Separating identifiers from locators to scale the Internet

Size: px
Start display at page:

Download "Separating identifiers from locators to scale the Internet"

Transcription

1 Separating identifiers from locators to scale the Internet Olivier Bonaventure Department of Computing Science and Engineering Université catholique de Louvain (UCL) Place Sainte-Barbe, 2, B-1348, Louvain-la-Neuve (Belgium)

2 Outline Issues with the current Internet architecture Locators and identifiers Host based solutions Network-based solutions

3 Issues with the current Internet architecture Interdomain routing scalability Growth of BGP routing tables Internet bubble CIDR works well Growth is back again! Growth is back pre-cidr fast growth Source :

4 Issues with the current Internet architecture (2) Reasons for the BGP growth Number of distinct ASes?

5 Issues with the current Internet architecture (3) Fragmentation of IPv4 addressing space Most ASes advertise several prefixes

6 Issues with the current Internet architecture (4) In comparison, the IPv6 addressing space is (fortunately still) much less fragmented

7 Issues with the current Internet architecture (5) Reasons for the BGP growth Multihoming Client : AS4567 R1 I can reach / /16 R2 I can reach /16 and / /23 I can reach /23 Provider AS123 R /16 Provider AS789 I can reach /16 and /23 Global Internet

8 Issues with the current Internet architecture (6) Reasons for the BGP growth Traffic engineering I can reach /16 Client : AS /24 and /23 R2 R /23 I can reach /24 and /23 R /16 Provider AS789 I can reach /16 Provider AS123 and /24 and /23 I can reach /16 and /24 and /23 Internet

9 Issues with the current Internet architecture (7) Interdomain routing security Only Best Current Practices from network operators prevent a customer network from using BGP to announce the prefix of someone else Misconfigurations (fat fingers) are frequent O. Bonaventure, 2007

10 Issues with the current Internet architecture (8) Limited size of IPv4 addressing space We ve seen this problem before and NAT, CIDR and IPv6 have been proposed... Source

11 Issues with the current Internet architecture (9) Mobility is not cleanly supported by the Internet architecture Applic. Transport Network DataLink /24 R1 R2 R3 Applic. Transport Network / /24 DataLink Mobile IP is a possible but not widely deployed solution to this problem

12 Outline Issues with the current Internet architecture Locators and identifiers Host based solutions Network-based solutions

13 The complementary roles of IP addresses The IP addresses currently used by endhosts play two complementary roles Identifier role : the IP address identifies (with port) the endpoint of transport flows Locator role : the IP address indicates the paths used to reach the endhost these paths are updated by routing protocols after each topology change Applic. Transport Network DataLink R1 R3 R4 R2 R5 R6 Applic. Transport Network DataLink

14 Existing identifiers Loopback addresses are already used as identifiers, but only on routers R / /32 R / /30 R3 R5 In contrast with endhost addresses and normal addresses on routers, loopback addresses are not tied to a particular physical interface a loopback address is always reachable provided that one of the router s interfaces remains up loopback addresses are often used as identifiers this is only possible because the loopback addresses are directly advertised by the routing protocols

15 Outline Issues with the current Internet architecture Locators and identifiers Host based solutions Network-based solutions

16 Transport layer Identifier : Id.A Specific sublayer Locators IP routing { Green.1, Red.2} sublayer Principle of the Host-based solutions Roles Translates the packets so that Transport layer always sees only the host identifier IP Routing sublayer sees only locators Manages the set of locators Securely switches from one locator to another upon move or after link failure each host maintains some state R R R R

17 Example Standalone multihomed ILNP host SRC: 2001:AAA:1235::EDC DST:2001:BBBB:789::AAAA DNS Nonce: Request : dhost? Context : From SRCId= EDC, Nonce=87654 TCP SYN+ACK (I:EDC,pref=100) (L:2001:EEEE:456, pref=10) (L:2001:AAA:1235, pref=999) AS3 2001:BBBB Identifier : AAAA Locator 2001:BBBB:789: Provider1 - AS1 2001:AAA Provider2 - AS2 2001:EEEE SRC:2001:BBBB:789::AAAA DST: 2001:AAA:1235::EDC Nonce: TCP SYN ICMP Locator update SRC:2001:EEEE:456::EDC DST: 2001:BBBB:789:AAAA Nonce: Identifier : EDC New Loc: 2001:EEEE:456 Locators : :EEEE: :AAA:1235 Context : From SRCId= AAAA, Nonce=12345

18 Identifiers Host Identity Protocol (HIP) Comparison of host-based solutions Public key Host Identity Tag : hash of host s key public key SHIM6 IPv6 hostbased multihoming one of the IPv6 addresses of host Identifier Locator Network Protocol upper 64 bits of IPv6 address Locators IPv6 address IPv6 address lower 64 bits of IPv6 address How to map identifiers to locators? Security DNS Host may announce its locators during session establish. public key crypto IPSEC DNS Host announces its locators during shim6 session estab. CGA and HBA addresses DNS Nonce option

19 Challenges of host-based solutions How to securely map one identifier onto the corresponding locators? DNSSec in most cases How to deal with link failures? Failure detection protocol, ICMP When a destination host has multiple locators, how does the source select the best one? How to update the locators attached to a host when it moves? Specific protocol, ICMP How to deploy a new host-based solution incrementally while maintaining interoperability with the existing Internet?

