Hybrid EDF Packet Scheduling for Real-Time Distributed Systems

Size: px
Start display at page:

Download "Hybrid EDF Packet Scheduling for Real-Time Distributed Systems"

Transcription

1 Hybrid EDF Packet Scheduling for Real-Time Distributed Systems Tao Qian 1, Frank Mueller 1, Yufeng Xin 2 1 North Carolina State University, USA 2 RENCI, University of North Carolina at Chapel Hill This work was supported in part by NSF grants , , and Aranya Chakrabortty helped to scope the problem in discussions.

2 Motivation Build up distributed systems to support real-time tasks that require multiple resources over networks. E.g., real-time power grid state monitor and control. 2

3 Motivation Build up distributed systems to support real-time tasks that require multiple resources over networks. R2 Messages R3 Network R1 R4 R1->R2->R3->R4->R1 3

4 Problem Resource scheduler needs to schedule two parts of a distributed task l Initial (on R1) Fixed period l Consecutive (on R2, R3, R4, R1) Released to handle messages Large release jitter due to network transmission time variation Unpredictable interruption to the scheduler How to increase predictability of the system? 4

5 Idea l Utilize periodic tasks to transmit messages/release jobs To eradicate the randomness of interruption l Extend the functionality of the system network layer To prioritize messages according to their urgency (deadlines of corresponding real-time tasks) l Enforce bandwidth limitation strategy To reduce network traffic burstiness/contention To reduce message transmission time variation 5

6 Idea We regulate distributed tasks, so theory of uniprocessor system can be adopted. Utilization-based schedulability test Acceptance test for sporadic tasks Response time based schedulability test 6

7 Solution On each node, l l New: Combine periodic transmission tasks with EDF scheduler New: Add EDF packet scheduler/bandwidth limitation on network layer l New: Support utilization-based schedulability test EDF Scheduler Periodic Transmission Tasks EDF Packet Scheduler Bandwidth Limitation Messages Network R3 R4 R1 7

8 Periodic Transmission Tasks l Messages/jobs are released by periodic receiving task l Messages are sent by periodic sending task l Interruption times are controlled Sender Network Receiver τ Sending Task Receiving Task τ' 8

9 Periodic Transmission Tasks Let k = max. number of jobs of a task. Worst case happens when k jobs are released in one frame. k is upper bounded by the range of network variation (δ + - δ - ). T r : period of receiving task T : minimal inter-transmission time guaranteed by the sender 9

10 Periodic Transmission Tasks l Relative deadline of these tasks can be calculated (0 s < k): l Worst case system utilization is calculated on every node to check the schelulability (sufficient test). ρ 1 10

11 EDF Packet Scheduler l EDF task scheduler may not schedule earlier tasks strictly first since only receiving job can accept messages and release corresponding jobs. E.g., on node R: Message Deadline Arrival Time on R Reception Time on R Message Sending Time on R A B l Task scheduler passes messages into network layer in reversed order. 11

12 EDF Packet Scheduler Prioritize the messages in the network sending queue so that messages with earlier deadlines have high priority to be sent. 12

13 EDF Packet Scheduler We extend the Linux network stack l Let application pass message deadlines to the network stack in kernel l Add EDF queue to transmit message of earlier deadline first 13

14 EDF Packet Scheduler Left: configure deadline for following messages Right: transmit messages in EDF order Application setsockopt (SO_DEADLINE) write sendto socket deadline copy message deadline (sk_buff) EDF queue (data link layer) each socket Transmit in EDF order (physical layer) each interface Linux Network Stack Extension 14

15 Bandwidth Limitation Each node limits the size of data to send in a period of time, with the intention to Reduce burstiness/contention of the underlying network Reduce the network variation Reduce the number of jobs from the same task released by one accepting job 15

16 Bandwidth Limitation l Passive strategy: cannot control the network resource directly l Used in implementation: hierarchical token bucket queue of data link layer l Experimental results show it actually reduces network variation 16

17 Evaluation l Multiple nodes connected with network send ping-pong messages with deadlines to each other l Workload is quantified by (mps, burst): mps: number of frames in one second burst: number of messages sent in one frame Each message has 400 bytes l To prove: Bandwidth limitation reduces network variation EDF packet scheduler reduces deadline miss rate 17

18 Experimental Setup l 8 nodes connected with one switch (Gigabit Ethernet) l 2 cores of 16 cores (in total) on each node are utilized One core is used to send ping messages to 8 nodes, and process the corresponding pong messages. The other core is used to send pong messages. l Each node runs the modified version of Linux , which includes the EDF packet scheduler 18

19 Bandwidth Limitation Result l Workload mps=100, burst is chosen from [5, 10] in a round robin fashion l Blue plots are organized into different clusters, which remained in the queue for different times Network Delay (ms) No Bandwith Sharing Bandwith Sharing Network Delay Variance Bandwidth limitation reduces network variation from 0.97ms to 0.55ms. 19

20 Bandwidth Limitation Result l Network variation are reduced on all 8 nodes No Bandwith Sharing Bandwith Sharing Network Delay (ms) Node-1 Node-2 Node-3 Node-4 Node-5 Node-6 Node-7 Node-8 20

