Routing Architecture for the Next Generation Internet (RANGI)

Size: px
Start display at page:

Download "Routing Architecture for the Next Generation Internet (RANGI)"

Transcription

1 Routing Architecture for the Next Generation Internet (RANGI) SNU, MMLAB Taewan You

2 Contents Introduction RANGI overview Host ID Locator Resolution Features MH, TE Discussion RFC 6115 Conclusion 2

3 Background RANGI was presented twice to RRG 73 rd IETF, Minneapolis, November 21, 2008 Internet 3.0 and RANGI Based on paper: Hierarchical Routing Architecture, Proc. 4th Euro-NGI Conference, Poland, April th IETF, Hiroshima, November 8, 2009 Based on IETF draft: draft-xu-rangi-01.txt Latest release draft-xu-rangi-04.txt draft-xu-rangi-proxy-01.txt 3

4 Design and Goal ID/locator split p Mobility and Multi-homing p Routing Scalability p IPv4/IPv6 Coexistence and Transition p Transition Mechanism for RANGI Deployable New Internet Architecture Hierarchical Management p Reasonable Business Model p Clear Trust Boundary p Business-friendly p Cryptographic Host Identifier Security 4

5 Introduction RANGI is similar with HIP Transport Network Data Link IP Transport Flat Host ID (128bit) Locator (128bit) Data Link HIP Transport Hierarchical Host ID (128bit) IPv4-embeded IPv6 Address (128bit) Data Link RANGI RANGI Hierarchical and cryptographic Host Identifier (ID) Special IPv4-embeded IPv6 address (Locator) Deployability Site-controlled traffic-engineering, simplified renumbering 5

6 RANGI Overview Get ID and Locator of Dest host Transport Host ID 1 Transport Host ID ID/Locator Mapping System Mapping DNS DNS SystemDHT DNS RM Transport IPv6 Locator IPv6 Locator Transport Host ID IPv6 Locator IPv4 Layer 2 BR1 3 BR2 LD #2 4 BR3 5 BR4 BR4 Host ID IPv6 Locator IPv4 Layer LD #3 LD 4#3 6 Tunneled by IPv6 over IPv4 Packets forwarded based on Dest LDID Packets tunneled based on local locator 6

7 HOST ID n bits (n=64) 128-n bits AD ID Local Host ID Country ID Authority ID Region ID (example) AD(Administrative Domain)ID Organizational semantics and trust boundaries. Reasonable business model for the ID to locator mapping system. Local Host ID The hash over the AD ID and the public key of the host. Secure the ID ownership. Use CGA (RFC3972) as host ID in our implementation for simplicity 7

8 LOCATOR 96 bits 32 bits LD ID LL(IPv4) LD(Locator Domain)ID Globally identify each LD (e.g., site network). LDID is actually PA (Provider Assigned) /96 IPv6 prefix. LL (Local Locator) Each LD uses independent IPv4 address space (e.g., private address). When ISP changed, only LDID changes, local locator unchanged. GL (Global Locator)= LDID + LL Use ISATAP (RFC5214) address as GL in our implementation for simplicity 8

9 ID to Locator Resolution Country 1 Root Country 2 Country n Routing ba sed on the AD ID City 1 City 2 City 3 City n DHT DHT Hierarchical DHT based Mapping System Reasonable business model and clear trust boundary. Use reverse-dns as mapping system in our current implementation for simplicity DHT DHT Routing ba sed on the local host I D (i.e. Hash value) 9

10 Routing & Forwarding Payload HI(A)->HI(B) IPv6(A)->IPv6(B) IPv4(A) ->IPv4(BR1) Payload HI(A)->HI(B) IPv6(A)->IPv6(B) IPv4(BR2) -> IPv4(BR3) Payload HI(A)->HI(B) IPv6(A)->IPv6(B) IPv4(BR4) -> IPv4(B) Host A Host B LD #1 (Pub/Pri IPv4) LDBR1 BR2(AFBR) IPv4 Internet BR3(AFBR) LDBR4 LD #3 (Pub/Pri IPv4) Use ISATAP like mechanism in site (edge) networks Use Softwire mechanism in provider ASes Either intra-as softwire [RFC5565] or inter-as softwire (draft-xu-softwire-tunnel-endpoint) mechanism works well. 10

11 Site Multi-homing LDID_1+LL(A)->GL(B) LDID_1+LL(A)->GL(B) LDID_1+LL(A)->GL(B) LDID_1+LL(A)->GL(B) BR2 ISP #1 Host A LD #1 BR1 Host B LDID_1 assigned by ISP #1 LDID_2 assigned by ISP #2 Source LD ID bas ed policy routing BR3 ISP #2 Multiple PA LDIDs are allocated to a multi-homed si te network Routing system scales well due to the usage of multiple PA locators. 11

12 Site-controlled Traffic-Engineering LDID_1+LL(A)->GL(B) BR1 rewrites the sourc e LDID before performi ng source-based policy routing BR2 ISP #1 Host A LD #1 BR1 Host B LDID_1 assigned by ISP #1 LDID_2 assigned by ISP #2 BR3 LDID_2+LL(A)->GL(B) ISP #2 LDID_2+LL(A)->GL(B) LDID_2+LL(A)->GL(B) Site LDBR rewrites source LDIDs of the outgoing pa ckets before performing source-based policy routin g. Borrow ideas from GSE, Six/One. 12

