WiMAX Vs Wi-Fi. 3G Evolution (source: Nokia) Wireless Systems. WiMAX

Size: px
Start display at page:

Download "WiMAX Vs Wi-Fi. 3G Evolution (source: Nokia) Wireless Systems. WiMAX"

Transcription

1 3G Evolution (source: Nokia) WiMAX Vs Wi-Fi ผศ.ดร.ส ร นทร ก ตต ธรก ล ภาคว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร สถาบ นเทคโนโลย พระจอมเกล าเจ าค ณทหารลาดกระบ ง 2 Wireless Systems WiMAX Worldwide Interoperability for Microwave Access Brand licensed by the WiMax Forum. a standards-based technology enabling the delivery of last mile wireless broadband access as an alternative to cable and DSL WiMAX was seen as more of a Metropolitan Area Network (MAN) technology providing a much larger coverage. Based on IEEE

2 IEEE Introduction Source: WiMAX, making ubiquitous high-speed data services a reality, White Paper, Alcatel. Migration of WiMAX Data Rate Fixed WiMAX IEEE d 2005 SOC Available Portable WiMAX Nomadic WiMAX IEEE d/e 2006? Standard Maturing Standard Maturing Mobile WiMAX IEEE e 2007? Mobility WiMAX WiMAX, in fact, comes in two forms, a so called fixed WiMAX and a mobile WiMAX. WiMAX in its fixed form is seen as a possible alternative to expensive cable and fibre deployment. It is faster to deploy and less expensive and it also offers operators more flexibility in terms of deployment time frame and possible installation areas. 3G or other cellular network operators could see this as a potential substitute or as a complement to their cellular product. 8

3 Network Architecture Channel Characteristics GHz Very weak multipath components (LOS is required) Rain attenuation is a major issue Single-carrier PHY 2-11 GHz Multipath NLOS Single and multi-carrier PHYs Advantages in Multipath A carries advantages in Multipath CDMA uses the whole spectrum, wasting system resource to combat frequency selective fading. CDMA also creates worse interference problem A only select subcarriers with less channel degradation, prevent wasting system resource (power or throughput ) => achieving higher system capacity. Multipath Signal Sent Signal Received

4 Physical Layer Summary A Scalability Designation Applicability MAC Duplexing WirelessMAN-SC GHz Licensed Basic TDD, FDD, HFDD WirelessMAN-SC 2-11 GHz Licensed Basic, (ARQ), (STC), (AAS) TDD, FDD 2-11 GHz Licensed Basic, (ARQ), (STC), (AAS) TDD, FDD WirelessMAN GHz Licenseexempt Basic, (ARQ), (STC), (DFS), (MSH), (AAS) TDD 2-11 GHz Licensed Basic, (ARQ), (STC), (AAS) TDD, FDD WirelessMAN-A 2-11 GHz Licenseexempt Basic, (ARQ), (STC), (DFS), (MSH), (AAS) TDD Supports s wide range of frame sizes (2-20 ms) Source: Intel Scalable A Physical Layer in IEEE WirelessMAN Adaptive PHY Spectral Efficiency Wins Spectrum efficiency is an important factor for data service The scarce of available (or useful) spectrum makes efficiency a key factor to approve spectrum and the success of business model. Regulatory bodies shall recycle spectrum for existing systems with low spectral efficiency. Future systems with high spectrum re-use advantages or higher spectral efficiency shall have favored allocation during application. 2.5G TDMA: Very limited data rate and low spectral efficiency ( bps/hz) 3G WCDMA: Reasonable data rate, range, and mobility, improved spectral efficiency ( bps/hz) Source: Understanding WiMAX and 3G for Portable/Mobile Broadband Wireless, Technical White Paper, Intel. WiFi: 64FFT, Reasonable data rate, limited range and mobility, improved spectral efficiency (2-3 bps/hz) 500kHz WiMAX:A, Up to 2048FFT much improved range and mobility, potential for best spectral efficiency (3-4 bps/hz) 5MHz 15 MHz 20 MHz

5 Reference Model Duplex Scheme Support The duplex scheme is Usually specified by regulatory bodies, e.g., FCC Time-Division Duplex (TDD) Downlink & Uplink time share the same RF channel Dynamic asymmetry does not transmit & receive simultaneously (low cost) Frequency-Division Duplex (FDD) Downlink & Uplink on separate RF channels Full Duplexing (FDX): can Tx and Rx simultaneously; Half-duplexing (HDX) SSs supported (low cost) IEEE MAC PHY FDD Frame Structure Time Division Duplexing (TDD) Time Frame n-1 Frame n Frame n+1 Subframe TDM TDMA pre. FCH burst 1 burst 2... burst k pre. burst k+1... pre. burst n Broadcast Control Msgs MAP UL DCD MAP opt. UCD opt. UL subframe UL MAP for next MAC frame UL bursts pre. UL burst 1 UL TDMA... pre. UL burst m

6 IEEE MAC PHY TDD Frame Structure Frame Structure Another View Time Frame n-1 Frame n Frame n+1 Adaptive Subframe UL subframe pre. FCH burst 1 TDM UL TDMA... burst n... pre. UL burst 1 pre. UL burst m burst 2 MAP UL MAP DCD opt. UCD opt. Broadcast Conrol msgs IEEE MAC Convergence Sub-Layer (CS) ATM Convergence Sub-Layer: Support for VP/VC switched connections Support for end-to-end signaling of dynamically created connections ATM header suppression Full QoS support Packet Convergence Sub-Layer: Initial support for Ethernet, VLAN, IPv4, and IPv6 Payload header suppression Full QoS support IEEE MAC -- CS Packet Convergence Sub-Layer Functions: Classification: mapping the higher layer PDUs (Protocol Data Units) into appropriate MAC connections Payload header suppression (optional) MAC SDU (Service Data Unit), i.e, CS PDU, formatting PHSI MAC SDU = CS PDU Payload Header Suppression Index Optional, Depending on upper layer protocol Packet PDU (e.g., IP packet, Ethernet Packet)

