, 10 (4): 361-366, 2013 ISSN: 1546-9239 2013 Sreedhar and Venkatesh, This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license

More information

A New Energy-Aware Routing Protocol for. Improving Path Stability in Ad-hoc Networks

A New Energy-Aware Routing Protocol for. Improving Path Stability in Ad-hoc Networks Contemporary Engineering Sciences, Vol. 8, 2015, no. 19, 859-864 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ces.2015.57207 A New Energy-Aware Routing Protocol for Improving Path Stability

More information

A REVERSE AND ENHANCED AODV ROUTING PROTOCOL FOR MANETS

A REVERSE AND ENHANCED AODV ROUTING PROTOCOL FOR MANETS A REVERSE AND ENHANCED AODV ROUTING PROTOCOL FOR MANETS M. Sanabani 1, R. Alsaqour 2 and S. Kurkushi 1 1 Faculty of Computer Science and Information Systems, Thamar University, Thamar, Republic of Yemen

More information

ENSC 427: COMMUNICATION NETWORK PROJECT PRESENTATION Spring 2010 Instructor: Ljiljana Trajkovic. Message Ferrying

ENSC 427: COMMUNICATION NETWORK PROJECT PRESENTATION Spring 2010 Instructor: Ljiljana Trajkovic. Message Ferrying ENSC 427: COMMUNICATION NETWORK PROJECT PRESENTATION Spring 2010 Instructor: Ljiljana Trajkovic 1 Message Ferrying Group 9 Timbo Yuen (tty2@sfu.ca) Dan Hendry (danh@sfu.ca) Yazan Shehadeh (ysa5@sfu.ca)

More information

A Routing Protocol for Utilizing Multiple Channels in Multi-Hop Wireless Networks with a Single Transceiver

A Routing Protocol for Utilizing Multiple Channels in Multi-Hop Wireless Networks with a Single Transceiver 1 A Routing Protocol for Utilizing Multiple Channels in Multi-Hop Wireless Networks with a Single Transceiver Jungmin So Dept. of Computer Science, and Coordinated Science Laboratory University of Illinois

More information

Anil Saini Ph.D. Research Scholar Department of Comp. Sci. & Applns, India. Keywords AODV, CBR, DSDV, DSR, MANETs, PDF, Pause Time, Speed, Throughput.

Anil Saini Ph.D. Research Scholar Department of Comp. Sci. & Applns, India. Keywords AODV, CBR, DSDV, DSR, MANETs, PDF, Pause Time, Speed, Throughput. Volume 6, Issue 7, July 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Performance Analysis

More information

Mitigating Superfluous Flooding of Control Packets MANET

Mitigating Superfluous Flooding of Control Packets MANET Mitigating Superfluous Flooding of Control Packets MANET B.Shanmugha Priya 1 PG Student, Department of Computer Science, Park College of Engineering and Technology, Kaniyur, Coimbatore, India 1 Abstract:

More information

Chapter 7 CONCLUSION

Chapter 7 CONCLUSION 97 Chapter 7 CONCLUSION 7.1. Introduction A Mobile Ad-hoc Network (MANET) could be considered as network of mobile nodes which communicate with each other without any fixed infrastructure. The nodes in

More information

Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN)

Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN) Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN) G. S. Ahn, A. T. Campbell, A. Veres, and L. H. Sun IEEE Trans. On Mobile Computing

More information

Improvement of Buffer Scheme for Delay Tolerant Networks

Improvement of Buffer Scheme for Delay Tolerant Networks Improvement of Buffer Scheme for Delay Tolerant Networks Jian Shen 1,2, Jin Wang 1,2, Li Ma 1,2, Ilyong Chung 3 1 Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science

More information

Queue Management for Network Coding in Ad Hoc Networks

Queue Management for Network Coding in Ad Hoc Networks 2012 Third International Conference on Intelligent Systems Modelling and Simulation Queue Management for Network Coding in Ad Hoc Networks S.E. Tan H.T. Yew M.S. Arifianto I. Saad K.T.K. Teo Modelling,