13 Site-controlled Traffic-Engineering BR2 ISP #1 Host A LD #1 BR1 Host B GL(B) -> LDID_2+LL(A) LDID_1 分配自 ISP #1 LDID_2 分配自 ISP #2 BR3 GL(B) -> LDID_2+LL(A) ISP #2 GL(B) -> LDID_2+LL(A) GL(B) -> LDID_2+LL(A) Return packets follow the same path as the outgoing packets travel along. 13

14 RFG 6115-GAIN Routing Scalability Solved by keeping separate local and global locators Provider assigned locator domain ID Traffic Engineering border routers select locator & path Mobility and Multi-homing Identifier locator split Session portability / continuity Simplified Renumbering Local IPv4 addresses do not change Global ID does not change 14

15 GAIN Decoupling Location and Identification Routing Quality Allows BRs to select the paths with shorter delay or better performance Size of global routing table and update frequency reduced significantly Routing Security RM enforce policies including security Local addresses and paths are not disclosed outside Incremental Deployability Allow step by step deployment and long-term evolution 15

16 COST RANGI Costs A host change is required The first-hop LDBR change is required to support site-controlled traffic-engineering capability. The ID->locator mapping system is a new infrastructure to be deployed. RANGI proxy needs to be deployed for communication between RANGI aware hosts and legacy hosts. 16

17 CRITIQUE Hierarchy is overload To make ID unique, to drive lookup, etc. Strong identification at the cost of crypto Doesn t require receiver to validate No explicit solution for mobility race condition No mention of home-agent-like device (?) RANGI uses proxies to deal with legacy IPv4 and IPv6 sites 17

18 적용 Deployability Add Proxy mechanism Interact with IPv6 network 18

19 Conclusion-RANGI ID/Locator split Mobility Hierarchical ID Administrative Scalability Cryptographic ID Security (like HIP) 128-bit ID IPv6 Addresses (like CGA) Easy Application Transition Local IPv4 embedded in IPv6 Simplify renumbering (like ISATAP) IPv6 tunnel over IPv4 (ISATAP tunnel) Easy transition (allow IPv4 intra-domain routers) Address overwriting at border routing (Six/One or GSE) Traffic engineering Policy control (during ID to locator translation) 19

Routing. Architecture for the Next. Generation. Internet (RANGI) Xiaohu Xu, Dayong Guo, Raj Jain, Jianli Pan, Subharthi Paul

Routing. Architecture for the Next. Generation. Internet (RANGI) Xiaohu Xu, Dayong Guo, Raj Jain, Jianli Pan, Subharthi Paul Routing Architecture for the Next Generation Internet (RANGI) Xiaohu Xu, Dayong Guo, Raj Jain, Jianli Pan, Subharthi Paul Presented to Routing Research Group (RRG), Internet Research Task Force Meeting

More information

A Evolvable RANGI Transition Strategy

A Evolvable RANGI Transition Strategy A Evolvable RANGI Transition Strategy 1 Overview 5 Types of Sites: Progressive deployment of RANGI Interoperability between Type i and j (Total 10 cases) More RANGI deployment Smaller BGP Tables Less Address

More information

A Future Internet Architecture Based on De-Conflated Identities

A Future Internet Architecture Based on De-Conflated Identities A Future Internet Architecture Based on De-Conflated Identities Subharthi Paul, Raj Jain, Jianli Pan Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu IEEE Globecom 2010, Miami,

More information

Identifier and Locator separation in IP network

Identifier and Locator separation in IP network Identifier and Locator separation in IP network July 10, 2007 Taewan You (twyou@etri.re.kr) ETRI, PEC Contents IP Addresses in Internet Architecture Overloaded semantic Issues of ID/Loc separation Standardization

More information

Multihoming: An Overview & a brief introduction to GSE(8+8) Single Home

Multihoming: An Overview & a brief introduction to GSE(8+8) Single Home Multihoming: An Overview & a brief introduction to GSE(8+8) Lixia Zhang APRICOT 2006 Perth, Australia 3/2/06 IAB BOF @ APRICOT 1 Customer network 1 1.1.16.0/20 Single Home 1.1.0.0/16. Customer network

More information

Architectural Approaches to Multi-Homing for IPv6

Architectural Approaches to Multi-Homing for IPv6 Architectural Approaches to Multi-Homing for IPv6 A Walk-Through of draft-huston-multi6-architectures-00 Geoff Huston June 2004 Recap Multi-Homing in IPv4 Either: Or: Obtain a local AS Obtain PI space

More information

An Identifier/Locator Split Architecture for Exploring Path Diversity through Site Multi-homing - A Hybrid Host-Network Cooperative Approach

An Identifier/Locator Split Architecture for Exploring Path Diversity through Site Multi-homing - A Hybrid Host-Network Cooperative Approach An Identifier/Locator Split Architecture for Exploring Path Diversity through Site Multi-homing - A Hybrid Host-Network Cooperative Approach Abstract In this paper, we take a fresh look at stub-site multihoming

More information

Dual-Stack lite. Alain Durand. May 28th, 2009

Dual-Stack lite. Alain Durand. May 28th, 2009 Dual-Stack lite Alain Durand May 28th, 2009 Part I: Dealing with reality A dual-prong strategy IPv4 reality check: completion of allocation is real Today Uncertainty IPv6 reality check: the IPv4 long tail

More information

Locator/ID Separation Protocol (LISP)

Locator/ID Separation Protocol (LISP) Locator/ID Separation Protocol (LISP) Damien Saucez* INRIA Sophia Antipolis FRNOG 18, December 2 th, 2011 * special thanks to Olivier Bonaventure, Luigi Iannone and Dino Farinacci Disclaimer Not a vendor