7 IEEE MAC -- CPS MAC PDU Format IEEE MAC -- CPS -- Three Types of MAC PDUs MAC PDU msb Generic MAC Header (6 bytes) Generic MAC Header Format (Header Type (HT) = 0) H T E C Type (6 bits) LEN lsb (8) CID lsb (8) rs v C I EKS (2) rs v CID msb (8) HCS (8) LEN msb (3) payload (optional) BW Req. Header Format (Header Type (HT) =1) H T E C Type (6 bits) BWS Req. lsb (8) CID lsb (8) BW Req. msb (8) lsb CRC (optional) CID msb (8) HCS (8) Data MAC PDUs HT = 0 Payloads are MAC SDUs/segments, i.e., data from upper layer (CS PDUs) Transmitted on data connections Management MAC PDUs HT =0 Payloads are MAC management messages or IP packets encapsulated in MAC CS PDUs Transmitted on management connections BW Req. MAC PDUs HT =1; and no payload, i.e., just a Header IEEE MAC -- CPS Data Packet Encapsulations -- MAC Management Connections Packet PDU (e.g., Ethernet) CS PDU (i.e., MAC SDU) MAC PDU HT P H SI Ethernet Packet Ethernet Packet MAC PDU Payload CRC Each SS has 3 management connections in each direction: Basic Connection: short and time-urgent MAC management messages MAC mgmt messages as MAC PDU payloads Primary Management connection: FEC FEC block 1 FEC Block 2 FEC Block 3 FEC block m longer and more delay tolerant MAC mgmt messages MAC mgmt messages as MAC PDU payloads Secondary Management Connection: PHY Burst (e.g., TDMA burst) Preamble 1 2 n Standard based mgmt messages, e.g., DHCP, SNMP, etc IP packets based CS PDU as MAC PDU payload

8 MAC Management Messages MAC mgmt message format: 8 bits mgmt msg HD MAC mgmt msg payload MAC mgmt msg can be sent on: Basic connections; Primary mgmt connection; Broadcast connection; and initial ranging connections 41 MAC mgmt msgs specified in The TLV (type/length/value) encoding scheme is used in MAC mgmt msg, e.g., in UCD msg for UL burst profiles, (type=1, length=1, value=1) QPSK modulation (type=1, length=1, value=2) 16QAM modulation (type=1, length=1, value=3) 64QAM modulation MAC PDU Transmission MAC PDUs are transmitted in PHY Bursts The PHY burst can contain multiple FEC blocks MAC PDUs may span FEC block boundaries Concatenation Packing Segmentation Sub-headers MAC PDU Concatenation Multiple MAC PDUs are concatenated into the same PHY burst MAC PDU Fragmentation A MAC SDU can be fragmented into multiple segments, each segment is encapsulated into one MAC PDU FEC HT MAC PDU 1 MAC PDU 2 MAC PDU Payload CRC HT MAC PDU Payload CRC FEC block 1 FEC Block 2 FEC Block 3 HT MAC PDU k MAC PDU Payload FEC block m CRC Fragmentation Sub-Header (8 bits) FEC HT F S H FEC block 1 MAC SDU seg-1 MAC PDU Payload CRC HT FEC Block m1 MAC SDU F S H MAC SDU seg-2 MAC PDU Payload CRC FEC block 1 MAC SDU seg-3 HT F S H MAC PDU Payload CRC FEC Block m2 PHY Burst (e.g., TDMA burst) Preamble 1 2 n Pre. 1 n1 Pre. 1 n2 PHY Burst PHY Burst

9 MAC PDU Packing QoS Packing with fixed size MAC SDUs (no packing sub-header is needed) HT MAC SDU 1 MAC SDU 2 MAC PDU Payload MAC SDU k CRC Fixed size MSDUs, e.g., ATM Cells, on the same connection Packing with variable size MAC SDUs (Packing Sub-Heade is neeeded) Packing Sub-Heder (16 bits) MAC SDU or seg. 1 MAC SDU or seg 2 MAC SDU or seg n Variable size MSDUs or MSDU segments, e.g., IP packets, on the same connection Three components of QoS Service flow QoS scheduling Dynamic service establishment Two-phase activation model (admit first, then activate) Service Flow A unidirectional MAC-layer transport service characterized by a set of QoS parameters, e.g., latency, jitter, and throughput assurances Identified by a 32-bit SFID (Service Flow ID) Three types of service flows Provisioned: controlled by network management system Admitted: the required resources reserved by BS, but not active Active: the required resources committed by the BS HT PSH PSH PSH CRC Uplink Service Classes Uplink Services: UGS UGS: Unsolicited Grant Services rtps: Real-time Polling Services nrtps: Non-real-time Polling Services BE: Best Effort UGS: Unsolicited Grant Services For CBR or CBR-like services, e.g., T1/E1. The BS scheduler offers fixed size UL BW grants on a real-time periodic basis. The SS does not need to send any explicit UL BW req.