More information

A Reliable Route Selection Algorithm Using Global Positioning Systems in Mobile Ad-hoc Networks

A Reliable Route Selection Algorithm Using Global Positioning Systems in Mobile Ad-hoc Networks A Reliable Route Selection Algorithm Using Global Positioning Systems in Mobile Ad-hoc Networks Won-Ik Kim Radio Performance Analysis Section Electronics & Telecommunications Research Institute 161 Kajong-dong,

More information

ENERGY EFFICIENT MULTIPATH ROUTING FOR MOBILE AD HOC NETWORKS

ENERGY EFFICIENT MULTIPATH ROUTING FOR MOBILE AD HOC NETWORKS ENERGY EFFICIENT MULTIPATH ROUTING FOR MOBILE AD HOC NETWORKS May Cho Aye and Aye Moe Aung Faculty of Information and Communication Technology, University of Technology (Yatanarpon Cyber City), Pyin Oo

More information

Multipath Routing Protocol for Congestion Control in Mobile Ad-hoc Network

Multipath Routing Protocol for Congestion Control in Mobile Ad-hoc Network 1 Multipath Routing Protocol for Congestion Control in Mobile Ad-hoc Network Nilima Walde, Assistant Professor, Department of Information Technology, Army Institute of Technology, Pune, India Dhananjay

More information

An Efficient Routing Approach and Improvement Of AODV Protocol In Mobile Ad-Hoc Networks

An Efficient Routing Approach and Improvement Of AODV Protocol In Mobile Ad-Hoc Networks An Efficient Routing Approach and Improvement Of AODV Protocol In Mobile Ad-Hoc Networks Tejomayee Nath #1 & Suneeta Mohanty *2 # School of Computer Engineering, KIIT University Bhubaneswar,, India Abstract

More information

QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET

QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET 2011 International Conference on Information and Network Technology IPCSIT vol.4 (2011) (2011) IACSIT Press, Singapore QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET Ashwini V. Biradar

More information

Routing Protocols in MANETs

Routing Protocols in MANETs Chapter 4 Routing Protocols in MANETs 4.1 Introduction The main aim of any Ad Hoc network routing protocol is to meet the challenges of the dynamically changing topology and establish a correct and an

More information

Enhancing the Performance of Mobile Ad Hoc Networks with the Aid of Internet Gateways 1

Enhancing the Performance of Mobile Ad Hoc Networks with the Aid of Internet Gateways 1 Enhancing the Performance of Mobile Ad Hoc Networks with the Aid of Internet Gateways 1 Shiv Mehra and Chansu Yu Department of Electrical and Computer Engineering Cleveland State University E-mail: {s.mehra,c.yu91}@csuohio.edu

More information

Multiple-Metric Hybrid Routing Protocol for Heterogeneous Wireless Access Networks

Multiple-Metric Hybrid Routing Protocol for Heterogeneous Wireless Access Networks Multiple-Metric Hybrid Routing Protocol for Heterogeneous Wireless Access Networks Lijuan Cao Kashif Sharif Yu Wang Teresa Dahlberg Department of Computer Science, University of North Carolina at Charlotte,

More information

DIRECTIONAL ORIENTED FORWARDING PROTOCOL FOR UAANETS

DIRECTIONAL ORIENTED FORWARDING PROTOCOL FOR UAANETS DIRECTIONAL ORIENTED FORWARDING PROTOCOL FOR UAANETS R.Suganthi 1 and S. Sankara Gomathi 2 1 Sathyabama University, Chennai, India 2 Sathyabama University, Chennai, India E-Mail: sugimanicks@gmail.com

More information

Performance Evaluation of AODV and DSR routing protocols in MANET

Performance Evaluation of AODV and DSR routing protocols in MANET Performance Evaluation of AODV and DSR routing protocols in MANET Naresh Dobhal Diwakar Mourya ABSTRACT MANETs are wireless temporary adhoc networks that are being setup with no prior infrastructure and