More information

Six/One Router. A Scalable and Backwards-Compatible Solution for Provider-Independent Addressing

Six/One Router. A Scalable and Backwards-Compatible Solution for Provider-Independent Addressing Six/One Router A Scalable and Backwards-Compatible Solution for Provider-Independent Addressing 300 K 250 K number of routing table entries 200 K 150 K 100 K 50 K Geoff Husn: CIDR Report www.cidr-report.org

More information

LISP: What and Why. RIPE Berlin May, Vince Fuller (for Dino, Dave, Darrel, et al)

LISP: What and Why. RIPE Berlin May, Vince Fuller (for Dino, Dave, Darrel, et al) LISP: What and Why RIPE Berlin May, 2008 Vince Fuller (for Dino, Dave, Darrel, et al) http://www.vaf.net/prezos/lisp-ripe-long.pdf Agenda What is the problem? What is LISP? Why Locator/ID Separation? Data

More information

Future Routing and Addressing Models

Future Routing and Addressing Models Future Routing and Addressing Models Rob Evans JANET(UK) The JNT Association 2008 Networkshop 36 1 If it ain't broke... BGP is the inter-domain protocol of choice. Not that there's much choice. Carries

More information

IPv6 Rapid Deployment (6rd) in broadband networks. Allen Huotari Technical Leader June 14, 2010 NANOG49 San Francisco, CA

IPv6 Rapid Deployment (6rd) in broadband networks. Allen Huotari Technical Leader June 14, 2010 NANOG49 San Francisco, CA Rapid Deployment () in broadband networks Allen Huotari Technical Leader ahuotari@cisco.com June 14, 2010 NANOG49 San Francisco, CA 1 Why IP Tunneling? IPv4 Tunnel Tunnel IPv4 IPv4 Retains end-end IP semantics

More information

draft-ietf-v6ops-tunnel-loops - Update and Status

draft-ietf-v6ops-tunnel-loops - Update and Status draft-ietf-v6ops-tunnel-loops - Update and Status IETF V6OPS WG - March 31, 2011 Fred L. Templin Boeing Research & Technology fred.l.templin@boeing.com BOEING is a trademark of Boeing Management Company.

More information

IPv6 via IPv4 Service Provider Networks (6rd)

IPv6 via IPv4 Service Provider Networks (6rd) IPv6 via IPv4 Service Provider Networks (6rd) draft ietf softwire ipv6 6rd 01 IETF 76, Hiroshima November 8 13, 2009 softwire Working Group Mark Townsley (townsley@cisco.com) Ole Trøan, (ot@cisco.com)

More information

Evolving the Internet Architecture Through Naming

Evolving the Internet Architecture Through Naming Evolving the Internet Architecture Through Naming Ran Atkinson, Cheltenham, USA Saleem Bhatti, University of St Andrews, UK Steve Hailes, University College London, UK 1 What s in a name? Juliet: "What's

More information

Impact of IPv6 to an NGN and Migration Strategies. Gyu Myoung Lee ETRI

Impact of IPv6 to an NGN and Migration Strategies. Gyu Myoung Lee ETRI ITU Workshop on IPv6 Geneva, Switzerland, 4 5 September 2008 Impact of IPv6 to an NGN and Migration Strategies Gyu Myoung Lee ETRI gmlee@etri.re.kr Geneva, Switzerland, 4-5 September 2008 Contents Introduction

More information

ICN IDENTIFIER / LOCATOR. Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016)

ICN IDENTIFIER / LOCATOR. Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016) ICN IDENTIFIER / LOCATOR Marc Mosko Palo Alto Research Center ICNRG Interim Meeting (Berlin, 2016) 1 A brief review of ID/Locators in IETF It s long, and we ll skim over it Then we discuss the CCNx & NDN

More information

An Identifier / Locator Split Architecture for Multi-homing and Mobility Support

An Identifier / Locator Split Architecture for Multi-homing and Mobility Support IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.5, May 2013 13 An Identifier / Locator Split Architecture for Multi-homing and Mobility Support Joonsuk KANG and Koji OKAMURA,

More information

ID/LOC Separation Network Architecture for Mobility Support in Future Internet

ID/LOC Separation Network Architecture for Mobility Support in Future Internet ID/LOC Separation Network Architecture for Mobility Support in Future Internet Nakjung Choi, Taewan You, Jungsoo Park, Taekyoung Kwon and Yanghee Choi School of Computer Science and Engineering, Seoul

More information

A Border Gateway Protocol 3 (BGP-3) DNS Extensions to Support IP version 6. Path MTU Discovery for IP version 6

A Border Gateway Protocol 3 (BGP-3) DNS Extensions to Support IP version 6. Path MTU Discovery for IP version 6 IPv6 Standards and RFC 1195 Use of OSI IS-IS for Routing in TCP/IP and Dual Environments RFC 1267 A Border Gateway Protocol 3 (BGP-3) RFC 1305 Network Time Protocol (Version 3) Specification, Implementation

More information

Chapter 15 IPv6 Transition Technologies

Chapter 15 IPv6 Transition Technologies Chapter 15 IPv6 Transition Technologies Published: April 18, 2006 Updated: November 06, 2006 Writer: Joe Davies 1 Abstract This chapter describes the mechanisms that aid in the transition of Internet Protocol

More information

A Multihoming based IPv4/IPv6 Transition Approach

A Multihoming based IPv4/IPv6 Transition Approach A Multihoming based IPv4/IPv6 Transition Approach Lizhong Xie, Jun Bi, and Jianping Wu Network Research Center, Tsinghua University, China Education and Research Network (CERNET) Beijing 100084, China

More information

ILNP: a whirlwind tour

ILNP: a whirlwind tour ILNP: a whirlwind tour Saleem Bhatti, University of St Andrews, UK 2010-10-03 NANOG50. Copyright 2010 Saleem Bhatti. 1 Outline 1. What? Basic information about ILNP. 2. Why? The rationale for ILNP. 3.