21 EDF Packet Scheduler Result l Experiments of different (mps, burst) are conducted without EDF packet scheduler and then replayed with EDF packet scheduler. l Relative deadline of messages are random uniformly drawn from [D, 2D]. D is configurable. l No bandwidth limitation. 21

22 EDF Packet Scheduler Result l Deadline miss rate is reduced more by the EDF packet scheduler when the network has more congestion. Deadline Miss Rate (%) NoEDF 0.8-EDF 1.0-NoEDF 1.0-EDF , , , , , , , , , , , , , , , 200 Workload (mps, burst) 22

23 More in the Paper l Extended the distributed task model from a pair of nodes to multiple nodes on the path. l Implemented our hybrid packet scheduler in a real-time distributed storage system. l Experimentally proved the formulae to calculate the number of jobs released in one frame for one task in the worst case (the basis for our schedulability test). 23

24 Conclusion l Designed and implemented a system for distributed real-time tasks EDF task scheduler + periodic message transmission tasks EDF packet scheduler Bandwidth limitation l Experiments demonstrate the effectiveness of preserving EDF order + bandwidth reservation through the network stack 24

25 Promising Future Work l How to derive the bandwidth demand from the task set? l How to actively manage network resources to further reduce network variation, when network topology gets more complicated? Thanks! Questions? 25

26 References l l l l l l Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memguard: Memory bandwidth reservation system for efficient performance isolation in multi-core platforms. In Real-Time and Embedded Technology and Applications Symposium (RTAS), 2013 IEEE 19th, pages IEEE, Benoˆıt Dupont de Dinechin, Duco van Amstel, Marc Poulhies, and Guillaume Lager. Timecritical computing on a single-chip massively parallel processor. In Design, Automation and Test in Europe Confer- ence and Exhibition (DATE), 2014, pages 1 6. IEEE, Jakob Rosen, Alexandru Andrei, Petru Eles, and Zebo Peng. Bus access optimization for predictable implementation of real-time applications on multiprocessor systems-on-chip. In Real-Time Systems Symposium, RTSS th IEEE International, pages IEEE, Juan M Rivas, J Javier Gutie ŕrez, J Carlos Palencia, and M Gonza ĺez Harbour. Optimized deadline assignment for tasks and messages in distributed real-time systems. In Proceedings of the 8th International Conference on Embedded Systems and Applications, ESA. Citeseer, Juan Rivas, J Gutierrez, J Palencia, and M Gonzalez Harbour. Deadline assignment in edf schedulers for real-time distributed systems. T. Qian, F. Mueller, and Y. Xin. A real-time distributed hash table. In Embedded and Real-Time Computing Systems and Applications (RTCSA), 2014 IEEE 20th International Conference on, pages IEEE,

ABSTRACT. QIAN, TAO. End-to-end Predictability for Distributed Real-Time Systems. (Under the direction of Rainer Frank Mueller.)

ABSTRACT. QIAN, TAO. End-to-end Predictability for Distributed Real-Time Systems. (Under the direction of Rainer Frank Mueller.) ABSTRACT QIAN, TAO. End-to-end Predictability for Distributed Real-Time Systems. (Under the direction of Rainer Frank Mueller.) Distributed real-time systems impose a number of requirements, such as scalability,

More information

PROBABILISTIC SCHEDULING MICHAEL ROITZSCH

PROBABILISTIC SCHEDULING MICHAEL ROITZSCH Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group PROBABILISTIC SCHEDULING MICHAEL ROITZSCH DESKTOP REAL-TIME 2 PROBLEM worst case execution time (WCET) largely exceeds

More information

arxiv: v2 [cs.ds] 22 Jun 2016

arxiv: v2 [cs.ds] 22 Jun 2016 Federated Scheduling Admits No Constant Speedup Factors for Constrained-Deadline DAG Task Systems Jian-Jia Chen Department of Informatics, TU Dortmund University, Germany arxiv:1510.07254v2 [cs.ds] 22

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) The Internet was originally designed for best-effort service without guarantee of predictable performance. Best-effort service is often sufficient for a traffic that is not sensitive

More information

Real-Time Protocol (RTP)

Real-Time Protocol (RTP) Real-Time Protocol (RTP) Provides standard packet format for real-time application Typically runs over UDP Specifies header fields below Payload Type: 7 bits, providing 128 possible different types of

More information

Improving Real-Time Performance on Multicore Platforms Using MemGuard

Improving Real-Time Performance on Multicore Platforms Using MemGuard Improving Real-Time Performance on Multicore Platforms Using MemGuard Heechul Yun University of Kansas 2335 Irving hill Rd, Lawrence, KS heechul@ittc.ku.edu Abstract In this paper, we present a case-study

More information

Kernel Korner. Analysis of the HTB Queuing Discipline. Yaron Benita. Abstract

Kernel Korner. Analysis of the HTB Queuing Discipline. Yaron Benita. Abstract 1 of 9 6/18/2006 7:41 PM Kernel Korner Analysis of the HTB Queuing Discipline Yaron Benita Abstract Can Linux do Quality of Service in a way that both offers high throughput and does not exceed the defined

More information

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15 Introduction to Real-Time Communications Real-Time and Embedded Systems (M) Lecture 15 Lecture Outline Modelling real-time communications Traffic and network models Properties of networks Throughput, delay