20 Outline Issues with the current Internet architecture Locators and identifiers Host based solutions Network-based solutions

21 Principles of the Network-based solutions Host s IP stack unchanged Each host has one stable IP address used as identifier not globally routed Transport layer Identifier : IPA IP routing sublayer Each edge router owns globally routed addresses used as locators Mapping mechanism is used to find locator associated to one identifier Packets from hosts are modified before being sent on Internet R R R R Locators { IPGreen.A, IPRed.A}

22 LISP : simple example Mapping reply for 0100: DD::8765 RLOC1 2001:BBB:456:AAAA RLOC2 2001:EEEE:123::CCCC AS3 2001:BBBB Mapping request Where is 0100: DD::8765 Locator: 2001:BBB:456:AAAA S: 0100: FF::1234 D: 0100: DD::8765 R R Identifier 0100: DD::8765 Locator 2001:EEEE:123::CCCC Outer header S: 2001:AAA:234:1111 D: 2001:BBB:456:AAAA Inner S: 0100: FF::1234 D: 0100: DD::8765 Provider1 - AS1 2001:AAA Locator 2001:AAA:234:1111 Provider2 - AS2 2001:EEEE R1 R R R2 Locator 2001:EEEE:678:2222 S: 0100: FF::1234 D: 0100: DD::8765 Identifier 0100: FF::1234 R S: 0100: FF::1234 D: 0100: FE::2345 R Identifier : 0100: FE::2345

23 LISP Locator Identifier Separation Protocol Identifiers Locators How to map identifiers to locators? How to forward packets across global Internet? Locator Identifier Separation Protocol (LISP) IPv4/v6 addresses not advertised on global Internet IPv4/v6 addresses advertised on global Internet NERD, ALT, CONS, LISP- DHT,... packets from hosts are encapsulated by edge routers

24 Challenges for network-based solutions How to securely map one identifier onto the corresponding locators? (too) many proposals security not addressed convincingly When an identifier has multiple locators, how does the edge router select the best one? How does a site performs traffic engineering? How to deal with mobile hosts? Is there enough incentive for edge networks to deploy this solution while they don t suffer from the cost of huge BGP routing tables? How to deploy a new network-based solution incrementally while maintaining interoperability with the existing Internet?

25 Conclusion IRTF s Routing Research Group is working on developing a more scalable Internet architecture Identifiers and Locators Host-based solutions HIP, SHIM6, ILNP,... Network-based solutions LISP,...

26 Remaining open issues What is an identifier and how do we allocate them? flat space, hierarchical, crypto-based,... Do we need host/network-based solutions? Some environments likely need host-based solutions while others need network-based How do we map identifiers onto locators Scalability, security and performance are key concerns Do we need to change interdomain routing? How to interoperate with current Internet? What are the incentives for edge networks to deploy new mechanisms? IRTF RRG s progress is very slow

Traditional IPv4 multihoming. IPv6 host-based multihoming. Drawbacks of BGP-based multihoming. How long will IPv4 last?

Traditional IPv4 multihoming. IPv6 host-based multihoming. Drawbacks of BGP-based multihoming. How long will IPv4 last? host-based multihoming raditional IPv4 multihoming 1.0.0.0/8 Provider2 AS2 2.0.0.0/8 Olivier Bonaventure Sébastien Barré IP Networking Lab Department of Computing Science and Engineering Université catholique

More information

LISP (Locator/Identifier Separation Protocol)

LISP (Locator/Identifier Separation Protocol) LISP (Locator/Identifier Separation Protocol) Damien Saucez* June 28 th, 2010 http://inl.info.ucl.ac.be *Thanks to Olivier Bonaventure and Pierre François Department of Computing Science and Engineering

More information

LISP-Click. D. Saucez, V. N. Nguyen and O. Bonaventure. Université catholique de Louvain.

LISP-Click. D. Saucez, V. N. Nguyen and O. Bonaventure. Université catholique de Louvain. LISP-Click D. Saucez, V. N. Nguyen and O. Bonaventure Université catholique de Louvain http://inl.info.ucl.ac.be A Click implementation of the Locator/ID Separation Protocol 2 The Internet is Broken! 3

More information

Locator/ID Separation Protocol (LISP)

Locator/ID Separation Protocol (LISP) Locator/ID Separation Protocol (LISP) Damien Saucez* INRIA Sophia Antipolis FRNOG 18, December 2 th, 2011 * special thanks to Olivier Bonaventure, Luigi Iannone and Dino Farinacci Disclaimer Not a vendor

More information

Locator ID Separation Protocol (LISP) Overview

Locator ID Separation Protocol (LISP) Overview Locator ID Separation Protocol (LISP) is a network architecture and protocol that implements the use of two namespaces instead of a single IP address: Endpoint identifiers (EIDs) assigned to end hosts.