10 Uplink Services: rtps rtps: Real-time Polling Services For rt-vbr-like services, e.g., MPEG video. The BS scheduler offers real-time, periodic, UL BW request opportunities. The SS uses the offered UL BW req. opportunity to specify the desired UL BW grant. The SS cannot use contention-based BW req. Uplink Services: nrtps nrtps: non-real-time polling services For nrt-vbr-like services, such as, bandwidthintensive file transfer. The BS scheduler shall provide timely (on a order of a second or less) UL BW request opportunities. The SS can use contention-based BW req. opportunities to send BW req. Uplink Services: BE BE: Best Effort For best-effort traffic, e.g., HTTP, SMTP. The SS uses the contention-based BW request opportunities. Bandwidth Grant BW grants are per Subscriber Station: Allows real-time reaction to QoS need, i.e., SS may re-distribute bandwidth among its connections, maintaining QoS and service-level agreements Lower overhead, i.e., less UL-MAP entries compare to grant per connection Off- loading base station s work Requires intelligent subscriber station to redistribute the allocated BW among connections

11 BW Request/Grant Mechanisms Implicit requests (UGS): No actual requests BW request messages, i.e., BW req. header Sends in either a contention-based BW req. slot or a regular UL allocation for the SS;he special B Requests up to 32 KB with a single message Request Incremental or aggregate, as indicated by MAC header Piggybacked request (for non-ugs services only) Presented in Grant Management (GM) sub-header in a data MAC PDU of the same UL connection is always incremental Up to 32 KB per request for the CID Poll-Me bit Presented in the GM sub-header on a UGS connection request a bandwidth req. opportunity for non-ugs services -- Contention UL Access Two types of Contention based UL slots Initial Ranging Used for new SS to join the system Requires a long preamble BW Request Used for sending BW req Short preamble Collision Detection and Resolution Detection: SS does not get the expected response in a given time Resolution: a truncated binary exponential backoff window UL Sub-Frame Structure Ranging Ranging is a process of acquiring the correct timing offset, and PHY parameters, such as, Tx power level, frequency offset, etc. so that the SS can communicate with the BS correctly. BS performs measurements and feedback. SS performs necessary adjustments. Two types of Ranging: Initial ranging: for a new SS to join the system Periodic ranging (also called maintenance ranging): dynamically maintain a good RF link. Source:

12 Automatic Repeat request (ARQ) A Layer-2 sliding-window based flow control mechanism. Per connection basis. Only effective to non-real-time applications. Uses a 11-bit sequence number field. Uses CRC-32 checksum of MAC PDU to check data errors. Maintain the same fragmentation structure for Retransmission. Optional. IEEE MAC Privacy Sub-layer (PS) Two Major Functions: Secures over-the-air transmissions Protects from theft of service Two component protocols: Data encryption protocol A client/server model based Key management protocol (Privacy Key Management, or PKM) IEEE MAC PS -- Security Associations A set of privacy information, e.g., encryption keys, used encryption algorithm Three types of Security Associations (SAs) Primary SA: established during initial registration Static SA: provisioned within the BS Dynamic SA: dynamically created on the fly Identified by a 16-bit SAID Connections are mapped to SAs IEEE MAC PS -- Multi-level Keys and Their Usage Public Key Contained in X.509 digital certificate Issued by SS manufacturers Used to encrypt AK Authorization Key (AK) Provided by BS to SS at authorization Used to derive KEK Key Encryption Key (KEK) Derived from AK Used to encrypt TEK Traffic Encryption Key (TEK) Provided by BS to SS at key exchange Used to encrypt traffic data payload

13 IEEE MAC PS -- Data Encryption Use DES (Data Encryption Standard) in CBC (Cipher Block Chaining) mode with IV (Initialization Vector). CBC IV is calculated from IV parameter in TEK keying info; and PHY synchronization field in -MAP. Only MAC PDU payload (including subheaders) is encrypted. MAC PDU headers are unencrypted. Management messages are unencrypted. Wi-Fi Stands for Wireless Fidelity. Brand licensed by the Wi-Fi Alliance. Wi-Fi is a local area network technology that was originally thought to replace the thousands of miles of LAN cables. Wireless Local Area Networks (WLAN) Based on IEEE Wi-Fi Wi-Fi has grown from being just a LAN cable replacement technology to a public wireless access technology. Cheap and readily available equipment. WiFi has been viewed as complementary to 3G and other mobile standards as it has worked to enhance mobile services offered by operators. It s coverage is not as great as that of 3G, but it gives a much higher transmission rate than mobile technology. Wi-Fi New developments are taking place within the standardization group With the increasing popularity of VoIP, many see WiFi as one of the possible means of using VoIP with some form of mobility r for wireless VoIP and other real time applications s for meshed WiFi networking Handoff between WiFi access points is still not possible and, therefore, it is known more as a wireless access technology than a mobile technology. 51 Making WiFi more mobile could make it more of a substitute to mobile technologies 52

14 Scalability Bit Rate: Relative Performance Channel Bandwidth Maximum Data Rate Maximum bps/hz a 20 MHz 54 Mbps ~2.7 bps/hz Wide, fixed (20MHz) frequency channels Channel bandwidths can be chosen by operator (e.g. for sectorization) 1.5 MHz to 20 MHz width channels. MAC designed for scalability independent of channel bandwidth 10, 20 MHz; a 1.75, 3.5, 7, 14 MHz; 63 Mbps* ~5.0 bps/hz 3, 6 MHz * Assuming a 14 MHz channel MAC designed to support 10 s of users MAC designed to support thousands of users a is designed for metropolitan performance Coverage Range Optimized for indoor performance No mesh topology support within ratified standards Optimized for outdoor NLOS performance Standard supports mesh network topology Standard supports advanced antenna techniques Optimized for ~100 meters No near-far compensation. Designed to handle indoor multipath(delay spread of 0.8μ seconds). Optimization centers around PHY and MAC layer for 100m range. Optimized for up to 50 Km Designed to handle many users spread out over kilometers Designed to tolerate greater multi-path delay spread (signal reflections) up to 10.0μ seconds PHY and MAC designed with multimile range in mind Range can be extended by cranking up the power but MAC may be non-standard. StandardMAC;Sectoring/MIMO/AMC for Rate/Range dynamic tradeoff is designed for market coverage is designed for distance 55 56