More information

Internet Research Task Force (IRTF) Category: Informational May 2011 ISSN:

Internet Research Task Force (IRTF) Category: Informational May 2011 ISSN: Internet Research Task Force (IRTF) T. Li, Ed. Request for Comments: 6227 Cisco Systems, Inc. Category: Informational May 2011 ISSN: 2070-1721 Abstract Design Goals for Scalable Internet Routing It is

More information

Scaling issues with routing+multihoming Vince Fuller, Cisco Systems

Scaling issues with routing+multihoming Vince Fuller, Cisco Systems Scaling issues with routing+multihoming Vince Fuller, Cisco Systems http://www.vaf.net/~vaf/v6ops.pdf 1 Acknowledgements This is not original work and credit is due: Noel Chiappa for his extensive writings

More information

Comcast IPv6 Trials NANOG50 John Jason Brzozowski

Comcast IPv6 Trials NANOG50 John Jason Brzozowski Comcast IPv6 Trials NANOG50 John Jason Brzozowski October 2010 Overview Background Goals and Objectives Trials Observations 2 Background Comcast IPv6 program started over 5 years ago Incrementally planned

More information

Federal Agencies and the Transition to IPv6

Federal Agencies and the Transition to IPv6 Federal Agencies and the Transition to IPv6 Introduction Because of the federal mandate to transition from IPv4 to IPv6, IT departments must include IPv6 as a core element of their current and future IT

More information

IP without IP addresses

IP without IP addresses IP without IP addresses h"p://ilnp.cs.st-andrews.ac.uk/ Saleem Bha) School of Computer Science University of St Andrews Copyright, Saleem N. Bha?, 19 Nov 2013 1 Thanks Dr Ran Atkinson PhD students at St

More information

Transition Strategies from IPv4 to IPv6: The case of GRNET

Transition Strategies from IPv4 to IPv6: The case of GRNET Transition Strategies from IPv4 to IPv6: The case of GRNET C. Bouras 1,2, P. Ganos 1, A. Karaliotas 1,2 1 Research Academic Computer Technology Institute, Patras, Greece 2 Department of Computer Engineering

More information

Mapping of Address and Port Using Translation

Mapping of Address and Port Using Translation The feature provides connectivity to IPv4 hosts across IPv6 domains. Mapping of address and port using translation (MAP-T) is a mechanism that performs double translation (IPv4 to IPv6 and vice versa)

More information

Introduction to Network Address Translation

Introduction to Network Address Translation Introduction to Network Address Translation Campus Network Design & Operations Workshop These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

More information

Lecture 12 Page 1. Lecture 12 Page 3

Lecture 12 Page 1. Lecture 12 Page 3 IPsec Network Security: IPsec CS 239 Computer Software February 26, 2003 Until recently, the IP protocol had no standards for how to apply security Encryption and authentication layered on top Or provided

More information

Department of Computer and IT Engineering University of Kurdistan. Computer Networks II Border Gateway protocol (BGP) By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Computer Networks II Border Gateway protocol (BGP) By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Computer Networks II Border Gateway protocol (BGP) By: Dr. Alireza Abdollahpouri Internet structure: network of networks local ISP Tier

More information

Transitioning to IPv6

Transitioning to IPv6 Transitioning to IPv6 麟瑞科技區域銷售事業處副處長張晃崚 CCIE #13673 2007 Cisco Systems, Inc. All rights reserved. ICND2 v1.0 7-1 IPv4 and IPv6 Currently, there are approximately 1.3 billion usable IPv4 addresses available.

More information

Mapping of Address and Port (MAP) an ISPs Perspective. E. Jordan Gottlieb Principal Engineer Charter Communications

Mapping of Address and Port (MAP) an ISPs Perspective. E. Jordan Gottlieb Principal Engineer Charter Communications Mapping of Address and Port () an ISPs Perspective E. Jordan Gottlieb Principal Engineer Charter Communications jordan.gottlieb@charter.com Agenda What is? Benefits of in Action Algorithms in Action Deployment

More information

IPv6 Transition Technologies (TechRef)

IPv6 Transition Technologies (TechRef) Tomado de: http://technet.microsoft.com/en-us/library/dd379548.aspx IPv6 Transition Technologies (TechRef) Updated: January 7, 2009 IPv6 Transition Technologies Protocol transitions are not easy, and the

More information

Border Router Discovery Protocol (BRDP) Based Routing

Border Router Discovery Protocol (BRDP) Based Routing Border Router Discovery Protocol (DP) Based Routing Exit routing for multi-homed networks (my sponsor) draft-boot-autoconf-brdp-01.txt draft-boot-brdp-based-routing-00.txt Teco Boot / 21 November 2008

More information

Lecture 13 Page 1. Lecture 13 Page 3

Lecture 13 Page 1. Lecture 13 Page 3 IPsec Network Security: IPsec CS 239 Computer Software March 2, 2005 Until recently, the IP protocol had no standards for how to apply security Encryption and authentication layered on top Or provided