More information

APT: A Practical Transit-Mapping Service Overview and Comparisons

APT: A Practical Transit-Mapping Service Overview and Comparisons APT: A Practical Transit-Mapping Service Overview and Comparisons draft-jen-apt Dan Jen, Michael Meisel, Dan Massey, Lan Wang, Beichuan Zhang, and Lixia Zhang The Big Picture APT is similar to LISP at

More information

Interdomain routing with BGP4 Part 4/5

Interdomain routing with BGP4 Part 4/5 Interdomain routing with BGP4 Part 4/5 Olivier Bonaventure Department of Computing Science and Engineering Université catholique de Louvain (UCL) Place Sainte-Barbe, 2, B-1348, Louvain-la-Neuve (Belgium)

More information

Future Routing and Addressing Models

Future Routing and Addressing Models Future Routing and Addressing Models Rob Evans JANET(UK) The JNT Association 2008 Networkshop 36 1 If it ain't broke... BGP is the inter-domain protocol of choice. Not that there's much choice. Carries

More information

HIP Host Identity Protocol. October 2007 Patrik Salmela Ericsson

HIP Host Identity Protocol. October 2007 Patrik Salmela Ericsson HIP Host Identity Protocol October 2007 Patrik Salmela Ericsson Agenda What is the Host Identity Protocol (HIP) What does HIP try to solve HIP basics Architecture The HIP base exchange HIP basic features

More information

State of routing research

State of routing research State of routing research Olivier Bonaventure with Pierre François, Bruno Quoitin and Steve Uhlig Dept. Computing Science and Engineering Université catholique de Louvain (UCL) http://www.info.ucl.ac.be/people/obo

More information

Evaluating the Benefits of the Locator/Identifier Separation

Evaluating the Benefits of the Locator/Identifier Separation Evaluating the Benefits of the Locator/Identifier Separation Bruno Quoitin IP Networking Lab Computer Science and Engineering Dept. Université catholique de Louvain, Belgium (bruno.quoitin@uclouvain.be)

More information

A Evolvable RANGI Transition Strategy

A Evolvable RANGI Transition Strategy A Evolvable RANGI Transition Strategy 1 Overview 5 Types of Sites: Progressive deployment of RANGI Interoperability between Type i and j (Total 10 cases) More RANGI deployment Smaller BGP Tables Less Address

More information

Interdomain Traffic Engineering in a Locator/Identifier Separation Context

Interdomain Traffic Engineering in a Locator/Identifier Separation Context 1 Interdomain Traffic Engineering in a Locator/Identifier Separation Context Damien Saucez, Benoit Donnet, Luigi Iannone, Olivier Bonaventure Université catholique de Louvain, Belgium Abstract The Routing

More information

IP/ICMP Translation Algorithm (IIT) Xing Li, Congxiao Bao, Fred Baker

IP/ICMP Translation Algorithm (IIT) Xing Li, Congxiao Bao, Fred Baker IP/ICMP Translation Algorithm (IIT) Xing Li, Congxiao Bao, Fred Baker 2008-11-17 Abstract This document specifies an update to the Stateless IP/ICMP Translation Algorithm described in RFC 2765. The algorithm

More information

LISP Locator/ID Separation Protocol

LISP Locator/ID Separation Protocol LISP Locator/ID Separation Protocol Hernán Contreras G. Consulting Systems Engineer hcontrer@cisco.com LISP Next Gen Routing Architecture Locator-ID Separation Protocol (LISP) Elevator Pitch LISP is a

More information

An incremental approach to IPv6 multihoming

An incremental approach to IPv6 multihoming Computer Communications 29 (2006) 582 592 www.elsevier.com/locate/comcom An incremental approach to IPv6 multihoming Marcelo Bagnulo a, *, Alberto García Martínez a, Arturo Azcorra a, Cedric de Launois

More information

LISP: What and Why. RIPE Berlin May, Vince Fuller (for Dino, Dave, Darrel, et al)

LISP: What and Why. RIPE Berlin May, Vince Fuller (for Dino, Dave, Darrel, et al) LISP: What and Why RIPE Berlin May, 2008 Vince Fuller (for Dino, Dave, Darrel, et al) http://www.vaf.net/prezos/lisp-ripe-long.pdf Agenda What is the problem? What is LISP? Why Locator/ID Separation? Data

More information

Shim6 Architecture. Geoff Huston IETF-63 August 2005

Shim6 Architecture. Geoff Huston IETF-63 August 2005 Shim6 Architecture Geoff Huston IETF-63 August 2005 Background draft-ietf-multi6-architecture-04.txt (RFC publication queue) general description of multi-homing objectives consideration of major types

More information

Validation of a LISP Simulator

Validation of a LISP Simulator Validation of a LISP Simulator Albert Cabellos-Aparicio, Jordi Domingo-Pascual Technical University of Catalonia Barcelona, Spain Damien Saucez, Olivier Bonaventure Université catholique de Louvain Louvain-La-Neuve,

More information

A Review of IPv6 Multihoming Solutions

A Review of IPv6 Multihoming Solutions A Review of IPv6 Multihoming Solutions Habib Naderi Department of Computer Science University of Auckland Auckland, New Zealand hnad002@aucklanduni.ac.nz Brian E. Carpenter Department of Computer Science