More information

THE DELAY COMPOSITION THEOREM ON PIPELINE SYSTEMS WITH NON-PREEMPTIVE PRIORITY VARYING SCHEDULING ALGORITHMS YI LU THESIS

THE DELAY COMPOSITION THEOREM ON PIPELINE SYSTEMS WITH NON-PREEMPTIVE PRIORITY VARYING SCHEDULING ALGORITHMS YI LU THESIS THE DELAY COMPOSITION THEOREM ON PIPELINE SYSTEMS WITH NON-PREEMPTIVE PRIORITY VARYING SCHEDULING ALGORITHMS BY YI LU THESIS Submitted in partial fulfillment of the requirements for the degree of Master

More information

Real-Time Internet of Things

Real-Time Internet of Things Real-Time Internet of Things Chenyang Lu Cyber-Physical Systems Laboratory h7p://www.cse.wustl.edu/~lu/ Internet of Things Ø Convergence of q Miniaturized devices: integrate processor, sensors and radios.

More information

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information

Lecture 24: Scheduling and QoS

Lecture 24: Scheduling and QoS Lecture 24: Scheduling and QoS CSE 123: Computer Networks Alex C. Snoeren HW 4 due Wednesday Lecture 24 Overview Scheduling (Weighted) Fair Queuing Quality of Service basics Integrated Services Differentiated

More information

COMP 249 Advanced Distributed Systems Multimedia Networking. The Integrated Services Architecture for the Internet

COMP 249 Advanced Distributed Systems Multimedia Networking. The Integrated Services Architecture for the Internet COMP 249 Advanced Distributed Systems Multimedia Networking The Integrated Services Architecture for the Internet Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill

More information

Managing Memory for Timing Predictability. Rodolfo Pellizzoni

Managing Memory for Timing Predictability. Rodolfo Pellizzoni Managing Memory for Timing Predictability Rodolfo Pellizzoni Thanks This work would not have been possible without the following students and collaborators Zheng Pei Wu*, Yogen Krish Heechul Yun* Renato

More information

Empirical Approximation and Impact on Schedulability

Empirical Approximation and Impact on Schedulability Cache-Related Preemption and Migration Delays: Empirical Approximation and Impact on Schedulability OSPERT 2010, Brussels July 6, 2010 Andrea Bastoni University of Rome Tor Vergata Björn B. Brandenburg

More information

A Real-time Distributed Storage System for Multi-Resolution Virtual Synchrophasor

A Real-time Distributed Storage System for Multi-Resolution Virtual Synchrophasor A Real-time Distributed Storage System for Multi-Resolution Virtual Synchrophasor Tao Qian 1, Aranya Chakrabortty 2, Frank Mueller 1 1 Department of Computer Science, 2 Electrical Engineering North Carolina

More information

Reservation-Based Scheduling for IRQ Threads

Reservation-Based Scheduling for IRQ Threads Reservation-Based Scheduling for IRQ Threads Luca Abeni, Nicola Manica, Luigi Palopoli luca.abeni@unitn.it, nicola.manica@gmail.com, palopoli@dit.unitn.it University of Trento, Trento - Italy Reservation-Based

More information

G Robert Grimm New York University

G Robert Grimm New York University G22.3250-001 Receiver Livelock Robert Grimm New York University Altogether Now: The Three Questions What is the problem? What is new or different? What are the contributions and limitations? Motivation

More information

Measuring TCP bandwidth on top of a Gigabit and Myrinet network

Measuring TCP bandwidth on top of a Gigabit and Myrinet network Measuring TCP bandwidth on top of a Gigabit and Myrinet network Juan J. Costa, Javier Bueno Hedo, Xavier Martorell and Toni Cortes {jcosta,jbueno,xavim,toni}@ac.upc.edu December 7, 9 Abstract In this article

More information

Chapter 6 Queuing Disciplines. Networking CS 3470, Section 1

Chapter 6 Queuing Disciplines. Networking CS 3470, Section 1 Chapter 6 Queuing Disciplines Networking CS 3470, Section 1 Flow control vs Congestion control Flow control involves preventing senders from overrunning the capacity of the receivers Congestion control

More information

A Comparative Study of the Realization of Rate-Based Computing Services in General Purpose Operating Systems

A Comparative Study of the Realization of Rate-Based Computing Services in General Purpose Operating Systems A technology for real-time computing on the desktop A Comparative Study of the Realization of Rate-Based Computing Services in General Purpose Operating Systems Kevin Jeffay Department of Computer Science

More information

RESOURCE MANAGEMENT MICHAEL ROITZSCH

RESOURCE MANAGEMENT MICHAEL ROITZSCH Department of Computer Science Institute for System Architecture, Operating Systems Group RESOURCE MANAGEMENT MICHAEL ROITZSCH AGENDA done: time, drivers today: misc. resources architectures for resource

More information

Chapter -5 QUALITY OF SERVICE (QOS) PLATFORM DESIGN FOR REAL TIME MULTIMEDIA APPLICATIONS

Chapter -5 QUALITY OF SERVICE (QOS) PLATFORM DESIGN FOR REAL TIME MULTIMEDIA APPLICATIONS Chapter -5 QUALITY OF SERVICE (QOS) PLATFORM DESIGN FOR REAL TIME MULTIMEDIA APPLICATIONS Chapter 5 QUALITY OF SERVICE (QOS) PLATFORM DESIGN FOR REAL TIME MULTIMEDIA APPLICATIONS 5.1 Introduction For successful