15 Quality of Service (QoS) Contention-based MAC (CSMA/CA) => no guaranteed QoS Standard cannot currently guarantee latency for Voice, Video Standard does not allow for differentiated levels of service on a per-user basis a Grant-request MAC Designed to support Voice and Video from ground up Supports differentiated service levels: e.g. T1 for business customers; best effort for residential. Security Existing standard is WPA + WEP i in process of addressing security a Triple-DES (128-bit) and RSA (1024-bit) TDD only asymmetric e (proposed) QoS is prioritization only TDD/FDD/HFDD symmetric or asymmetric Centrally-enforced QoS a is designed for carrier class operation a maintains fixed wireless security WiMAX vs Wi-Fi WiMAX vs Wi-Fi 59 60

16 Comparison of WiMAX, WiFi and 3G technology vs : Summary and both gain broader industry acceptance through conformance and interoperability by multiple vendors complements by creating a complete MAN-LAN solution is optimized for license-exempt LAN operation is optimized for license-exempt and licensed MAN operation Will WiMAX displace WiFi? Wi-fi and WiMax Together WiMAX will not replace WiFi completely, but work TOGETHER Intel is currently integrating WiMAX and WiFi into a single Centrino chip. WiFi s primary role will always be autonomous hotspot service areas (indoor and outdoor 0 ft. < cell radii <500 ft.). WiMax will ultimately replace WiFi in large-scale (greater than 1mi.Sq.) commercial and public roles

Wireless Communication. IEEE Wireless Metropolitan Area Network (wman)

Wireless Communication. IEEE Wireless Metropolitan Area Network (wman) 1 IEEE 802.16 Wireless Metropolitan Area Network (wman) 2 Existing Data Network Hierarchy Level Typical Connections Wired Technologies Wireless Technologies Personal Area (PAN) Peripherals and personal

More information

MAC layer: structure and QoS support. PhD student: Le Minh Duong

MAC layer: structure and QoS support. PhD student: Le Minh Duong 802.16 MAC layer: structure and QoS support PhD student: Le Minh Duong Content 1. Introduction 2. 802.16 MAC layer 2.1. MAC Service-Specific Convergence Sublayer 2.2. Common Part Sublayer 3. QoS support

More information

MAC Overview NCHU CSE WMAN - 1

MAC Overview NCHU CSE WMAN - 1 MAC Overview NCHU CSE WMAN - 1 MAC Overview Connection-oriented Supports difficult user environments High bandwidth, hundreds of users per channel For variable Continuous and Burst traffic Very efficient

More information

Evaluating VoIP using Network Simulator-2

Evaluating VoIP using Network Simulator-2 Athens University of Economic and Business Evaluating VoIP using Network Simulator-2 June 2007 Author: Papantonakos Manos Supervisor Prof.: George Xylomenos Co-Supervisor Prof: George Polyzos About WiMax

More information

Institute of Electrical and Electronics Engineers (IEEE)

Institute of Electrical and Electronics Engineers (IEEE) 2006-03-08 IEEE L802.16-06/004 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS Document 8A/IEEE-2-E Document 8F/IEEE-1-E 8 March 2006 English only Received: TECHNOLOGY Subject: Question

More information

Outline. Introduction WiMAX s Features WiMAX s Competitors Conclusion References Ting-Kai Huang, MNET Lab 2

Outline. Introduction WiMAX s Features WiMAX s Competitors Conclusion References Ting-Kai Huang, MNET Lab 2 WiMAX(802.16) Outline Introduction WiMAX s Features WiMAX s Competitors Conclusion References 2004-12-29 Ting-Kai Huang, MNET Lab 2 Introduction Wireless Technologies UWB (PAN) Wi-Fi (LAN) WiMAX (MAN)

More information

What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator

What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator Introduction- What is WiMAX WiMAX -Worldwide Interoperability

More information

On Performance Evaluation of Different QoS Mechanisms and AMC scheme for an IEEE based WiMAX Network

On Performance Evaluation of Different QoS Mechanisms and AMC scheme for an IEEE based WiMAX Network On Performance Evaluation of Different QoS Mechanisms and AMC scheme for an IEEE 802.16 based WiMAX Network Vinit Grewal Department of Electronics and Communication Engineering National Institute of Technology

More information

SS Initialization Overview

SS Initialization Overview SS Initialization Overview Downlink Sync Auth. Key Xchange Get Uplink Parameters Setup Time Ranging Register Download Configuration File Capability Negotiation DHCP Setup connection and service flow (provisioned

More information

Protocol Implementation Conformance Statement for IEEE Standard

Protocol Implementation Conformance Statement for IEEE Standard 00-0- IEEE C..-0/0 Protocol Implementation Conformance Statement for IEEE Standard 0.-00 00-0- WiMAX PICS v... 0 Contents Foreword... Introduction.... Scope.... References.... Definitions and Abbreviations....