More information

Lecture 17: Network Layer Addressing, Control Plane, and Routing

Lecture 17: Network Layer Addressing, Control Plane, and Routing Lecture 17: Network Layer Addressing, Control Plane, and Routing COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition:

More information

LISP-TREE: A DNS Hierarchy to Support the LISP Mapping System

LISP-TREE: A DNS Hierarchy to Support the LISP Mapping System 1 LISP-TREE: A DNS Hierarchy to Support the LISP Mapping System Loránd Jakab, Albert Cabellos-Aparicio, Florin Coras, Damien Saucez, and Olivier Bonaventure Abstract During the last years, some operators

More information

IP Routing: LISP Configuration Guide, Cisco IOS Release 15M&T

IP Routing: LISP Configuration Guide, Cisco IOS Release 15M&T First Published: 2012-07-27 Last Modified: 2013-03-29 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387)

More information

Cisco IOS LISP Application Note Series: Access Control Lists

Cisco IOS LISP Application Note Series: Access Control Lists Cisco IOS LISP Application Note Series: Access Control Lists Version 1.1 (28 April 2011) Background The LISP Application Note Series provides targeted information that focuses on the integration and configuration

More information

BGP-like TE Capabilities for SHIM6

BGP-like TE Capabilities for SHIM6 BGP-like TE Capabilities for SHIM6 Marcelo Bagnulo, Alberto García-Martínez, Arturo Azcorra Departamento de Ingeniería Telemática, Universidad Carlos III de Madrid {marcelo, alberto, azcorra}@it.uc3m.es

More information

Transport and TCP. EE122 Fall 2011 Scott Shenker

Transport and TCP. EE122 Fall 2011 Scott Shenker Transport and TCP EE122 Fall 2011 Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson and other colleagues at Princeton and UC Berkeley

More information

Using NAT in Overlapping Networks

Using NAT in Overlapping Networks Using NAT in Overlapping Networks Document ID: 13774 Contents Introduction Prerequisites Requirements Components Used Conventions Configure Network Diagram Configurations Verify Troubleshoot Related Information

More information

Multicast in Identifier/Locator Separation Architectures

Multicast in Identifier/Locator Separation Architectures Multicast in Identifier/Locator Separation Architectures Michal Kryczka Universidad Carlos III de Madrid Email: michal.kryczka@imdea.org Abstract Many assumptions which were made during projecting current

More information

Transitioning to IPv6

Transitioning to IPv6 Transitioning to IPv6 麟瑞科技區域銷售事業處副處長張晃崚 CCIE #13673 2007 Cisco Systems, Inc. All rights reserved. ICND2 v1.0 7-1 IPv4 and IPv6 Currently, there are approximately 1.3 billion usable IPv4 addresses available.

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address Outline IP The Internet Protocol o IP Address IP subnetting CIDR o ARP Protocol o IP Function o Fragmentation o NAT o IPv6 2 IP Address o Hostname & IP Address IP Address o The Address ping www.nu.ac.th

More information

Internet Engineering Task Force (IETF) Category: Experimental ISSN: D. Meyer D. Lewis. Cisco Systems. January 2013

Internet Engineering Task Force (IETF) Category: Experimental ISSN: D. Meyer D. Lewis. Cisco Systems. January 2013 Internet Engineering Task Force (IETF) Request for Comments: 6830 Category: Experimental ISSN: 2070-1721 D. Farinacci Cisco Systems V. Fuller D. Meyer D. Lewis Cisco Systems January 2013 The Locator/ID

More information

ILNP: a whirlwind tour

ILNP: a whirlwind tour ILNP: a whirlwind tour Saleem Bhatti, University of St Andrews, UK 2010-10-03 NANOG50. Copyright 2010 Saleem Bhatti. 1 Outline 1. What? Basic information about ILNP. 2. Why? The rationale for ILNP. 3.

More information

Communications Software. CSE 123b. CSE 123b. Spring Lecture 10: Mobile Networking. Stefan Savage

Communications Software. CSE 123b. CSE 123b. Spring Lecture 10: Mobile Networking. Stefan Savage CSE 123b CSE 123b Communications Software Spring 2003 Lecture 10: Mobile Networking Stefan Savage Quick announcement My office hours tomorrow are moved to 12pm May 6, 2003 CSE 123b -- Lecture 10 Mobile

More information

Quick announcement. CSE 123b Communications Software. Last class. Today s issues. The Mobility Problem. Problems. Spring 2003

Quick announcement. CSE 123b Communications Software. Last class. Today s issues. The Mobility Problem. Problems. Spring 2003 CSE 123b Communications Software Quick announcement My office hours tomorrow are moved to 12pm Spring 2003 Lecture 10: Mobile Networking Stefan Savage May 6, 2003 CSE 123b -- Lecture 10 Mobile IP 2 Last

More information

CS 356: Computer Network Architectures. Lecture 15: DHCP, NAT, and IPv6. [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3

CS 356: Computer Network Architectures. Lecture 15: DHCP, NAT, and IPv6. [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3 CS 356: Computer Network Architectures Lecture 15: DHCP, NAT, and IPv6 [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3 Xiaowei Yang xwy@cs.duke.edu Dynamic Host Configuration Protocol (DHCP) Dynamic Assignment

More information

Shim6: Network Operator Concerns. Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI

Shim6: Network Operator Concerns. Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI Shim6: Network Operator Concerns Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI Not Currently Supporting IPv6? Many parties are going forward with IPv6 Japan

More information

Remember Extension Headers?