More information

Internet Engineering Task Force (IETF) Category: Experimental ISSN: D. Meyer D. Lewis. Cisco Systems. January 2013

Internet Engineering Task Force (IETF) Category: Experimental ISSN: D. Meyer D. Lewis. Cisco Systems. January 2013 Internet Engineering Task Force (IETF) Request for Comments: 6830 Category: Experimental ISSN: 2070-1721 D. Farinacci Cisco Systems V. Fuller D. Meyer D. Lewis Cisco Systems January 2013 The Locator/ID

More information

Configuring Tunneling on the RV130W

Configuring Tunneling on the RV130W Article ID: 5041 Configuring Tunneling on the RV130W Objective IPv6-to-IPv4 tunneling (6-to-4 tunneling) allows IPv6 packets to be transmitted over an IPv4 network. IPv4 (Internet Protocol version 4) is

More information

APT: A Practical Transit-Mapping Service Overview and Comparisons

APT: A Practical Transit-Mapping Service Overview and Comparisons APT: A Practical Transit-Mapping Service Overview and Comparisons draft-jen-apt Dan Jen, Michael Meisel, Dan Massey, Lan Wang, Beichuan Zhang, and Lixia Zhang The Big Picture APT is similar to LISP at

More information

LISP Locator/ID Separation Protocol

LISP Locator/ID Separation Protocol LISP Locator/ID Separation Protocol Hernán Contreras G. Consulting Systems Engineer hcontrer@cisco.com LISP Next Gen Routing Architecture Locator-ID Separation Protocol (LISP) Elevator Pitch LISP is a

More information

Shim6: Network Operator Concerns. Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI

Shim6: Network Operator Concerns. Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI Shim6: Network Operator Concerns Jason Schiller Senior Internet Network Engineer IP Core Infrastructure Engineering UUNET / MCI Not Currently Supporting IPv6? Many parties are going forward with IPv6 Japan

More information

Back to basics J. Addressing is the key! Application (HTTP, DNS, FTP) Application (HTTP, DNS, FTP) Transport. Transport (TCP/UDP) Internet (IPv4/IPv6)

Back to basics J. Addressing is the key! Application (HTTP, DNS, FTP) Application (HTTP, DNS, FTP) Transport. Transport (TCP/UDP) Internet (IPv4/IPv6) Routing Basics Back to basics J Application Presentation Application (HTTP, DNS, FTP) Data Application (HTTP, DNS, FTP) Session Transport Transport (TCP/UDP) E2E connectivity (app-to-app) Port numbers

More information

Introduction to BGP ISP/IXP Workshops

Introduction to BGP ISP/IXP Workshops Introduction to BGP ISP/IXP Workshops 1 Border Gateway Protocol Routing Protocol used to exchange routing information between networks exterior gateway protocol RFC1771 work in progress to update draft-ietf-idr-bgp4-18.txt

More information

Routing Basics. SANOG July, 2017 Gurgaon, INDIA

Routing Basics. SANOG July, 2017 Gurgaon, INDIA Routing Basics SANOG 30 14-18 July, 2017 Gurgaon, INDIA Back to basics J Application Presentation Application (HTTP, DNS, FTP) Data Application (HTTP, DNS, FTP) Session Transport Transport (TCP/UDP) E2E

More information

Outline. Background IETF activities Solutions & problems Next steps

Outline. Background IETF activities Solutions & problems Next steps Outline Background IETF activities Solutions & problems Next steps The Plan IPv4 Free Pool Size of the Internet IPv6 Deployment The Reality IPv4 Free Pool Today Size of the Internet? IPv6 Deployment Background

More information

MPLS L3VPN. The MPLS L3VPN model consists of three kinds of devices: PE CE Site 2. Figure 1 Network diagram for MPLS L3VPN model

MPLS L3VPN. The MPLS L3VPN model consists of three kinds of devices: PE CE Site 2. Figure 1 Network diagram for MPLS L3VPN model is a kind of PE-based L3VPN technology for service provider VPN solutions. It uses BGP to advertise VPN routes and uses to forward VPN packets on service provider backbones. provides flexible networking

More information

Locator ID Separation Protocol (LISP) Overview

Locator ID Separation Protocol (LISP) Overview Locator ID Separation Protocol (LISP) is a network architecture and protocol that implements the use of two namespaces instead of a single IP address: Endpoint identifiers (EIDs) assigned to end hosts.

More information

Internet Routing Basics

Internet Routing Basics Internet Routing Basics Back to basics J Application Presentation Application (HTTP, DNS, FTP) Data Application (HTTP, DNS, FTP) Session Transport Transport (TCP/UDP) E2E connectivity (app-to-app) Port

More information

Separating identifiers from locators to scale the Internet

Separating identifiers from locators to scale the Internet Separating identifiers from locators to scale the Internet Olivier Bonaventure Department of Computing Science and Engineering Université catholique de Louvain (UCL) Place Sainte-Barbe, 2, B-1348, Louvain-la-Neuve

More information

IPv6 Security (Theory vs Practice) APRICOT 14 Manila, Philippines. Merike Kaeo

IPv6 Security (Theory vs Practice) APRICOT 14 Manila, Philippines. Merike Kaeo IPv6 Security (Theory vs Practice) APRICOT 14 Manila, Philippines Merike Kaeo merike@doubleshotsecurity.com Current IPv6 Deployments Don t break existing IPv4 network Securing IPv6 Can t secure something

More information

Network Configuration Example

Network Configuration Example Network Configuration Example Configuring Dual-Stack Lite for IPv6 Access Release NCE0025 Modified: 2016-10-12 Juniper Networks, Inc. 1133 Innovation Way Sunnyvale, California 94089 USA 408-745-2000 www.juniper.net