More information

Overview of WiMAX (Chapter 2) ENE 490 MON 13:30-16:30 Asst. Prof. Suwat Pattaramalai

Overview of WiMAX (Chapter 2) ENE 490 MON 13:30-16:30 Asst. Prof. Suwat Pattaramalai (Chapter 2) ENE 490 MON 13:30-16:30 Asst. Prof. Suwat Pattaramalai Background on IEEE 802.16 and WiMAX (Table 2.1 and Table 2.2) Salient Features of WiMAX OFDM-based physical layer: good resistance to

More information

Media Access Control Protocol Based on DOCSIS 1.1

Media Access Control Protocol Based on DOCSIS 1.1 Document Number: IEEE 802.16mp-99/16 Title: Media Access Control Protocol Based on DOCSIS 1.1 Date Submitted: 1999-11-08 Source: Karl Stambaugh Voice: 480-441-7842 Motorola Inc. Fax: 480-675-2116 8220

More information

2 & 3G Cellular Backhaul: Future Proof Approach

2 & 3G Cellular Backhaul: Future Proof Approach 5th RUSSIAN COMMUNICATIONS FORUM 2 & 3G Cellular Backhaul: Future Proof Approach November, 2004 Broadband Wireless Communications Company 2003 Sales: $1.3B 2,750 employees Based in Germantown, MD, U.S.A.

More information

The IEEE WirelessMAN Standard for Broadband Wireless Metropolitan Area Networks

The IEEE WirelessMAN Standard for Broadband Wireless Metropolitan Area Networks The IEEE WirelessMAN Standard for Broadband Wireless Metropolitan Area Networks ITU-APT Regional Seminar Busan, Republic of Korea 10 Sept 2004 Ken Stanwood CEO, Cygnus Multimedia Communications Vice-Chair,

More information

The Ultimate WiMAX Platform. WiMAX Product Family

The Ultimate WiMAX Platform. WiMAX Product Family WiMAX Product Family Libra MAX, the ultimate WiMAX platform from EION Wireless, delivers a range of WiMAX compliant base station and subscriber station products with exceptional performance, scalability

More information

Design and Implementation of IEEE MAC Layer Simulator

Design and Implementation of IEEE MAC Layer Simulator IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.8, August 2009 53 Design and Implementation of IEEE 802.16 MAC Layer Simulator Malik Muhammad Asim, Muid Mufti Computer Engineering

More information

WiMAX and WiFi Interoperability in Next Generation Networks

WiMAX and WiFi Interoperability in Next Generation Networks WiMAX and WiFi Interoperability in Next Generation Networks Pedro Neves Crossnet Workshop Lisbon, February 19 th 2008 Portugal Telecom Inovação, S.A. Contents WiMAX & WiFi Overview Synergies Deployment

More information

Mobile WiMAX EPL 657. Panayiotis Kolios

Mobile WiMAX EPL 657. Panayiotis Kolios Mobile WiMAX EPL 657 Panayiotis Kolios 1 WiMAX Based on the 802.16 suite of protocols Air interface OFDMA defined under 802.16-2004 Mobility enhancements made under 802.16e include multi-path performance

More information

WiMAX Capacity Enhancement: Capacity Improvement of WiMAX Networks by Dynamic Allocation of Subframes

WiMAX Capacity Enhancement: Capacity Improvement of WiMAX Networks by Dynamic Allocation of Subframes WiMAX Capacity Enhancement: Capacity Improvement of WiMAX Networks by Dynamic Allocation of Subframes Syed R. Zaidi, Shahab Hussain, M. A. Ali Department of Electrical Engineering The City College of The

More information

WiMAX Technology and Deployment for Last-Mile Wireless Broadband and Backhaul Applications

WiMAX Technology and Deployment for Last-Mile Wireless Broadband and Backhaul Applications White Paper WiMAX Technology and Deployment WiMAX Technology and Deployment for Last-Mile Wireless Broadband and Backhaul Applications Fujitsu Microelectronics America, Inc. August 2004 Contents Introduction

More information

Initial PHY Layer System Proposal for Sub 11 GHz BWA

Initial PHY Layer System Proposal for Sub 11 GHz BWA Initial PHY Layer System Proposal for Sub 11 GHz BWA Document Number: 802.16.3p-00/40 Date Submitted: 2000-11-08 Source: Anader Benyamin-Seeyar Voice: (514) 822-2014 Harris Corporation Inc. Fax: (514)

More information

International Journal Of Core Engineering & Management Volume-5, Issue-7, October-2018, ISSN No:

International Journal Of Core Engineering & Management Volume-5, Issue-7, October-2018, ISSN No: WIMAX TECHNOLOGY FOR BROADBAND WIRELESS ACCESS: OVERVIEW Nishu M.tech Scholar, ECE Department, SSCET, Badhani, Punjab Er.Reetika AP, ECE Department, SSCET, Badhani, Punjab Abstract The Worldwide Interoperability

More information

Nokia Fax:

Nokia Fax: 2002-09-11 IEEE C802.16c-02/09 Project Title Date Submitted 2002-09-11 IEEE 802.16 Broadband Wireless Access Working Group Editorial instructions pertaining to comments submitted

More information

WIMAX. WIMAX (Worldwide Interoperability for Microwave Access ): Field of application:

WIMAX. WIMAX (Worldwide Interoperability for Microwave Access ): Field of application: WIMAX WiMAX (Worldwide Interoperability for Microwave Access) is a technology that focuses on providing data over long distances in a wireless mode, very similar to the cellular mobile concept. WiMAX is

More information

Table of Contents. Introduction...3. WiMAX Forum overview...4. WiMAX Technology framework...4. Key elements of WiMAX Technology...