More information

Wireless Networking & Mobile Computing

Wireless Networking & Mobile Computing Wireless Networking & Mobile Computing CS 752/852 - Spring 2012 Network Layer: Ad Hoc Routing Tamer Nadeem Dept. of Computer Science The OSI Communication Model Page 2 Spring 2012 CS 752/852 - Wireless

More information

Recent Researches in Communications, Information Science and Education

Recent Researches in Communications, Information Science and Education AODV Based Multi-path Local Repairing Scheme for Mobile Ad Hoc Networks Eman Shaaban, PhD Computer Systems Dept. Faculty of computer and information science Ain-Shams university, Cairo, Egypt Eman.shaaban@cis.asu.edu.eg

More information

ENERGY-AWARE FOR DH-AODV ROUTING PROTOCOL IN WIRELESS MESH NETWORK

ENERGY-AWARE FOR DH-AODV ROUTING PROTOCOL IN WIRELESS MESH NETWORK ENERGY-AWARE FOR DH-AODV ROUTING PROTOCOL IN WIRELESS MESH NETWORK Yousif Ali Saadi, Rosilah Hassan and Dahlila Putri Dahnil Network Communication Lab Research, Centre for Software Technology and Management

More information

Empirical Study of Mobility effect on IEEE MAC protocol for Mobile Ad- Hoc Networks

Empirical Study of Mobility effect on IEEE MAC protocol for Mobile Ad- Hoc Networks Empirical Study of Mobility effect on IEEE 802.11 MAC protocol for Mobile Ad- Hoc Networks Mojtaba Razfar and Jane Dong mrazfar, jdong2@calstatela.edu Department of Electrical and computer Engineering

More information

A Message Ferrying Approach for Data Delivery in Sparse Mobile Ad Hoc Networks

A Message Ferrying Approach for Data Delivery in Sparse Mobile Ad Hoc Networks A Message Ferrying Approach for Data Delivery in Sparse Mobile Ad Hoc Networks Wenrui Zhao, Mostafa Ammar and Ellen Zegura College of Computing, Georgia Institute of Technology, Atlanta, Georgia 3332 {wrzhao,

More information

Routing in a Delay Tolerant Network

Routing in a Delay Tolerant Network Routing in a Delay Tolerant Network Vladislav Marinov Jacobs University Bremen March 31st, 2008 Vladislav Marinov Routing in a Delay Tolerant Network 1 Internet for a Remote Village Dial-up connection

More information

Behaviour of Routing Protocols of Mobile Adhoc Netwok with Increasing Number of Groups using Group Mobility Model

Behaviour of Routing Protocols of Mobile Adhoc Netwok with Increasing Number of Groups using Group Mobility Model Behaviour of Routing Protocols of Mobile Adhoc Netwok with Increasing Number of Groups using Group Mobility Model Deepak Agrawal, Brajesh Patel Department of CSE Shri Ram Institute of Technology Jabalpur,

More information

1 Multipath Node-Disjoint Routing with Backup List Based on the AODV Protocol

1 Multipath Node-Disjoint Routing with Backup List Based on the AODV Protocol 1 Multipath Node-Disjoint Routing with Backup List Based on the AODV Protocol Vahid Zangeneh i and Shahriar Mohammadi ii * ABSTRACT In recent years, routing has been the most focused area in ad hoc networks

More information

Performance Evaluation and Comparison of AODV and AOMDV

Performance Evaluation and Comparison of AODV and AOMDV Performance Evaluation and Comparison of AODV and AOMDV S. R. Biradar 1, Koushik Majumder 2, Subir Kumar Sarkar 3, Puttamadappa C 4 1 Sikkim Manipal Institute of Technology, Majitar -737 132 2 WBUT, Kolkata

More information

Analysis of Black-Hole Attack in MANET using AODV Routing Protocol

Analysis of Black-Hole Attack in MANET using AODV Routing Protocol Analysis of Black-Hole Attack in MANET using Routing Protocol Ms Neha Choudhary Electronics and Communication Truba College of Engineering, Indore India Dr Sudhir Agrawal Electronics and Communication