More information

Single Core Equivalence Framework (SCE) For Certifiable Multicore Avionics

Single Core Equivalence Framework (SCE) For Certifiable Multicore Avionics Single Core Equivalence Framework (SCE) For Certifiable Multicore Avionics http://rtsl-edge.cs.illinois.edu/sce/ a collaboration of: Presenters: Lui Sha, Marco Caccamo, Heechul Yun, Renato Mancuso, Jung-Eun

More information

Multiprocessor Real-Time Locking Protocols: from Homogeneous to Heterogeneous

Multiprocessor Real-Time Locking Protocols: from Homogeneous to Heterogeneous Multiprocessor Real-Time Locking Protocols: from Homogeneous to Heterogeneous Kecheng Yang Department of Computer Science, University of North Carolina at Chapel Hill Abstract In this project, we focus

More information

Receive Livelock. Robert Grimm New York University

Receive Livelock. Robert Grimm New York University Receive Livelock Robert Grimm New York University The Three Questions What is the problem? What is new or different? What are the contributions and limitations? Motivation Interrupts work well when I/O

More information

Network Layer Enhancements

Network Layer Enhancements Network Layer Enhancements EECS 122: Lecture 14 Department of Electrical Engineering and Computer Sciences University of California Berkeley Today We have studied the network layer mechanisms that enable

More information

ARTIST-Relevant Research from Linköping

ARTIST-Relevant Research from Linköping ARTIST-Relevant Research from Linköping Department of Computer and Information Science (IDA) Linköping University http://www.ida.liu.se/~eslab/ 1 Outline Communication-Intensive Real-Time Systems Timing

More information

Congestion Control Open Loop

Congestion Control Open Loop Congestion Control Open Loop Muhammad Jaseemuddin Dept. of Electrical & Computer Engineering Ryerson University Toronto, Canada References 1. A. Leon-Garcia and I. Widjaja, Communication Networks: Fundamental

More information

Worst-case Ethernet Network Latency for Shaped Sources

Worst-case Ethernet Network Latency for Shaped Sources Worst-case Ethernet Network Latency for Shaped Sources Max Azarov, SMSC 7th October 2005 Contents For 802.3 ResE study group 1 Worst-case latency theorem 1 1.1 Assumptions.............................

More information

Resource Reservation & Resource Servers

Resource Reservation & Resource Servers Resource Reservation & Resource Servers Resource Reservation Application Hard real-time, Soft real-time, Others? Platform Hardware Resources: CPU cycles, memory blocks 1 Applications Hard-deadline tasks

More information

Multiprocessor and Real-Time Scheduling. Chapter 10

Multiprocessor and Real-Time Scheduling. Chapter 10 Multiprocessor and Real-Time Scheduling Chapter 10 1 Roadmap Multiprocessor Scheduling Real-Time Scheduling Linux Scheduling Unix SVR4 Scheduling Windows Scheduling Classifications of Multiprocessor Systems

More information

On Latency Management in Time-Shared Operating Systems *

On Latency Management in Time-Shared Operating Systems * On Latency Management in Time-Shared Operating Systems * Kevin Jeffay University of North Carolina at Chapel Hill Department of Computer Science Chapel Hill, NC 27599-3175 jeffay@cs.unc.edu Abstract: The

More information

CSE 123b Communications Software

CSE 123b Communications Software CSE 123b Communications Software Spring 2002 Lecture 10: Quality of Service Stefan Savage Today s class: Quality of Service What s wrong with Best Effort service? What kinds of service do applications

More information

Sporadic Server Scheduling in Linux Theory vs. Practice. Mark Stanovich Theodore Baker Andy Wang

Sporadic Server Scheduling in Linux Theory vs. Practice. Mark Stanovich Theodore Baker Andy Wang Sporadic Server Scheduling in Linux Theory vs. Practice Mark Stanovich Theodore Baker Andy Wang Real-Time Scheduling Theory Analysis techniques to design a system to meet timing constraints Schedulability

More information

Packet Scheduling and QoS

Packet Scheduling and QoS Packet Scheduling and QoS EECS 489 Computer Networks http://www.eecs.umich.edu/~zmao/eecs489 Z. Morley Mao Thursday Oct 14, 2004 Acknowledgement: Some slides taken from Kurose&Ross and Katz&Stoica 1 Packet

More information

Shared Address Space I/O: A Novel I/O Approach for System-on-a-Chip Networking

Shared Address Space I/O: A Novel I/O Approach for System-on-a-Chip Networking Shared Address Space I/O: A Novel I/O Approach for System-on-a-Chip Networking Di-Shi Sun and Douglas M. Blough School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA

More information

TDDD82 Secure Mobile Systems Lecture 6: Quality of Service

TDDD82 Secure Mobile Systems Lecture 6: Quality of Service TDDD82 Secure Mobile Systems Lecture 6: Quality of Service Mikael Asplund Real-time Systems Laboratory Department of Computer and Information Science Linköping University Based on slides by Simin Nadjm-Tehrani