Table of Contents. Introduction...3. WiMAX Forum overview...4. WiMAX Technology framework...4. Key elements of WiMAX Technology... White Paper Table of Contents Introduction...3 WiMAX Forum overview...4 WiMAX Technology framework...4 Key elements of WiMAX Technology...4 WiMAX Plugfest Testing...6 Test architecture...6 System-Under-Test

More information

IEEE MAC and PHY Specifications for Broadband WMAN

IEEE MAC and PHY Specifications for Broadband WMAN IEEE 802.16 MAC and PHY Specifications for Broadband WMAN 中央大學通訊系許獻聰 E-mail: stsheu@ce.ncu. edu.tw TKU HSNL WMAN - 1 Resources Part Source : Roger B. Marks, National Institute of Standards and Technology

More information

WiMAX: MAC Layer Performance Assessments

WiMAX: MAC Layer Performance Assessments WiMAX: MAC Layer Performance Assessments A. Bestetti,G.Giambene, S. Hadzic Alcatel-Lucent, Via Trento, 30, I-20059 Vimercate, Milano, Italy University of Siena, Via Roma, 56, I-53100 Siena, Italy Abstract

More information

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University Lecture 4: Wireless MAC Overview Hung-Yu Wei National Taiwan University Medium Access Control Topology 3 Simplex and Duplex 4 FDMA TDMA CDMA DSSS FHSS Multiple Access Methods Notice: CDMA and spread spectrum

More information

CS 332 Computer Networks Wireless Networks

CS 332 Computer Networks Wireless Networks CS 332 Computer Networks Wireless Networks Professor Szajda Chapter 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets:

More information

Basic course on WiMAX. Marina Settembre Ericsson Lab italy

Basic course on WiMAX. Marina Settembre Ericsson Lab italy Basic course on WiMAX Marina Settembre Ericsson Lab italy Agenda Introduction What is WiMAX? Why WiMAX? WiMAX in the broadband landscape WiMAX architecture scenario and applications WiMAX standards WiMAX

More information

This tutorial has been designed to help beginners understand the basic concepts of WiMAX.

This tutorial has been designed to help beginners understand the basic concepts of WiMAX. About the Tutorial WiMAX is one of the hottest broadband wireless technologies around today. It is based on IEEE 802.16 specification and it is expected to deliver high quality broadband services. This

More information

E3-E4 (CM MODULE) WiMAX OVERVIEW & BSNL WiMAX PROJECT

E3-E4 (CM MODULE) WiMAX OVERVIEW & BSNL WiMAX PROJECT E3-E4 (CM MODULE) WiMAX OVERVIEW & BSNL WiMAX PROJECT WELCOME This is a presentation for the E3-E4 Technical (CM- Module) for the Topic: WiMAX Overview & BSNL WiMAX Project Eligibility: Those who have

More information

Wireless# Guide to Wireless Communications. Objectives

Wireless# Guide to Wireless Communications. Objectives Wireless# Guide to Wireless Communications Chapter 8 High-Speed WLANs and WLAN Security Objectives Describe how IEEE 802.11a networks function and how they differ from 802.11 networks Outline how 802.11g

More information

Modeling a MAC Scheduler: Experiences with a DOCSIS Cable

Modeling a MAC Scheduler: Experiences with a DOCSIS Cable Modeling a MAC Scheduler: Experiences with a DOCSIS Cable Network Simulation Model Jim Martin Department of Computer Science Clemson University jim.martin@cs.clemson.edu Phone: 864 656 4529 Fax: 864 656

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications COMP 3331/9331: Computer Networks and Applications Week 10 Wireless Networks Reading Guide: Chapter 6: 6.1 6.3 Wireless Networks + Security 1 Wireless and Mobile Networks Background: # wireless (mobile)

More information

Comparison Between Wi-Fi and WiMAX

Comparison Between Wi-Fi and WiMAX ENSC 427: COMMUNICATION NETWORKS SPRING 2014 Comparison Between Wi-Fi and WiMAX http://www.sfu.ca/~luodil/427project.html Group 7 Chen, Carter 301141819 Luo, Di 301040237

More information

Wimax - Wireless Introduction

Wimax - Wireless Introduction Wimax - Wireless Introduction Wireless means transmitting signals using radio waves as the medium instead of wires. Wireless technologies are used for tasks as simple as switching off the television or

More information

IEEE /WIMAX- Overview. E.Borcoci

IEEE /WIMAX- Overview. E.Borcoci IEEE /WIMAX- Overview E.Borcoci Contents 1 IEEE Wireless MAN overview...1 1.1 Introduction...2 1.1.1 IEEE 802 standards...2 1.1.2 IEEE Summary...2 1.1.3 WiMAX summary...4 1.1.4 WiMAX Forum...5 1.1.5 Other

More information

DESIGN AND IMPLEMENTATION OF IEEE MAC LAYER SIMULATOR

DESIGN AND IMPLEMENTATION OF IEEE MAC LAYER SIMULATOR DESIGN AND IMPLEMENTATION OF IEEE 802.16 MAC LAYER SIMULATOR H. M. Shamitha 1, H. M. Guruprasad 1, Kishore. M 2, Ramesh. K 3 Department of Electronics and Communication 1 Proudadhevaraya Institute of Technology,

More information

Performance Evaluation of an Uplink Scheduling Algorithm in WiMAX

Performance Evaluation of an Uplink Scheduling Algorithm in WiMAX MEE09:60 Performance Evaluation of an Uplink Scheduling Algorithm in WiMAX Designing the Adaptive Heuristic Uplink Scheduling Algorithm AHUS Oyekanlu Emmanuel Joshi Ajita This thesis is presented as part

More information

Qos Analysis Of Wimax Network

Qos Analysis Of Wimax Network Qos Analysis Of Wimax Network 802.16 Gurpal Singh Sidhu 1, Sandeep Kaushal 2, Dr. Vijay Kumar Banga 3 1 M-Tech scholar, Department of Electronics and Communication Engineering, Amritsar College of Engineering