More information

Performance Analysis of AODV Routing Protocol with and without Malicious Attack in Mobile Adhoc Networks

Performance Analysis of AODV Routing Protocol with and without Malicious Attack in Mobile Adhoc Networks , pp.63-70 http://dx.doi.org/10.14257/ijast.2015.82.06 Performance Analysis of AODV Routing Protocol with and without Malicious Attack in Mobile Adhoc Networks Kulbir Kaur Waraich 1 and Barinderpal Singh

More information

Evaluation of Routing Protocols for Mobile Ad hoc Networks

Evaluation of Routing Protocols for Mobile Ad hoc Networks International Journal of Soft Computing and Engineering (IJSCE) Evaluation of Routing Protocols for Mobile Ad hoc Networks Abstract Mobile Ad hoc network is a self-configuring infrastructure less network

More information

Expanding Ring Search for Route Discovery in LOADng Routing Protocol

Expanding Ring Search for Route Discovery in LOADng Routing Protocol Expanding Ring Search for Route Discovery in LOADng Routing Protocol Antonin Bas, Jiazi Yi, Thomas Clausen Laboratoire d Informatique (LIX) Ecole Polytechnique, France) antonin@antonin-bas.fr, jiazi@jiaziyi.com,

More information

Impact of Node Velocity and Density on Probabilistic Flooding and its Effectiveness in MANET

Impact of Node Velocity and Density on Probabilistic Flooding and its Effectiveness in MANET Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 12, December 2014,

More information

Store-and-Forward Performance in a DTN

Store-and-Forward Performance in a DTN Store-and-Forward Performance in a DTN Mooi-Choo Chuah, Peng Yang, Brian D. Davison, Liang Cheng Department of Computer Science and Engineering Lehigh University 19 Memorial Drive West, Bethlehem, PA 18015,

More information

Dynamic Source Routing in Ad Hoc Wireless Networks

Dynamic Source Routing in Ad Hoc Wireless Networks Dynamic Source Routing in Ad Hoc Wireless Networks David B. Johnson David A. Maltz Computer Science Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213-3891 dbj@cs.cmu.edu Abstract

More information

SUMMARY OF ROUTING PROTOCOL MOBILE AD HOC NETWORKS. YI Jiazi. Polytechnic School of University of Nantes. Feb.

SUMMARY OF ROUTING PROTOCOL MOBILE AD HOC NETWORKS. YI Jiazi. Polytechnic School of University of Nantes. Feb. SUMMARY OF ROUTING PROTOCOL IN MOBILE AD HOC NETWORKS YI Jiazi Polytechnic School of University of Nantes yi.jiazi@gmail.com Feb. 2007 CONTENTS ABSTRACT...2 1. INTRODUCTION...2 2. UNI-PATH ROUTING PROTOCOL...2

More information

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5.

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5. Rahem Abri Content 1. Introduction 2. The Ad-hoc On-Demand Distance Vector Algorithm Path Discovery Reverse Path Setup Forward Path Setup Route Table Management Path Management Local Connectivity Management

More information

STUDY AND COMPARISION OF PROACTIVE AND REACTIVE ROUTING PROTOCOL FOR MULTICHANNEL WIRELESS AD-HOC NETWORK

STUDY AND COMPARISION OF PROACTIVE AND REACTIVE ROUTING PROTOCOL FOR MULTICHANNEL WIRELESS AD-HOC NETWORK STUDY AND COMPARISION OF PROACTIVE AND REACTIVE ROUTING PROTOCOL FOR MULTICHANNEL WIRELESS AD-HOC NETWORK 1 Arpita Singh, 2 Navendu Nitin, 3 Neelesh Agrawal, 4 Arvind Kumar Jaiswal 1 PG student, SHIATS-DU,

More information

Poonam kori et al. / International Journal on Computer Science and Engineering (IJCSE)