More information

Unit 2 Packet Switching Networks - II

Unit 2 Packet Switching Networks - II Unit 2 Packet Switching Networks - II Dijkstra Algorithm: Finding shortest path Algorithm for finding shortest paths N: set of nodes for which shortest path already found Initialization: (Start with source

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 Multimedia networking:

More information

End-to-End Mechanisms for QoS Support in Wireless Networks

End-to-End Mechanisms for QoS Support in Wireless Networks End-to-End Mechanisms for QoS Support in Wireless Networks R VS Torsten Braun joint work with Matthias Scheidegger, Marco Studer, Ruy de Oliveira Computer Networks and Distributed Systems Institute of

More information

QUALITY of SERVICE. Introduction

QUALITY of SERVICE. Introduction QUALITY of SERVICE Introduction There are applications (and customers) that demand stronger performance guarantees from the network than the best that could be done under the circumstances. Multimedia

More information

3. Quality of Service

3. Quality of Service 3. Quality of Service Usage Applications Learning & Teaching Design User Interfaces Services Content Process ing Security... Documents Synchronization Group Communi cations Systems Databases Programming

More information

Real-Time Architectures 2003/2004. Resource Reservation. Description. Resource reservation. Reinder J. Bril

Real-Time Architectures 2003/2004. Resource Reservation. Description. Resource reservation. Reinder J. Bril Real-Time Architectures 2003/2004 Resource reservation Reinder J. Bril 03-05-2004 1 Resource Reservation Description Example Application domains Some issues Concluding remark 2 Description Resource reservation

More information

Middleware Support for Aperiodic Tasks in Distributed Real-Time Systems

Middleware Support for Aperiodic Tasks in Distributed Real-Time Systems Outline Middleware Support for Aperiodic Tasks in Distributed Real-Time Systems Yuanfang Zhang, Chenyang Lu and Chris Gill Department of Computer Science and Engineering Washington University in St. Louis

More information

Computer Systems Assignment 4: Scheduling and I/O

Computer Systems Assignment 4: Scheduling and I/O Autumn Term 018 Distributed Computing Computer Systems Assignment : Scheduling and I/O Assigned on: October 19, 018 1 Scheduling The following table describes tasks to be scheduled. The table contains

More information

Wireless Sensor Actuator Networks

Wireless Sensor Actuator Networks Wireless Sensor Actuator Networks Feedback Channel implemented over a mul;- hop wireless comm. network with stochas;c guarantees on message delivery Examples are found in controlling spatially distributed

More information

DISTRIBUTED REAL-TIME SYSTEMS

DISTRIBUTED REAL-TIME SYSTEMS Distributed Systems Fö 11/12-1 Distributed Systems Fö 11/12-2 DISTRIBUTED REAL-TIME SYSTEMS What is a Real-Time System? 1. What is a Real-Time System? 2. Distributed Real Time Systems 3. Predictability

More information

Assignment 3 (Due date: Thursday, 10/15/2009, in class) Part One: Provide brief answers to the following Chapter Exercises questions:

Assignment 3 (Due date: Thursday, 10/15/2009, in class) Part One: Provide brief answers to the following Chapter Exercises questions: Assignment 3 (Due date: Thursday, 10/15/2009, in class) Your name: Date: Part One: Provide brief answers to the following Chapter Exercises questions: 4.7 Provide two programming examples in which multithreading

More information

Data Link Layer, Part 3 Medium Access Control. Preface

Data Link Layer, Part 3 Medium Access Control. Preface Data Link Layer, Part 3 Medium Access Control These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

More information

Last Class: RPCs and RMI. Today: Communication Issues

Last Class: RPCs and RMI. Today: Communication Issues Last Class: RPCs and RMI Case Study: Sun RPC Lightweight RPCs Remote Method Invocation (RMI) Design issues Lecture 9, page 1 Today: Communication Issues Message-oriented communication Persistence and synchronicity

More information

Network Support for Multimedia

Network Support for Multimedia Network Support for Multimedia Daniel Zappala CS 460 Computer Networking Brigham Young University Network Support for Multimedia 2/33 make the best of best effort use application-level techniques use CDNs

More information

Lecture 17 Multimedia Transport Subsystem (Part 3)

Lecture 17 Multimedia Transport Subsystem (Part 3) CS 414 Multimedia Systems Design Lecture 17 Multimedia Transport Subsystem (Part 3) Klara Nahrstedt Spring 2010 Administrative MP2: deadline Monday, March 1, demos 5-7pm (sign up in class on Monday) HW1:

More information

MODELING OF SMART GRID TRAFFICS USING NON- PREEMPTIVE PRIORITY QUEUES

MODELING OF SMART GRID TRAFFICS USING NON- PREEMPTIVE PRIORITY QUEUES MODELING OF SMART GRID TRAFFICS USING NON- PREEMPTIVE PRIORITY QUEUES Contents Smart Grid Model and Components. Future Smart grid components. Classification of Smart Grid Traffic. Brief explanation of

More information

IMR-Pathload: Robust Available Bandwidth Estimation under End-Host Interrupt Delay