More information

Chapter - 1 INTRODUCTION

Chapter - 1 INTRODUCTION Chapter - 1 INTRODUCTION Worldwide Interoperability for Microwave Access (WiMAX) is based on IEEE 802.16 standard. This standard specifies the air interface of fixed Broadband Wireless Access (BWA) system

More information

Abstract of the Book

Abstract of the Book Book Keywords IEEE 802.16, IEEE 802.16m, mobile WiMAX, 4G, IMT-Advanced, 3GPP LTE, 3GPP LTE-Advanced, Broadband Wireless, Wireless Communications, Cellular Systems, Network Architecture Abstract of the

More information

Relay Support for Distributed Scheduling and its Bandwidth Request/Allocation Mechanism

Relay Support for Distributed Scheduling and its Bandwidth Request/Allocation Mechanism 2007-01-15 IEEE C802.16j-07/034r1 Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Relay Support for Distributed Scheduling and its Bandwidth Request/Allocation

More information

A Study On Broadband Wireless Access-Wimax

A Study On Broadband Wireless Access-Wimax A Study On Broadband Wireless Access-Wimax Pankaj Chouhan & S. R. Mansore Department of Electronics & Communication, Ujjain Engineering College, Ujjain Abstract- The IEEE 802.16 standard, commonly known

More information

CABLE NETWORKS INTRODUCTION TO CABLE NETWORK TECHNOLOGIES AND PROTOCOLS

CABLE NETWORKS INTRODUCTION TO CABLE NETWORK TECHNOLOGIES AND PROTOCOLS CABLE NETWORKS INTRODUCTION TO CABLE NETWORK TECHNOLOGIES AND PROTOCOLS Peter R. Egli 1/15 Contents 1. Cable network architecture 2. Relevant cable network standards 3. DOCSIS 2/15 1. Cable Network architecture

More information

Long Distance Wireless Communication. Principally satellite communication:

Long Distance Wireless Communication. Principally satellite communication: Long Distance Wireless Communication Principally satellite communication: Uplink/Downlink Footprint LOS (line of sight) communication satellite base station is relay Effective for broadcast Limited bandwidth

More information

STUDY AND ANALYSIS OF WIFI TECHNOLOGY

STUDY AND ANALYSIS OF WIFI TECHNOLOGY STUDY AND ANALYSIS OF WIFI TECHNOLOGY Mrs.Bukkasamudram Sudeshna 1, Mrs. Fahiha Nujeeb 2 Ms. GudaSwetha 3 123 Asst.Prof, Dept of C.S.E, Sphoorthy Engineering College, Hyderabad, Telangana.(India) ABSTARCT

More information

WiMAX Security: Problems & Solutions

WiMAX Security: Problems & Solutions (JCSCR) - ISSN 2227-328X WiMAX Security: Problems & Solutions Paul Semaan LACSC Lebanese Association for Computational Sciences Registered under No. 957, 2011, Beirut, Lebanon Abstract This paper is a

More information

IEEE C802.16maint-08/064r3

IEEE C802.16maint-08/064r3 Project Title IEEE 802.16 Broadband Wireless Access Working Group Clarification and Fixes in the MBS definitions and procedures Date Submitted Source(s) 2008-03-10 Kamran Etemad

More information

OPNET based Performance Evaluation of WIMAX Network with WIMAX Management using Different QoS

OPNET based Performance Evaluation of WIMAX Network with WIMAX Management using Different QoS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 6, June 2014, pg.862

More information

A QoS Oriented Analysis of ertps and UGS flows in voice application over WIMAX

A QoS Oriented Analysis of ertps and UGS flows in voice application over WIMAX A QoS Oriented Analysis of ertps and UGS flows in voice application over WIMAX Abdalla A\ Alrahman Mohamed Abdalla 1, Dr. Amin Babiker A\ Nabi 2, Dr. Ashraf A. Osman 3 1,2,3 Department of communication,

More information

A Heuristic Strategy for IEEE WiMAX scheduler for Quality of Service

A Heuristic Strategy for IEEE WiMAX scheduler for Quality of Service A Heuristic Strategy for IEEE 802.16 WiMAX scheduler for Quality of Service G.S. Paschos, I. Papapanagiotou, C.G. Argyropoulos and S.A. Kotsopoulos Wireless Telecommunication Laboratory Electrical and

More information

Survey On Handoff With QoS In WIMAX

Survey On Handoff With QoS In WIMAX ShriRam College of Engineering & Management 1 Survey On Handoff With QoS In WIMAX Mamta Chauhan 1, Rajneesh Choubey 2, Roopali Soni 3 1 MTech CSE,Thakral College Of Technology mamtacse@gmail.com 2 prof,

More information

Sujesh P. Lal VIT University, TN, INDIA

Sujesh P. Lal VIT University, TN, INDIA VoIP TRAFFIC SCHEDULING IN Sujesh P. Lal VIT University, TN, INDIA Introduction Popularity of Voice over IP (VoIP) applications such as Skype, Google Talk, and MSN Messenger along with emerging deployment

More information

Comparative Assessments for Different WiMAX Scheduling Algorithms

Comparative Assessments for Different WiMAX Scheduling Algorithms Proceedings of the World Congress on Engineering and Computer Science 9 Vol I WCECS 9, October -, 9, San Francisco, USA Comparative Assessments for Different WiMAX Scheduling Algorithms Ahmed H. Rashwan,

More information

ETSI BRAN Technical Committee

ETSI BRAN Technical Committee ETSI BRAN Technical Committee Mariana Goldhamer ETSI BRAN Vice-Chair / HiperMAN Acting Chair Alvarion ETSI European Telecommunications Standards Institute 699 member companies from 55 countries in 5 continents