Poonam kori et al. / International Journal on Computer Science and Engineering (IJCSE) An Effect of Route Caching Scheme in DSR for Vehicular Adhoc Networks Poonam kori, Dr. Sanjeev Sharma School Of Information Technology, RGPV BHOPAL, INDIA E-mail: Poonam.kori@gmail.com Abstract - Routing

More information

6. Node Disjoint Split Multipath Protocol for Unified. Multicasting through Announcements (NDSM-PUMA)

6. Node Disjoint Split Multipath Protocol for Unified. Multicasting through Announcements (NDSM-PUMA) 103 6. Node Disjoint Split Multipath Protocol for Unified Multicasting through Announcements (NDSM-PUMA) 6.1 Introduction It has been demonstrated in chapter 3 that the performance evaluation of the PUMA

More information

Performance analysis of aodv, dsdv and aomdv using wimax in NS-2

Performance analysis of aodv, dsdv and aomdv using wimax in NS-2 Performance analysis of aodv, dsdv and aomdv using wimax in NS-2 Madhusrhee B Department Computer Science, L.J Institute of Technology, Ahmedabad, India Abstract WiMAX (IEEE 802.16) technology empowers

More information

A Comparative Analysis of Energy Preservation Performance Metric for ERAODV, RAODV, AODV and DSDV Routing Protocols in MANET

A Comparative Analysis of Energy Preservation Performance Metric for ERAODV, RAODV, AODV and DSDV Routing Protocols in MANET A Comparative Analysis of Energy Preservation Performance Metric for ERAODV, RAODV, AODV and DSDV Routing Protocols in MANET Bhabani Sankar Gouda Department of Computer Science & Engineering National Institute

More information

Integrated Buffer and Route Management in a DTN with Message Ferry

Integrated Buffer and Route Management in a DTN with Message Ferry Integrated Buffer and Route Management in a DTN with Message Ferry Mooi Choo Chuah Wen-Bin Ma chuah@cse.lehigh.edu wem2@.lehigh.edu Department of Computer Science and Engineering 19 Memorial Drive West,

More information

Routing in Variable Topology Networks

Routing in Variable Topology Networks Routing in Variable Topology Networks Dr. Alhussein Abouzeid Electrical, Computer and Systems Engineering (ECSE) Rensselaer Polytechnic Institute Variable Topology Networks P2P networks for distributed

More information

Performance Evaluation of MANET through NS2 Simulation

Performance Evaluation of MANET through NS2 Simulation International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 1 (2014), pp. 25-30 International Research Publication House http://www.irphouse.com Performance Evaluation

More information

Performance Enhancement of AOMDV with Energy Efficient Routing Based On Random Way Point Mobility Model

Performance Enhancement of AOMDV with Energy Efficient Routing Based On Random Way Point Mobility Model Performance Enhancement of AOMDV with Energy Efficient Routing Based On Random Way Point Mobility Model Geetha.S, Dr.G.Geetharamani Asst.Prof, Department of MCA, BIT Campus Tiruchirappalli, Anna University,

More information

Collisions & Virtual collisions in IEEE networks

Collisions & Virtual collisions in IEEE networks Collisions & Virtual collisions in IEEE 82.11 networks Libin Jiang EE228a project report, Spring 26 Abstract Packet collisions lead to performance degradation in IEEE 82.11 [1] networks. The carrier-sensing

More information

LECTURE 9. Ad hoc Networks and Routing

LECTURE 9. Ad hoc Networks and Routing 1 LECTURE 9 Ad hoc Networks and Routing Ad hoc Networks 2 Ad Hoc Networks consist of peer to peer communicating nodes (possibly mobile) no infrastructure. Topology of the network changes dynamically links

More information

Delay Tolerant Networks

Delay Tolerant Networks Delay Tolerant Networks DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS What is different? S A wireless network that is very sparse and partitioned disconnected