IMR-Pathload: Robust Available Bandwidth Estimation under End-Host Interrupt Delay IMR-Pathload: Robust Available Bandwidth Estimation under End-Host Interrupt Delay Seong Kang Joint work with Dmitri Loguinov Internet Research Lab Department of Computer Science Texas A&M University,

More information

Resource allocation in networks. Resource Allocation in Networks. Resource allocation

Resource allocation in networks. Resource Allocation in Networks. Resource allocation Resource allocation in networks Resource Allocation in Networks Very much like a resource allocation problem in operating systems How is it different? Resources and jobs are different Resources are buffers

More information

Quality of Service in the Internet

Quality of Service in the Internet Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Ultra high-speed transmission technology for wide area data movement

Ultra high-speed transmission technology for wide area data movement Ultra high-speed transmission technology for wide area data movement Michelle Munson, president & co-founder Aspera Outline Business motivation Moving ever larger file sets over commodity IP networks (public,

More information

CSCI Spring Final Exam Solution

CSCI Spring Final Exam Solution CSCI 4211 16Spring Final Exam Solution 1. When an IP packet arrives a router, how the router decides what is the next router (output link) this packet to be forwarded to? What are the routing table and

More information

GUARANTEED END-TO-END LATENCY THROUGH ETHERNET

GUARANTEED END-TO-END LATENCY THROUGH ETHERNET GUARANTEED END-TO-END LATENCY THROUGH ETHERNET Øyvind Holmeide, OnTime Networks AS, Oslo, Norway oeyvind@ontimenet.com Markus Schmitz, OnTime Networks LLC, Texas, USA markus@ontimenet.com Abstract: Latency

More information

Nested QoS: Providing Flexible Performance in Shared IO Environment

Nested QoS: Providing Flexible Performance in Shared IO Environment Nested QoS: Providing Flexible Performance in Shared IO Environment Hui Wang Peter Varman Rice University Houston, TX 1 Outline Introduction System model Analysis Evaluation Conclusions and future work

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

Design Optimization and Synthesis of FlexRay Parameters for Embedded Control Applications

Design Optimization and Synthesis of FlexRay Parameters for Embedded Control Applications Design Optimization and Synthesis of FlexRay Parameters for Embedded Control Applications Soheil Samii 1, Petru Eles 1, Zebo Peng 1, Anton Cervin 2 1 Department of Computer and Information Science 2 Department

More information

Multimedia-Systems. Operating Systems. Prof. Dr.-Ing. Ralf Steinmetz Prof. Dr. rer. nat. Max Mühlhäuser Prof. Dr.-Ing. Wolfgang Effelsberg

Multimedia-Systems. Operating Systems. Prof. Dr.-Ing. Ralf Steinmetz Prof. Dr. rer. nat. Max Mühlhäuser Prof. Dr.-Ing. Wolfgang Effelsberg Multimedia-Systems Operating Systems Prof. Dr.-Ing. Ralf Steinmetz Prof. Dr. rer. nat. Max Mühlhäuser Prof. Dr.-Ing. Wolfgang Effelsberg WE: University of Mannheim, Dept. of Computer Science Praktische

More information

Modeling System Architecture and Resource Constraints Using Discrete-Event Simulation

Modeling System Architecture and Resource Constraints Using Discrete-Event Simulation MATLAB Digest Modeling System Architecture and Resource Constraints Using Discrete-Event Simulation By Anuja Apte Optimizing system resource utilization is a key design objective for system engineers in

More information

AFDX Training Emulator

AFDX Training Emulator AFDX Training Emulator User's Guide v0.1 Copyright (C) 2015 Universidad de Cantabria, SPAIN Jesús Fernández, Héctor Pérez, J. Javier Gutiérrez, and Michael González Harbour Software Engineering and Real-Time

More information

OPERATING SYSTEMS CS3502 Spring Processor Scheduling. Chapter 5

OPERATING SYSTEMS CS3502 Spring Processor Scheduling. Chapter 5 OPERATING SYSTEMS CS3502 Spring 2018 Processor Scheduling Chapter 5 Goals of Processor Scheduling Scheduling is the sharing of the CPU among the processes in the ready queue The critical activities are:

More information

7. Multimedia Operating System. Contents. 7.3 Resource Management. 7.4 Process Management. 7.2 Real Time Systems. 7.5 Prototype Systems. 7.

7. Multimedia Operating System. Contents. 7.3 Resource Management. 7.4 Process Management. 7.2 Real Time Systems. 7.5 Prototype Systems. 7. Contents 7. Overview 7.2 Real Time Systems 7.3 Resource Management Dimensions in Resource Design Reservation Strategies 7.4 Process Management Classification of Real-Time Scheduling Strategies Schedulability

More information

Journal of Electronics and Communication Engineering & Technology (JECET)

Journal of Electronics and Communication Engineering & Technology (JECET) Journal of Electronics and Communication Engineering & Technology (JECET) JECET I A E M E Journal of Electronics and Communication Engineering & Technology (JECET)ISSN ISSN 2347-4181 (Print) ISSN 2347-419X

More information

In-Band Flow Establishment for End-to-End QoS in RDRN. Saravanan Radhakrishnan

In-Band Flow Establishment for End-to-End QoS in RDRN. Saravanan Radhakrishnan In-Band Flow Establishment for End-to-End QoS in RDRN Saravanan Radhakrishnan Organization Introduction Motivation QoS architecture Flow Establishment Protocol QoS Layer Experiments and Results Conclusion