Remember Extension Headers? IPv6 Security 1 Remember Extension Headers? IPv6 allows an optional Extension Header in between the IPv6 header and upper layer header Allows adding new features to IPv6 protocol without major re-engineering

More information

Implementing VXLAN. Prerequisites for implementing VXLANs. Information about Implementing VXLAN

Implementing VXLAN. Prerequisites for implementing VXLANs. Information about Implementing VXLAN This module provides conceptual information for VXLAN in general and configuration information for layer 2 VXLAN on Cisco ASR 9000 Series Router. For configuration information of layer 3 VXLAN, see Implementing

More information

Securing BGP. Geoff Huston November 2007

Securing BGP. Geoff Huston November 2007 Securing BGP Geoff Huston November 2007 Agenda An Introduction to BGP BGP Security Questions Current Work Research Questions An Introduction to BGP Background to Internet Routing The routing architecture

More information

Chapter 12 Network Protocols

Chapter 12 Network Protocols Chapter 12 Network Protocols 1 Outline Protocol: Set of defined rules to allow communication between entities Open Systems Interconnection (OSI) Transmission Control Protocol/Internetworking Protocol (TCP/IP)

More information

Jacking-up the Internet Architecture by separating Location and Identity

Jacking-up the Internet Architecture by separating Location and Identity Jacking-up the Internet Architecture by separating Location and Identity Luigi Iannone Senior Research Scientist Deutsche Telekom Laboratories Road Map Why we need a new Internet Architecture? How Loc/ID

More information

Identifier and Locator separation in IP network

Identifier and Locator separation in IP network Identifier and Locator separation in IP network July 10, 2007 Taewan You (twyou@etri.re.kr) ETRI, PEC Contents IP Addresses in Internet Architecture Overloaded semantic Issues of ID/Loc separation Standardization

More information

Host Identity Protocol

Host Identity Protocol Presentation outline Host Identity Protocol Slides by: Pekka Nikander Ericsson Research Nomadiclab and Helsinki Institute for Information Technology http://www.hip4inter.net 2 What is HIP? Motivation HIP

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what

More information

The Shim6 Architecture for IPv6 Multihoming

The Shim6 Architecture for IPv6 Multihoming ACCEPTED FROM OPEN CALL The Shim6 Architecture for IPv6 Multihoming Alberto García-Martínez and Marcelo Bagnulo, Universidad Carlos III de Madrid Iljitsch van Beijnum, IMDEA Networks ABSTRACT The Shim6

More information

Internet Engineering Task Force (IETF) Category: Experimental. O. Bonaventure Universite catholique de Louvain January 2013

Internet Engineering Task Force (IETF) Category: Experimental. O. Bonaventure Universite catholique de Louvain January 2013 Internet Engineering Task Force (IETF) Request for Comments: 6834 Category: Experimental ISSN: 2070-1721 L. Iannone Telecom ParisTech D. Saucez INRIA Sophia Antipolis O. Bonaventure Universite catholique

More information

Integration of LISP and LISP-MN in INET

Integration of LISP and LISP-MN in INET Institute of Computer Science Chair of Communication Networks Prof. Dr.-Ing. P. Tran-Gia, Matthias Hartmann (University of Wuerzburg, Germany) Michael Höfling, Michael Menth (University of Tuebingen, Germany)

More information

IPV6 SIMPLE SECURITY CAPABILITIES.

IPV6 SIMPLE SECURITY CAPABILITIES. IPV6 SIMPLE SECURITY CAPABILITIES. 50 issues from RFC 6092 edited by J. Woodyatt, Apple Presentation by Olle E. Johansson, Edvina AB. ABSTRACT The RFC which this presentation is based upon is focused on

More information

ICN IDENTIFIER / LOCATOR. Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016)

ICN IDENTIFIER / LOCATOR. Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016) ICN IDENTIFIER / LOCATOR Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016) 1 A brief review of ID/Locators in IETF It s long, and we ll skim over it Then we discuss the CCNx & NDN

More information

EEC-684/584 Computer Networks

EEC-684/584 Computer Networks EEC-684/584 Computer Networks Lecture 14 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture Internetworking

More information

Cisco IOS LISP Application Note Series: Lab Testing Guide

Cisco IOS LISP Application Note Series: Lab Testing Guide Cisco IOS LISP Application Note Series: Lab Testing Guide Version 3.0 (28 April 2011) Background The LISP Application Note Series provides targeted information that focuses on the integration configuration

More information

Agenda. Forwarding (after a little more addressing) Follow-up from last time. Dealing with Address Scarcity. Sharing a Block of Addresses

Agenda. Forwarding (after a little more addressing) Follow-up from last time. Dealing with Address Scarcity. Sharing a Block of Addresses Agenda Forwarding (after a little more addressing) EE22 Fall 20 Scott Shenker http://inst.eecs.berkeley.edu/~ee22/ Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson and other colleagues

More information

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. IPv4 addressing, NAT http://xkcd.com/195/ Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

LISP: A Level of Indirection for Routing

LISP: A Level of Indirection for Routing LISP: A Level of Indirection for Routing ESCC/Internet2 Joint Techs Workshop University of Hawaii January 20-24, 2008 David Meyer & A Cast of 1000s (Vince Fuller, Darrel Lewis, Eliot Lear, Scott Brim,

More information

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: IPv6 Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: header format helps speed processing/forwarding header changes to facilitate QoS IPv6 datagram format:

More information

LOGICAL ADDRESSING. Faisal Karim Shaikh.