More information

Performance Comparison of AODV, DSR, DSDV and OLSR MANET Routing Protocols

Performance Comparison of AODV, DSR, DSDV and OLSR MANET Routing Protocols Performance Comparison of AODV, DSR, DSDV and OLSR MANET Routing Protocols Akshay Shankar, Lavanya Chelle Information Science Engineering RNS Institute of Technology Bangalore, India Abstract- A Mobile

More information

Performance Analysis and Enhancement of Routing Protocol in Manet

Performance Analysis and Enhancement of Routing Protocol in Manet Vol.2, Issue.2, Mar-Apr 2012 pp-323-328 ISSN: 2249-6645 Performance Analysis and Enhancement of Routing Protocol in Manet Jaya Jacob*, V.Seethalakshmi** *II MECS, Sri Shakthi Institute of Engineering and

More information

Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks

Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks 1 Ravindra.E, 2 Pooja Agraharkar Asst Prof, Dept. of Electronics & Communication Engg, Mtech Student, Dept. of Electronics & Communication

More information

Performance Evaluation of Various Routing Protocols in MANET

Performance Evaluation of Various Routing Protocols in MANET 208 Performance Evaluation of Various Routing Protocols in MANET Jaya Jacob 1,V.Seethalakshmi 2 1 II MECS,Sri Shakthi Institute of Science and Technology, Coimbatore, India 2 Associate Professor-ECE, Sri

More information

Comparing Delay Tolerant Network Routing Protocols for Optimizing L-Copies in Spray and Wait Routing for Minimum Delay

Comparing Delay Tolerant Network Routing Protocols for Optimizing L-Copies in Spray and Wait Routing for Minimum Delay Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013) Comparing Delay Tolerant Network Routing Protocols for Optimizing L-Copies in Spray and Wait Routing for Minimum Delay Anjula

More information

Density-Aware Routing in Highly Dynamic DTNs: The RollerNet Case

Density-Aware Routing in Highly Dynamic DTNs: The RollerNet Case Density-Aware Routing in Highly Dynamic DTNs: The RollerNet Case Pierre-Ugo Tournoux, Student Member, IEEE, Je re mie Leguay, Farid Benbadis, John Whitbeck, Student Member, IEEE, Vania Conan, and Marcelo

More information

Performance Enhancement of Routing Protocols for VANET With Variable Traffic Scenario

Performance Enhancement of Routing Protocols for VANET With Variable Traffic Scenario Performance Enhancement of Routing Protocols for VANET With Variable Traffic Scenario Uttara Vyas 1, Prof. Kamlesh Chopra 2, Prof. Prashant Lakkadwala 3 1 Computer Science and Engineering,Acropolis Technical

More information

Optimizing Performance of Routing against Black Hole Attack in MANET using AODV Protocol Prerana A. Chaudhari 1 Vanaraj B.

Optimizing Performance of Routing against Black Hole Attack in MANET using AODV Protocol Prerana A. Chaudhari 1 Vanaraj B. IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 04, 2015 ISSN (online): 2321-0613 Optimizing Performance of Routing against Black Hole Attack in MANET using AODV Protocol

More information

2013, IJARCSSE All Rights Reserved Page 85

2013, IJARCSSE All Rights Reserved Page 85 Volume 3, Issue 12, December 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Overview of

More information

Energy and Power Aware Stable Routing Strategy for Ad hoc Wireless Networks based on DSR

Energy and Power Aware Stable Routing Strategy for Ad hoc Wireless Networks based on DSR Energy and Power Aware Stable Routing Strategy for Ad hoc Wireless Networks based on Mr. Nirav Bhatt, Dr. Dhaval Kathiriya Reaserch Scholar, School of Computer Science, RK University, Rajkot Director IT,

More information

Performance Analysis of Routing Protocols in Mobile Ad-hoc Network (MANET)

Performance Analysis of Routing Protocols in Mobile Ad-hoc Network (MANET) Performance Analysis of Routing Protocols in Mobile Ad-hoc Network (MANET) Md. Zulfikar Alom 1, Tapan Kumar Godder 2, Mohammad NayeemMorshed 3, Student Member, IEEE 1,2 Department of Information & Communication