More information

Nested Multiprocessor Real-Time Locking with Improved Blocking

Nested Multiprocessor Real-Time Locking with Improved Blocking Nested Multiprocessor Real-Time Locking with Improved Blocking Bryan C. Ward and James H. Anderson Department of Computer Science, University of North Carolina at Chapel Hill Abstract Existing multiprocessor

More information

Understanding and Using the Controller Area Network Communication Protocol

Understanding and Using the Controller Area Network Communication Protocol Marco Di Natale Haibo Zeng Paolo Giusto Arkadeb Ghosal Understanding and Using the Controller Area Network Communication Protocol Theory and Practice ^Spri ringer Contents..? 1 The CAN 2.0b Standard 1

More information

Time Sensitive Networks - Update from the IIC Testbed for Flexible Manufacturing. Paul Didier, Cisco Rick Blair, Schneider Electric.

Time Sensitive Networks - Update from the IIC Testbed for Flexible Manufacturing. Paul Didier, Cisco Rick Blair, Schneider Electric. Time Sensitive Networks - Update from the IIC Testbed for Flexible Manufacturing Paul Didier, Cisco Rick Blair, Schneider Electric October 10, 2018 Abstract The IIC s TSN for Flexible Manufacturing testbed

More information

Real Time Operating Systems and Middleware

Real Time Operating Systems and Middleware Real Time Operating Systems and Middleware Introduction to Real-Time Systems Luca Abeni abeni@disi.unitn.it Credits: Luigi Palopoli, Giuseppe Lipari, Marco Di Natale, and Giorgio Buttazzo Scuola Superiore

More information

Data Link Layer, Part 5. Medium Access Control

Data Link Layer, Part 5. Medium Access Control CS 455 Medium Access Control, Page 1 Data Link Layer, Part 5 Medium Access Control These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang s courses at GMU

More information

Network Calculus: A Comparison

Network Calculus: A Comparison Time-Division Multiplexing vs Network Calculus: A Comparison Wolfgang Puffitsch, Rasmus Bo Sørensen, Martin Schoeberl RTNS 15, Lille, France Motivation Modern multiprocessors use networks-on-chip Congestion

More information

Titan: Fair Packet Scheduling for Commodity Multiqueue NICs. Brent Stephens, Arjun Singhvi, Aditya Akella, and Mike Swift July 13 th, 2017

Titan: Fair Packet Scheduling for Commodity Multiqueue NICs. Brent Stephens, Arjun Singhvi, Aditya Akella, and Mike Swift July 13 th, 2017 Titan: Fair Packet Scheduling for Commodity Multiqueue NICs Brent Stephens, Arjun Singhvi, Aditya Akella, and Mike Swift July 13 th, 2017 Ethernet line-rates are increasing! 2 Servers need: To drive increasing

More information

ALL the assignments (A1, A2, A3) and Projects (P0, P1, P2) we have done so far.

ALL the assignments (A1, A2, A3) and Projects (P0, P1, P2) we have done so far. Midterm Exam Reviews ALL the assignments (A1, A2, A3) and Projects (P0, P1, P2) we have done so far. Particular attentions on the following: System call, system kernel Thread/process, thread vs process

More information

Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems

Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems Paul Pop, Petru Eles, and Zebo Peng Dept. of Computer and Information Science, Linköping University, Sweden {paupo, petel,

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Do not write in this box MCQ 13: /10 14: /10 15: /0 16: /0 17: /10 18: /10 19: /0 0: /10 Total: Name: Student ID #: Campus/SITN-Local/SITN-Remote? CS44a Winter 004 Professor McKeown CS44a: An Introduction

More information

Introduction to Real-time Systems. Advanced Operating Systems (M) Lecture 2

Introduction to Real-time Systems. Advanced Operating Systems (M) Lecture 2 Introduction to Real-time Systems Advanced Operating Systems (M) Lecture 2 Introduction to Real-time Systems Real-time systems deliver services while meeting some timing constraints Not necessarily fast,

More information

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition

Chapter 6: CPU Scheduling. Operating System Concepts 9 th Edition Chapter 6: CPU Scheduling Silberschatz, Galvin and Gagne 2013 Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Real-Time

More information

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI CMPE 655- MULTIPLE PROCESSOR SYSTEMS OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI What is MULTI PROCESSING?? Multiprocessing is the coordinated processing

More information

An Evaluation of the Dynamic and Static Multiprocessor Priority Ceiling Protocol and the Multiprocessor Stack Resource Policy in an SMP System

An Evaluation of the Dynamic and Static Multiprocessor Priority Ceiling Protocol and the Multiprocessor Stack Resource Policy in an SMP System An Evaluation of the Dynamic and Static Multiprocessor Priority Ceiling Protocol and the Multiprocessor Stack Resource Policy in an SMP System Jim Ras and Albert Mo Kim Cheng Outline Handling shared resources

More information

Position Paper. Minimal Multicore Avionics Certification Guidance

Position Paper. Minimal Multicore Avionics Certification Guidance Position Paper On Minimal Multicore Avionics Certification Guidance Lui Sha and Marco Caccamo University of Illinois at Urbana-Champaign Greg Shelton, Marc Nuessen, J. Perry Smith, David Miller and Richard