LOGICAL ADDRESSING. Faisal Karim Shaikh. LOGICAL ADDRESSING Faisal Karim Shaikh faisal.shaikh@faculty.muet.edu.pk DEWSNet Group Dependable Embedded Wired/Wireless Networks www.fkshaikh.com/dewsnet IPv4 ADDRESSES An IPv4 address is a 32-bit address

More information

Chapter 5 Network Layer: The Control Plane

Chapter 5 Network Layer: The Control Plane Chapter 5 Network Layer: The Control Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you

More information

TCP/IP Protocol Suite

TCP/IP Protocol Suite TCP/IP Protocol Suite Computer Networks Lecture 5 http://goo.gl/pze5o8 TCP/IP Network protocols used in the Internet also used in today's intranets TCP layer 4 protocol Together with UDP IP - layer 3 protocol

More information

TTL Propagate Disable and Site-ID Qualification

TTL Propagate Disable and Site-ID Qualification The TTL Propagate Disable feature supports disabling of the TTL (Time-To-Live) propagation for implementing the traceroute tool in a LISP network when RLOC and EID belong to different address-family. The

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

Host Identity Protocol, PLA, and PSIRP

Host Identity Protocol, PLA, and PSIRP Contents Host Identity Protocol, PLA, and PSIRP Prof. Sasu Tarkoma 23.02.2009 Introduction Current state Host Identity Protocol (HIP) Packet Level Authentication (PLA) Overlays (i3 and Hi3) Clean-slate

More information

Foreword xxiii Preface xxvii IPv6 Rationale and Features

Foreword xxiii Preface xxvii IPv6 Rationale and Features Contents Foreword Preface xxiii xxvii 1 IPv6 Rationale and Features 1 1.1 Internet Growth 1 1.1.1 IPv4 Addressing 1 1.1.2 IPv4 Address Space Utilization 3 1.1.3 Network Address Translation 5 1.1.4 HTTP

More information

CSE 123A Computer Netwrking

CSE 123A Computer Netwrking CSE 123A Computer Netwrking Winter 2005 Mobile Networking Alex Snoeren presenting in lieu of Stefan Savage Today s s issues What are implications of hosts that move? Remember routing? It doesn t work anymore

More information

ID/LOC Separation Network Architecture for Mobility Support in Future Internet

ID/LOC Separation Network Architecture for Mobility Support in Future Internet ID/LOC Separation Network Architecture for Mobility Support in Future Internet Nakjung Choi, Taewan You, Jungsoo Park, Taekyoung Kwon and Yanghee Choi School of Computer Science and Engineering, Seoul

More information

An Identifier / Locator Split Architecture for Multi-homing and Mobility Support

An Identifier / Locator Split Architecture for Multi-homing and Mobility Support IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.5, May 2013 13 An Identifier / Locator Split Architecture for Multi-homing and Mobility Support Joonsuk KANG and Koji OKAMURA,

More information

CSE 123b Communications Software

CSE 123b Communications Software CSE 123b Communications Software Spring 2004 Lecture 9: Mobile Networking Stefan Savage Quick announcements Typo in problem #1 of HW #2 (fixed as of 1pm yesterday) Please consider chapter 4.3-4.3.3 to

More information

Quick announcements. CSE 123b Communications Software. Today s issues. Last class. The Mobility Problem. Problems. Spring 2004

Quick announcements. CSE 123b Communications Software. Today s issues. Last class. The Mobility Problem. Problems. Spring 2004 CSE 123b Communications Software Spring 2004 Lecture 9: Mobile Networking Quick announcements Typo in problem #1 of HW #2 (fixed as of 1pm yesterday) Please consider chapter 4.3-4.3.3 to be part of the

More information

Internet Engineering Task Force. Intended status: Informational

Internet Engineering Task Force. Intended status: Informational Internet Engineering Task Force Internet-Draft Intended status: Informational Expires: August 21, 2008 O. Bonaventure D. Saucez B. Donnet Universite catholique de Louvain February 18, 2008 Status of this

More information

Shim6 protocol. Erik Nordmark

Shim6 protocol. Erik Nordmark Shim6 protocol Erik Nordmark Overview Nothing changed since l3shim Placement of shim, principles of mapping ULID and locators But picked some design decisions (somewhat arbitrarily) In order to work out

More information

Improved Path Exploration in shim6-based Multihoming

Improved Path Exploration in shim6-based Multihoming Improved Path Exploration in shim6-based Multihoming Université catholique de Louvain http://inl.info.ucl.ac.be Aug. 3st, 2007 SIGCOMM 2007 Workshop IPv6 and the Future of the Internet 2 EX : Measuring