More information

Control Traffic Analysis of On-Demand Routing Protocol. in Mobile Ad-hoc Networks

Control Traffic Analysis of On-Demand Routing Protocol. in Mobile Ad-hoc Networks Second International Conference on Networking and Distributed Computing Control Traffic Analysis of On-Demand Routing Protocol in Mobile Ad-hoc Networks Zhilin Zhang School of Computer Science & Technology

More information

OS-multicast: On-demand Situation-aware Multicasting in Disruption Tolerant Networks

OS-multicast: On-demand Situation-aware Multicasting in Disruption Tolerant Networks OS-multicast: On-demand Situation-aware Multicasting in Disruption Tolerant Networks Qing Ye, Liang Cheng, Mooi Choo Chuah, and Brian D. Davison Department of Computer Science and Engineering, Lehigh University

More information

Review: Performance Evaluation of TCP Congestion Control Mechanisms Using Random-Way-Point Mobility Model

Review: Performance Evaluation of TCP Congestion Control Mechanisms Using Random-Way-Point Mobility Model Review: Performance Evaluation of TCP Congestion Control Mechanisms Using Random-Way-Point Mobility Model Rakesh K Scholar (M.Tech) The Oxford College of Engineering Bangalore Mrs. Kalaiselvi Asst. Prof,

More information

Performance Evaluation of Two Reactive and Proactive Mobile Ad Hoc Routing Protocols

Performance Evaluation of Two Reactive and Proactive Mobile Ad Hoc Routing Protocols www.ijcsi.org 551 Performance Evaluation of Two Reactive and Proactive Mobile Ad Hoc Routing Protocols Kashif Ibrahim Qazi Javed Ahmed Abdul Qudoos Mirza Aamir Mehmood Department of Computer Science, Balochistan

More information

Keywords: AODV, MANET, WRP

Keywords: AODV, MANET, WRP Performance Analysis of AODV and WRP in MANET Sachchida Nand Singh*, Surendra Verma**, Ravindra Kumar Gupta*** *(Pursuing M.Tech in Software Engineering, SSSIST Sehore(M.P), India, Email: sesachchida@gmail.com)

More information

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. Broch et al Presented by Brian Card

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. Broch et al Presented by Brian Card A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols Broch et al Presented by Brian Card 1 Outline Introduction NS enhancements Protocols: DSDV TORA DRS AODV Evaluation Conclusions

More information

International Journal of Modern Trends in Engineering and Research e-issn: p-issn:

International Journal of Modern Trends in Engineering and Research   e-issn: p-issn: International Journal of Modern Trends in Engineering and Research www.ijmter.com A Review of Ad hoc on demand distance vector routing and proposed AR-AODV Bhavana Gupta 1, Rajesh Tiwari 2, Vikas Jain

More information

Performance Analysis of Proactive and Reactive Routing Protocols for QOS in MANET through OLSR & AODV

Performance Analysis of Proactive and Reactive Routing Protocols for QOS in MANET through OLSR & AODV MIT International Journal of Electrical and Instrumentation Engineering, Vol. 3, No. 2, August 2013, pp. 57 61 57 Performance Analysis of Proactive and Reactive Routing Protocols for QOS in MANET through

More information

A Novel Interference Aware Optimized Link State Routing Protocol for Power Heterogeneous MANETs

A Novel Interference Aware Optimized Link State Routing Protocol for Power Heterogeneous MANETs A Novel Interference Aware Optimized Link State Routing Protocol for Power Heterogeneous MANETs Vijaya Lekshmi. S.V, E.P.Prakash PG Scholar, Assistant Professor Department of CSE SNS College of Engineering

More information

A Comparative study of On-Demand Data Delivery with Tables Driven and On-Demand Protocols for Mobile Ad-Hoc Network