More information

IPv4/v6 Considerations Ralph Droms Cisco Systems

IPv4/v6 Considerations Ralph Droms Cisco Systems Title IPv4/v6 Considerations Ralph Droms Cisco Systems Agenda Motivation for IPv6 Review of IPv6 Impact of differences Tools and techniques Why IPv6? More addresses More addresses More addresses Security,

More information

Implications of Global IPv4/v6 Routing Table Growth

Implications of Global IPv4/v6 Routing Table Growth Implications of Global IPv4/v6 Routing Table Growth 10/01/2007 2006 Verizon. All Rights Reserved. PT10906. 01/09/06 Jason Schiller schiller@uu.net Sven Maduschke sven.maduschke@verizonbusiness.com IP Core

More information

Deploy CGN to Retain IPv4 Addressing While Transitioning to IPv6

Deploy CGN to Retain IPv4 Addressing While Transitioning to IPv6 White Paper Deploy CGN to Retain Addressing While Transitioning to IPv6 The IANA ran out of addresses to allocate in February 2011, and the Regional Internet Registries (RIR) will have assigned most of

More information

Securing BGP. Geoff Huston November 2007

Securing BGP. Geoff Huston November 2007 Securing BGP Geoff Huston November 2007 Agenda An Introduction to BGP BGP Security Questions Current Work Research Questions An Introduction to BGP Background to Internet Routing The routing architecture

More information

LISP: A Level of Indirection for Routing

LISP: A Level of Indirection for Routing LISP: A Level of Indirection for Routing ESCC/Internet2 Joint Techs Workshop University of Hawaii January 20-24, 2008 David Meyer & A Cast of 1000s (Vince Fuller, Darrel Lewis, Eliot Lear, Scott Brim,

More information

Mobility Through Naming: Impact on DNS

Mobility Through Naming: Impact on DNS Mobility Through Naming: Impact on DNS Ran Atkinson 1 Saleem Bhatti 2 Steve Hailes 3 1 Extreme Networks RTP, NC, USA 2 University of St Andrews St Andrews, UK 3 University College London (UCL) London,

More information

CSE 1 23: Computer Networks

CSE 1 23: Computer Networks CSE 1 23: Computer Networks Homework 3 Out: 11/08, Due: 11/15 Instructions 1. Turn in a physical copy at the beginning of the class on 11/15 2. Ensure the top page of the HW has the following information

More information

CCNA Questions/Answers IPv6. Select the valid IPv6 address from given ones. (Choose two) A. FE63::0043::11:21 B :2:11.1 C.

CCNA Questions/Answers IPv6. Select the valid IPv6 address from given ones. (Choose two) A. FE63::0043::11:21 B :2:11.1 C. Select the valid IPv6 address from given ones. (Choose two) A. FE63::0043::11:21 B. 191.2.1.2:2:11.1 C. 2001::98 D. 2002:c0a8:101::42 E. :2001:: F. 2002.cb0a:3cdd:1::1 Answer: C, D. 2013 1 Which method

More information

Stateful Network Address Translation 64

Stateful Network Address Translation 64 The feature provides a translation mechanism that translates IPv6 packets into IPv4 packets and vice versa. The stateful NAT64 translator algorithmically translates the IPv4 addresses of IPv4 hosts to

More information

Naming and addressing in Future Internet

Naming and addressing in Future Internet Naming and addressing in Future Internet 2010. 10. 22 서울대학교유태완 twyou@mmlab.snu.ac.kr Contents Introduction Background Historical point of view Candidate solutions Evolutionary Approach Revolutionary Approach

More information

Configuring MPLS L3VPN

Configuring MPLS L3VPN Contents Configuring MPLS L3VPN 1 MPLS L3VPN overview 1 Introduction to MPLS L3VPN 1 MPLS L3VPN concepts 2 MPLS L3VPN packet forwarding 5 MPLS L3VPN networking schemes 5 MPLS L3VPN routing information

More information

Request for Comments: 5569 Category: Informational January 2010 ISSN:

Request for Comments: 5569 Category: Informational January 2010 ISSN: Independent Submission R. Despres Request for Comments: 5569 RD-IPtech Category: Informational January 2010 ISSN: 2070-1721 Abstract IPv6 Rapid Deployment on IPv4 Infrastructures (6rd) IPv6 rapid deployment

More information

A New Inter-networking Architecture for Mobile Oriented Internet Environment

A New Inter-networking Architecture for Mobile Oriented Internet Environment Future Network & MobileSummit 2012 Conference Proceedings Paul Cunningham and Miriam Cunningham (Eds) IIMC International Information Management Corporation, 2012 ISBN: 978-1-905824-29-8 A New Inter-networking

More information

ENTERPRISE MPLS. Kireeti Kompella

ENTERPRISE MPLS. Kireeti Kompella ENTERPRISE MPLS Kireeti Kompella AGENDA The New VLAN Protocol Suite Signaling Labels Hierarchy Signaling Advanced Topics Layer 2 or Layer 3? Resilience and End-to-end Service Restoration Multicast ECMP

More information

Addressing and Routing

Addressing and Routing Addressing and Routing Andrew Scott a.scott@lancaster.ac.uk Physical/ Hardware Addresses Aka MAC* or link(-layer) address Can only talk to things on same link Unique ID given to every network interface