More information

IPv6 tutorial. RedIRIS Miguel Angel Sotos

IPv6 tutorial. RedIRIS Miguel Angel Sotos IPv6 tutorial RedIRIS Miguel Angel Sotos miguel.sotos@rediris.es Agenda History Why IPv6 IPv6 addresses Autoconfiguration DNS Transition mechanisms Security in IPv6 IPv6 in Windows and Linux IPv6 now 2

More information

E : Internet Routing

E : Internet Routing E6998-02: Internet Routing Lecture 18 Overlay Networks John Ioannidis AT&T Labs Research ji+ir@cs.columbia.edu Copyright 2002 by John Ioannidis. All Rights Reserved. Announcements Lectures 1-18 are available.

More information

Host Identity Indirection Infrastructure Hi 3. Jari Arkko, Pekka Nikander and Börje Ohlman Ericsson Research

Host Identity Indirection Infrastructure Hi 3. Jari Arkko, Pekka Nikander and Börje Ohlman Ericsson Research Host Identity Indirection Infrastructure Hi 3 Jari Arkko, Pekka Nikander and Börje Ohlman Ericsson Research Presentation outline Motivation Background Secure i 3 Hi 3 Summary 2 Hi 3 motivation Question:

More information

Cisco Network Address Translation (NAT)

Cisco Network Address Translation (NAT) Cisco Network Address Translation (NAT) Introduction IETF NGTrans working group defined several translation mechanisms to enable communications between IPv6-only and IPv4-only hosts. One such example is

More information

CS4450. Computer Networks: Architecture and Protocols. Lecture 15 BGP. Spring 2018 Rachit Agarwal

CS4450. Computer Networks: Architecture and Protocols. Lecture 15 BGP. Spring 2018 Rachit Agarwal CS4450 Computer Networks: Architecture and Protocols Lecture 15 BGP Spring 2018 Rachit Agarwal Autonomous System (AS) or Domain Region of a network under a single administrative entity Border Routers Interior

More information

LISP Router IPv6 Configuration Commands

LISP Router IPv6 Configuration Commands ipv6 alt-vrf, page 2 ipv6 etr, page 4 ipv6 etr accept-map-request-mapping, page 6 ipv6 etr map-cache-ttl, page 8 ipv6 etr map-server, page 10 ipv6 itr, page 13 ipv6 itr map-resolver, page 15 ipv6 map-cache-limit,

More information

Other Developments: CIDR

Other Developments: CIDR Other Developments: CIDR CIDR (classless Inter domain routing) Too many small networks requiring multiple class C addresses Running out of class B addresses, not enough nets in class A Assign contiguous

More information

Design and development of the reactive BGP peering in softwaredefined routing exchanges

Design and development of the reactive BGP peering in softwaredefined routing exchanges Design and development of the reactive BGP peering in softwaredefined routing exchanges LECTURER: HAO-PING LIU ADVISOR: CHU-SING YANG (Email: alen6516@gmail.com) 1 Introduction Traditional network devices

More information

The Case for Separating Routing from Routers

The Case for Separating Routing from Routers The Case for Separating Routing from Routers Nick Feamster, Hari Balakrishnan M.I.T. Computer Science and Artificial Intelligence Laboratory Jennifer Rexford, Aman Shaikh, Kobus van der Merwe AT&T Labs

More information

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer 1 CPSC 826 Intering The Network Layer: Routing & Addressing Outline The Network Layer Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 10, 2004 Network layer

More information

Unit 5 - IPv4/ IPv6 Transition Mechanism(8hr) BCT IV/ II Elective - Networking with IPv6

Unit 5 - IPv4/ IPv6 Transition Mechanism(8hr) BCT IV/ II Elective - Networking with IPv6 5.1 Tunneling 5.1.1 Automatic Tunneling 5.1.2 Configured Tunneling 5.2 Dual Stack 5.3 Translation 5.4 Migration Strategies for Telcos and ISPs Introduction - Transition - the process or a period of changing

More information

Cisco CCIE Security Written.

Cisco CCIE Security Written. Cisco 400-251 CCIE Security Written http://killexams.com/pass4sure/exam-detail/400-251 QUESTION: 193 Which two of the following ICMP types and code should be allowed in a firewall to enable traceroute?

More information

Achieving Sub-50 Milliseconds Recovery Upon BGP Peering Link Failures

Achieving Sub-50 Milliseconds Recovery Upon BGP Peering Link Failures Achieving Sub-50 Milliseconds Recovery Upon BGP Peering Link Failures Olivier Bonaventure Dept CSE Université catholique de Louvain (UCL) Belgium bonaventure@info.ucl.ac.be Clarence Filsfils Cisco Systems

More information

IP without IP addresses

IP without IP addresses IP without IP addresses h"p://ilnp.cs.st-andrews.ac.uk/ Saleem Bha) School of Computer Science University of St Andrews Copyright, Saleem N. Bha?, 19 Nov 2013 1 Thanks Dr Ran Atkinson PhD students at St