A Comparative study of On-Demand Data Delivery with Tables Driven and On-Demand Protocols for Mobile Ad-Hoc Network A Comparative study of On-Demand Data Delivery with Tables Driven and On-Demand Protocols for Mobile Ad-Hoc Network Humayun Bakht Research Fellow, London School of Commerce, United Kingdom humayunbakht@yahoo.co.uk

More information

PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS

PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS AMANDEEP University College of Engineering, Punjabi University Patiala, Punjab, India amandeep8848@gmail.com GURMEET KAUR University College of Engineering,

More information

Challenges in Geographic Routing: Sparse Networks, Obstacles, and Traffic Provisioning

Challenges in Geographic Routing: Sparse Networks, Obstacles, and Traffic Provisioning Challenges in Geographic Routing: Sparse Networks, Obstacles, and Traffic Provisioning Brad Karp Berkeley, CA bkarp@icsi.berkeley.edu DIMACS Pervasive Networking Workshop 2 May, 2 Motivating Examples Vast

More information

Multicasting in Ad-Hoc Networks: Comparing MAODV and ODMRP

Multicasting in Ad-Hoc Networks: Comparing MAODV and ODMRP Multicasting in Ad-Hoc Networks: Comparing MAODV and ODMRP Thomas Kunz and Ed Cheng Carleton University tkunz@sce.carleton.ca Abstract. Multicasting can efficiently support a variety of applications that

More information

Measure of Impact of Node Misbehavior in Ad Hoc Routing: A Comparative Approach

Measure of Impact of Node Misbehavior in Ad Hoc Routing: A Comparative Approach ISSN (Print): 1694 0814 10 Measure of Impact of Node Misbehavior in Ad Hoc Routing: A Comparative Approach Manoj Kumar Mishra 1, Binod Kumar Pattanayak 2, Alok Kumar Jagadev 3, Manojranjan Nayak 4 1 Dept.

More information

MULTICASTING IN MANET USING THE BEST EFFECTIVE PROTOCOLS

MULTICASTING IN MANET USING THE BEST EFFECTIVE PROTOCOLS MULTICASTING IN MANET USING THE BEST EFFECTIVE PROTOCOLS 1 R. INDIRANI, 2 ARUCHAMY RAJINI 1 M. Phil Research Scholar, 2 Associate Professor 1&2 PG & Research Department of Computer Science, 1&2 Hindusthan

More information

MANET is considered a collection of wireless mobile nodes that are capable of communicating with each other. Research Article 2014

MANET is considered a collection of wireless mobile nodes that are capable of communicating with each other. Research Article 2014 Throughput Analysis of Proactive and Reactive MANET Routing Protocols Kiranveer Kaur 1 Surinderjit Kaur 2 Vikramjit Singh 3 Department of Computer Science, University College of Engineering, Department

More information

Wireless mobile communications for personal use is and will continue to be a part of our

Wireless mobile communications for personal use is and will continue to be a part of our Chapter 1 Introduction 1.1 General Description Wireless mobile communications for personal use is and will continue to be a part of our everyday life. Standards for wireless communications have boosted

More information

Evaluating the Performance of Mobile Agent-Based Message Communication among Mobile Hosts in Large Ad Hoc Wireless Network

Evaluating the Performance of Mobile Agent-Based Message Communication among Mobile Hosts in Large Ad Hoc Wireless Network Evaluating the Performance of Mobile Agent-Based Communication among Mobile Hosts in Large Ad Hoc Wireless Network S. Bandyopadhyay Krishna Paul PricewaterhouseCoopers Limited Techna Digital Systems Sector

More information

Delay Tolerant Mobility Aware Routing/Mobility Dissemination Protocol for the Airborne Network

Delay Tolerant Mobility Aware Routing/Mobility Dissemination Protocol for the Airborne Network Delay Tolerant Mobility Aware Routing/Mobility Dissemination Protocol for the Airborne Network Kevin C. Lee, Adam Piechowicz, Mario Gerla, Abhishek Tiwari, Anurag Ganguli, David Krzysiak UtopiaCompression

More information