More information

Enhanced Mobility Control in Mobile LISP Networks

Enhanced Mobility Control in Mobile LISP Networks Enhanced Mobility Control in Mobile LISP Networks Moneeb Gohar School of Computer Science and Engineering Kyungpook National University Daegu, South Korea moneebgohar@gmail.com Ji In Kim School of Computer

More information

General requirements for ID/locator separation in NGN

General requirements for ID/locator separation in NGN Draft Recommendation ITU-T Y.2015 (Y.ipsplit) General requirements for ID/locator separation in NGN Summary This Recommendation begins with showing the limitations of the conventional IP architecture,

More information

IPv6 Transition Strategies

IPv6 Transition Strategies IPv6 Transition Strategies Philip Smith APNIC 36 Xi an 20 th -30 th August 2013 Last updated 25 July 2013 1 Presentation Slides p Will be available on n http://thyme.apnic.net/ftp/seminars/apnic36-

More information

MPLS VPN--Inter-AS Option AB

MPLS VPN--Inter-AS Option AB The feature combines the best functionality of an Inter-AS Option (10) A and Inter-AS Option (10) B network to allow a Multiprotocol Label Switching (MPLS) Virtual Private Network (VPN) service provider

More information

Routing Basics ISP/IXP Workshops

Routing Basics ISP/IXP Workshops Routing Basics ISP/IXP Workshops 1 Routing Concepts IPv4 Routing Forwarding Some definitions Policy options Routing Protocols 2 IPv4 Internet uses IPv4 addresses are 32 bits long range from 1.0.0.0 to

More information

IPv6 Transition Strategies

IPv6 Transition Strategies IPv6 Transition Strategies Philip Smith MENOG 14 Dubai 1 st April 2014 Last updated 5 th March 2014 1 Presentation Slides p Will be available on n http://thyme.apnic.net/ftp/seminars/

More information

Configuring MPLS L3VPN

Configuring MPLS L3VPN Contents Configuring MPLS L3VPN 1 MPLS L3VPN overview 1 MPLS L3VPN concepts 2 MPLS L3VPN packet forwarding 4 MPLS L3VPN networking schemes 5 MPLS L3VPN routing information advertisement 8 Inter-AS VPN

More information

Category: Standards Track June Mobile IPv6 Support for Dual Stack Hosts and Routers

Category: Standards Track June Mobile IPv6 Support for Dual Stack Hosts and Routers Network Working Group H. Soliman, Ed. Request for Comments: 5555 Elevate Technologies Category: Standards Track June 2009 Status of This Memo Mobile IPv6 Support for Dual Stack Hosts and Routers This document

More information

Routing(2) Inter-domain Routing

Routing(2) Inter-domain Routing Routing(2) Inter-domain Routing Information Network I Youki Kadobayashi 1 Outline! Distance vector routing! Link state routing! IGP and EGP Intra-domain routing protocol, inter-domain routing protocol!

More information

Internet Engineering Task Force (IETF) Request for Comments: Cisco Systems January 2013

Internet Engineering Task Force (IETF) Request for Comments: Cisco Systems January 2013 Internet Engineering Task Force (IETF) Request for Comments: 6831 Category: Experimental ISSN: 2070-1721 D. Farinacci D. Meyer J. Zwiebel S. Venaas Cisco Systems January 2013 The Locator/ID Separation

More information

BGP-like TE Capabilities for SHIM6

BGP-like TE Capabilities for SHIM6 BGP-like TE Capabilities for SHIM6 Marcelo Bagnulo, Alberto García-Martínez, Arturo Azcorra Departamento de Ingeniería Telemática, Universidad Carlos III de Madrid {marcelo, alberto, azcorra}@it.uc3m.es

More information

Network Working Group Request for Comments: 4177 Category: Informational September Architectural Approaches to Multi-homing for IPv6

Network Working Group Request for Comments: 4177 Category: Informational September Architectural Approaches to Multi-homing for IPv6 Network Working Group G. Huston Request for Comments: 4177 APNIC Category: Informational September 2005 Status of this Memo Architectural Approaches to Multi-homing for IPv6 This memo provides information

More information

Implementing MPLS Forwarding

Implementing MPLS Forwarding All Multiprotocol Label Switching (MPLS) features require a core set of MPLS label management and forwarding services; the MPLS Forwarding Infrastructure (MFI) supplies these services. Feature History

More information

Post IPv4 completion. Making IPv6 deployable incrementally by making it. Alain Durand

Post IPv4 completion. Making IPv6 deployable incrementally by making it. Alain Durand Post IPv4 completion Making IPv6 deployable incrementally by making it backward compatible with IPv4. Alain Durand The tmust support continued, un interrupted growth regardless of IPv4 address availability

More information

Considerations and Actions of Content Providers in Adopting IPv6

Considerations and Actions of Content Providers in Adopting IPv6 Considerations and Actions of Content Providers in Adopting IPv6 Sheng Jiang / Huawei Brian Carpenter / University of Auckland www.huawei.com IPv6 Trends Global IPv4 registry (IANA) ran out of spare blocks

More information

NAT, IPv6, & UDP CS640, Announcements Assignment #3 released

NAT, IPv6, & UDP CS640, Announcements Assignment #3 released NAT, IPv6, & UDP CS640, 2015-03-03 Announcements Assignment #3 released Overview Network Address Translation (NAT) IPv6 Transport layer User Datagram Protocol (UDP) Network Address Translation (NAT) Hacky

More information

Routing Concepts. IPv4 Routing Forwarding Some definitions Policy options Routing Protocols