More information

CS 640: Introduction to Computer Networks. Intra-domain routing. Inter-domain Routing: Hierarchy. Aditya Akella

CS 640: Introduction to Computer Networks. Intra-domain routing. Inter-domain Routing: Hierarchy. Aditya Akella CS 640: Introduction to Computer Networks Aditya Akella Lecture 11 - Inter-Domain Routing - BGP (Border Gateway Protocol) Intra-domain routing The Story So Far Routing protocols generate the forwarding

More information

Naming and addressing in Future Internet

Naming and addressing in Future Internet Naming and addressing in Future Internet 2010. 10. 22 서울대학교유태완 twyou@mmlab.snu.ac.kr Contents Introduction Background Historical point of view Candidate solutions Evolutionary Approach Revolutionary Approach

More information

HAIR: Hierarchical Architecture for Internet Routing

HAIR: Hierarchical Architecture for Internet Routing HAIR: Hierarchical Architecture for Internet Routing Re-Architecting the Internet ReArch 09 Wolfgang Mühlbauer ETH Zürich / TU Berlin wolfgang.muehlbauer@tik.ee.ethz.ch Anja Feldmann Luca Cittadini Randy

More information

CSCI-1680 Network Layer:

CSCI-1680 Network Layer: CSCI-1680 Network Layer: Wrapup Rodrigo Fonseca Based partly on lecture notes by Jennifer Rexford, Rob Sherwood, David Mazières, Phil Levis, John JannoA Administrivia Homework 2 is due tomorrow So we can

More information

Future Internet Technologies

Future Internet Technologies Future Internet Technologies Future Internet Research Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer New requirements on TCP/IP Growth

More information

Routing Architecture for the Next Generation Internet (RANGI)

Routing Architecture for the Next Generation Internet (RANGI) Routing Architecture for the Next Generation Internet (RANGI) 2011. 4. 18 SNU, MMLAB Taewan You (twyou@mmalb.snu.ac.kr) Contents Introduction RANGI overview Host ID Locator Resolution Features MH, TE Discussion

More information

An Industry view of IPv6 Advantages

An Industry view of IPv6 Advantages An Industry view of IPv6 Advantages March 2002 Yanick.Pouffary@Compaq.Com Imagine what IPv6 can do for you! 1 Where we are Today IPv4 a victim of its own success IPv4 addresses consumed at an alarming

More information

ECE 158A: Lecture 7. Fall 2015

ECE 158A: Lecture 7. Fall 2015 ECE 158A: Lecture 7 Fall 2015 Outline We have discussed IP shortest path routing Now we have a closer look at the IP addressing mechanism We are still at the networking layer, we will examine: IP Headers

More information

Inter-AS routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley

Inter-AS routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Inter-AS routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Chapter 4:

More information

MILSA: A Mobility and Multihoming Supporting Identifier Locator Split Architecture for Naming in the Next Generation Internet

MILSA: A Mobility and Multihoming Supporting Identifier Locator Split Architecture for Naming in the Next Generation Internet MILSA: A Mobility and Multihoming Supporting Identifier Locator Split Architecture for Naming in the Next Generation Internet Jianli Pan, Subharthi Paul, Raj Jain Department of Computer Science and Engineering

More information

On the Dynamics of Locators in LISP

On the Dynamics of Locators in LISP On the Dynamics of Locators in LISP Damien Saucez 1 and Benoit Donnet 2 1 INRIA, Sophia Antipolis, France 2 Université deliège, Liège, Belgium Abstract. In the Internet, IP addresses play the dual role

More information

Cisco Campus Fabric Introduction. Vedran Hafner Systems engineer Cisco

Cisco Campus Fabric Introduction. Vedran Hafner Systems engineer Cisco Cisco Campus Fabric Introduction Vedran Hafner Systems engineer Cisco Campus Fabric Abstract Is your Campus network facing some, or all, of these challenges? Host Mobility (w/o stretching VLANs) Network

More information

Architectural Approaches to Multi-Homing for IPv6

Architectural Approaches to Multi-Homing for IPv6 Architectural Approaches to Multi-Homing for IPv6 A Walk-Through of draft-huston-multi6-architectures-00 Geoff Huston June 2004 Recap Multi-Homing in IPv4 Either: Or: Obtain a local AS Obtain PI space

More information

interface Question 1. a) Applications nslookup/dig Web Application DNS SMTP HTTP layer SIP Transport layer OSPF ICMP IP Network layer

interface Question 1. a) Applications  nslookup/dig Web Application DNS SMTP HTTP layer SIP Transport layer OSPF ICMP IP Network layer TDTS06 Computer networks, August 23, 2008 Sketched answers to the written examination, provided by Juha Takkinen, IDA, juhta@ida.liu.se. ( Sketched means that you, in addition to the below answers, need

More information

Category: Standards Track June Mobile IPv6 Support for Dual Stack Hosts and Routers

Category: Standards Track June Mobile IPv6 Support for Dual Stack Hosts and Routers Network Working Group H. Soliman, Ed. Request for Comments: 5555 Elevate Technologies Category: Standards Track June 2009 Status of This Memo Mobile IPv6 Support for Dual Stack Hosts and Routers This document

More information