More information

Estimation of worst case latency of periodic tasks in a real time distributed environment

Estimation of worst case latency of periodic tasks in a real time distributed environment Estimation of worst case latency of periodic tasks in a real time distributed environment 1 RAMESH BABU NIMMATOORI, 2 Dr. VINAY BABU A, 3 SRILATHA C * 1 Research Scholar, Department of CSE, JNTUH, Hyderabad,

More information

Performance Evaluation of Scheduling Mechanisms for Broadband Networks

Performance Evaluation of Scheduling Mechanisms for Broadband Networks Performance Evaluation of Scheduling Mechanisms for Broadband Networks Gayathri Chandrasekaran Master s Thesis Defense The University of Kansas 07.31.2003 Committee: Dr. David W. Petr (Chair) Dr. Joseph

More information

Lecture 9. Quality of Service in ad hoc wireless networks

Lecture 9. Quality of Service in ad hoc wireless networks Lecture 9 Quality of Service in ad hoc wireless networks Yevgeni Koucheryavy Department of Communications Engineering Tampere University of Technology yk@cs.tut.fi Lectured by Jakub Jakubiak QoS statement

More information

A Simulation Methodology for Worst-Case Response Time Estimation of Distributed Real-Time Systems

A Simulation Methodology for Worst-Case Response Time Estimation of Distributed Real-Time Systems A Simulation Methodology for Worst-Case Response Time Estimation of Distributed Real-Time Systems Soheil Samii, Sergiu Rafiliu, Petru Eles, Zebo Peng Department of Computer and Information Science Linköpings

More information

A Server-based Approach for Predictable GPU Access Control

A Server-based Approach for Predictable GPU Access Control A Server-based Approach for Predictable GPU Access Control Hyoseung Kim * Pratyush Patel Shige Wang Raj Rajkumar * University of California, Riverside Carnegie Mellon University General Motors R&D Benefits

More information

RSVP 1. Resource Control and Reservation

RSVP 1. Resource Control and Reservation RSVP 1 Resource Control and Reservation RSVP 2 Resource Control and Reservation policing: hold sources to committed resources scheduling: isolate flows, guarantees resource reservation: establish flows

More information

Resource Control and Reservation

Resource Control and Reservation 1 Resource Control and Reservation Resource Control and Reservation policing: hold sources to committed resources scheduling: isolate flows, guarantees resource reservation: establish flows 2 Usage parameter

More information

OPERATING SYSTEMS. Systems with Multi-programming. CS 3502 Spring Chapter 4

OPERATING SYSTEMS. Systems with Multi-programming. CS 3502 Spring Chapter 4 OPERATING SYSTEMS CS 3502 Spring 2018 Systems with Multi-programming Chapter 4 Multiprogramming - Review An operating system can support several processes in memory. While one process receives service

More information

Comparative evaluation of limited preemptive methods

Comparative evaluation of limited preemptive methods Comparative evaluation of limited preemptive methods Gang Yao, Giorgio Buttazzo and Marko Bertogna Scuola Superiore Sant Anna, Pisa, Italy, {g.yao, g.buttazzo, m.bertogna}@sssup.it Abstract Schedulability

More information

Cost-effective Burst-Over-Circuit-Switching in a hybrid optical network

Cost-effective Burst-Over-Circuit-Switching in a hybrid optical network Cost-effective Burst-Over-Circuit-Switching in a hybrid optical network Jens Buysse, Marc De Leenheer, Chris Develder, Bart Dhoedt, Piet Demeester Research Group Broadband Communication Networks (IBCN)

More information

Lecture 5: Performance Analysis I

Lecture 5: Performance Analysis I CS 6323 : Modeling and Inference Lecture 5: Performance Analysis I Prof. Gregory Provan Department of Computer Science University College Cork Slides: Based on M. Yin (Performability Analysis) Overview

More information

Network Management & Monitoring

Network Management & Monitoring Network Management & Monitoring Network Delay These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) End-to-end

More information

ANALYSIS OF HIERARCHICAL SCHEDULING FOR HETEROGENEOUS TRAFFIC OVER NETWORK

ANALYSIS OF HIERARCHICAL SCHEDULING FOR HETEROGENEOUS TRAFFIC OVER NETWORK ANALYSIS OF HIERARCHICAL SCHEDULING FOR HETEROGENEOUS TRAFFIC OVER NETWORK Rabie Barhoun 1, Abdelwahed Namir 1 and Anas Barhoun 2 1 Department of Mathematics and Computer Science, University Hassan II,

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Do not write in this box MCQ 9: /10 10: /10 11: /20 12: /20 13: /20 14: /20 Total: Name: Student ID #: CS244a Winter 2003 Professor McKeown Campus/SITN-Local/SITN-Remote? CS244a: An Introduction to Computer

More information

Probabilistic Worst-Case Response-Time Analysis for the Controller Area Network

Probabilistic Worst-Case Response-Time Analysis for the Controller Area Network Probabilistic Worst-Case Response-Time Analysis for the Controller Area Network Thomas Nolte, Hans Hansson, and Christer Norström Mälardalen Real-Time Research Centre Department of Computer Engineering

More information