Routing Concepts. IPv4 Routing Forwarding Some definitions Policy options Routing Protocols Routing Basics 1 Routing Concepts IPv4 Routing Forwarding Some definitions Policy options Routing Protocols 2 IPv4 Internet uses IPv4 Addresses are 32 bits long Range from 1.0.0.0 to 223.255.255.255 0.0.0.0

More information

DHT-based Identifier-Locator Mapping Management for Mobile Oriented Future Internet

DHT-based Identifier-Locator Mapping Management for Mobile Oriented Future Internet DHT-based Identifier-Locator Mapping Management for Mobile Oriented Future Internet Hyung-Woo Kang Kyungpook National University Daegu, Korea hwkang0621@gmail.com Ji-In Kim Kyungpook National University

More information

A Routing Infrastructure for XIA

A Routing Infrastructure for XIA A Routing Infrastructure for XIA Aditya Akella and Peter Steenkiste Dave Andersen, John Byers, David Eckhardt, Sara Kiesler, Jon Peha, Adrian Perrig, Srini Seshan, Marvin Sirbu, Hui Zhang FIA PI Meeting,

More information

Planning for Information Network

Planning for Information Network Planning for Information Network Lecture 7: Introduction to IPv6 Assistant Teacher Samraa Adnan Al-Asadi 1 IPv6 Features The ability to scale networks for future demands requires a limitless supply of

More information

Introduction to BGP. ISP/IXP Workshops

Introduction to BGP. ISP/IXP Workshops Introduction to BGP ISP/IXP Workshops 1 Border Gateway Protocol A Routing Protocol used to exchange routing information between different networks Exterior gateway protocol Described in RFC4271 RFC4276

More information

Routing Basics. Routing Concepts. IPv4. IPv4 address format. A day in a life of a router. What does a router do? IPv4 Routing

Routing Basics. Routing Concepts. IPv4. IPv4 address format. A day in a life of a router. What does a router do? IPv4 Routing Routing Concepts IPv4 Routing Routing Basics ISP/IXP Workshops Forwarding Some definitions Policy options Routing Protocols 1 2 IPv4 IPv4 address format Internet uses IPv4 addresses are 32 bits long range

More information

Guide to TCP/IP Fourth Edition. Chapter 2: IP Addressing and Related Topics

Guide to TCP/IP Fourth Edition. Chapter 2: IP Addressing and Related Topics Guide to TCP/IP Fourth Edition Chapter 2: IP Addressing and Related Topics Objectives Describe IP addressing, anatomy and structures, and addresses from a computer s point of view Recognize and describe

More information

APT Incremental Deployment

APT Incremental Deployment APT Incremental Deployment Dan Jen, Michael Meisel, Daniel Massey, Lan Wang, Beichuan Zhang, Lixia Zhang http://www.cs.ucla.edu/~meisel/draft-apt-incremental-00.txt 1 Why This Talk Incrememtal deployability

More information

Unit 5 - IPv4/ IPv6 Transition Mechanism(8hr) BCT IV/ II Elective - Networking with IPv6

Unit 5 - IPv4/ IPv6 Transition Mechanism(8hr) BCT IV/ II Elective - Networking with IPv6 5.1 Tunneling 5.1.1 Automatic Tunneling 5.1.2 Configured Tunneling 5.2 Dual Stack 5.3 Translation 5.4 Migration Strategies for Telcos and ISPs Introduction - Transition - the process or a period of changing

More information

Mobile Ad-hoc Network. WIDE project/keio University

Mobile Ad-hoc Network. WIDE project/keio University Mobile Ad-hoc Network WIDE project/keio University ryuji@sfc.wide.ad.jp ToC Global Internet Connectivity MANET/NEMO integration IPv6 Support on MANET MANET on the Internet Where can MANET be deployed in

More information

IP addressing. Overview. IP addressing Issues and solution Variable Length Subnet Mask (VLSM)

IP addressing. Overview. IP addressing Issues and solution Variable Length Subnet Mask (VLSM) Overview IP addressing IP addressing Issues and solution Variable Length Subnet Mask (VLSM) Written exercise : VLSM calculation Summarisation of routes Classless InterDomain routing (CIDR) Internet registry

More information

Routing Basics. ISP Workshops. Last updated 10 th December 2015

Routing Basics. ISP Workshops. Last updated 10 th December 2015 Routing Basics ISP Workshops Last updated 10 th December 2015 1 Routing Concepts p IPv4 & IPv6 p Routing p Forwarding p Some definitions p Policy options p Routing Protocols 2 IPv4 p Internet still uses

More information

6to4 Reverse DNS Delegation

6to4 Reverse DNS Delegation NRO Document G. Huston APNIC August 18, 2004 6to4 Reverse DNS Delegation Abstract This memo describes a potential mechanism for entering a description of DNS servers which provide "reverse lookup" of 6to4

More information

Naming. Brighten Godfrey cs598pbg Sept slides 2010 by Brighten Godfrey unless otherwise noted

Naming. Brighten Godfrey cs598pbg Sept slides 2010 by Brighten Godfrey unless otherwise noted Naming Brighten Godfrey cs598pbg Sept 23 2010 slides 2010 by Brighten Godfrey unless otherwise noted Announcements Presentations are not on the assigned reading We all read it; no need to see a detailed

More information

MPLS VPN Inter-AS Option AB

MPLS VPN Inter-AS Option AB First Published: December 17, 2007 Last Updated: September 21, 2011 The feature combines the best functionality of an Inter-AS Option (10) A and Inter-AS Option (10) B network to allow a Multiprotocol

More information