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Wireless Links, WiFi, Cellular Internet Access, and Mobility Slides derived from those available on the Web site of the book Computer Networking, by Kurose

More information

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802. 4.3 IEEE 802.11 Physical Layer 4.3.1 IEEE 802.11 4.3.2 IEEE 802.11b 4.3.3 IEEE 802.11a 4.3.4 IEEE 802.11g 4.3.5 IEEE 802.11n 4.3.6 IEEE 802.11ac,ad Andreas Könsgen Summer Term 2012 4.3.3 IEEE 802.11a Data

More information

Flexible Resource Allocation in IEEE Wireless Metropolitan Area Networks

Flexible Resource Allocation in IEEE Wireless Metropolitan Area Networks Flexible Resource Allocation in IEEE 802.16 Wireless Metropolitan Area Networks Spyros A. Xergias, Nikos Passas and Lazaros Merakos Communication Networks Laboratory Department of Informatics & Telecommunications

More information

Preliminary Performance Evaluation of QoS in DOCSIS 1.1

Preliminary Performance Evaluation of QoS in DOCSIS 1.1 The University of Kansas Technical Report Preliminary Performance Evaluation of QoS in DOCSIS 1.1 Gayathri Chandrasekaran, Mohammed Hawa and David W. Petr ITTC-FY2003-TR-22736-01 January 2003 Sponsor:

More information

ARQ support for Primary Management connection

ARQ support for Primary Management connection ARQ support for Primary Management connection IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE S802.16maint-08/220 Date Submitted: 2008-05-13 Source: David Comstock E-mail: dcomstock@huawei.com

More information

Announcements : Wireless Networks Lecture 11: * Outline. Power Management. Page 1

Announcements : Wireless Networks Lecture 11: * Outline. Power Management. Page 1 Announcements 18-759: Wireless Networks Lecture 11: 802.11* Please mail survey team information» Can include topic preferences now if you have them Submit project designs through blackboard Homework 2

More information

Throughput Considerations for Wireless Networks

Throughput Considerations for Wireless Networks Wi4Net White Paper: Throughput Considerations for Wireless Networks About us CelPlan Technologies has been a worldwide leading provider of wireless network design, optimization and performance evaluation

More information

CSC 4900 Computer Networks: Wireless Networks

CSC 4900 Computer Networks: Wireless Networks CSC 4900 Computer Networks: Wireless Networks Professor Henry Carter Fall 2017 Last Time Mobile applications are taking off! What about current platforms is fueling this? How are an application s permission

More information

Wireless systems overview

Wireless systems overview Wireless systems overview Evolution of systems from 1G to 4G 1G, 4G major features Specifications comparison 5G communication systems Summary Wireless Systems 2016 Evolution of cellular networks WiMAX

More information

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018 WiFi Networks: IEEE 802.11b Wireless LANs Carey Williamson Department of Computer Science University of Calgary Winter 2018 Background (1 of 2) In many respects, the IEEE 802.11b wireless LAN (WLAN) standard

More information

Chapter 3.1 Acknowledgment:

Chapter 3.1 Acknowledgment: Chapter 3.1 Acknowledgment: This material is based on the slides formatted by Dr Sunilkumar S. manvi and Dr Mahabaleshwar S. Kakkasageri, the authors of the textbook: Wireless and Mobile Networks, concepts

More information

PREFACE. The average Ph.D. thesis is nothing but a transference of bones from one graveyard to another. J. Frank Dobie ( )

PREFACE. The average Ph.D. thesis is nothing but a transference of bones from one graveyard to another. J. Frank Dobie ( ) PREFACE The average Ph.D. thesis is nothing but a transference of bones from one graveyard to another. J. Frank Dobie (1888-1964) The recent standard IEEE 802.16 for fixed Broadband Wireless Access (BWA)

More information

* Author to whom correspondence should be addressed; Tel.: ; Fax:

* Author to whom correspondence should be addressed;   Tel.: ; Fax: Future Internet 2010, 2, 446-468; doi:10.3390/fi2040446 Article OPEN ACCESS future internet ISSN 1999-5903 www.mdpi.com/journal/futureinternet Deficit Round Robin with Fragmentation Scheduling to Achieve

More information

Performance Evaluation of WiFiRe using OPNET

Performance Evaluation of WiFiRe using OPNET Performance Evaluation of WiFiRe using OPNET Under the guidance of: Prof. Sridhar Iyer and Prof. Varsha Apte Dept. of CSE (KReSIT) July 16, 2007 Goal Goal Building. Finding minimum slot length to support

More information

MAC Protocol Proposal for Fixed BWA Networks Based on DOCSIS. Re: Medium Access Control Task Group Call for Contributions Session #4

MAC Protocol Proposal for Fixed BWA Networks Based on DOCSIS. Re: Medium Access Control Task Group Call for Contributions Session #4 Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group MAC Protocol Proposal for Fixed BWA Networks Based on DOCSIS 1999-10-29 Source Phil Guillemette SpaceBridge Networks Corporation

More information

Introduction to Mobile Broadband (imb)

Introduction to Mobile Broadband (imb) Introduction to Mobile Broadband (imb) Teaching By Asst.Prof.Dr. Suwat Pattaramalai suwat.pat@kmutt.ac.th Tel. 02-470-9079 Material: http://webstaff.kmutt.ac.th/~suwat.pat/ 3GPP WiMAX FORUM Introduction

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. 6: Wireless and Mobile Networks 6

More information

A Modified DRR-Based Non-real-time Service Scheduling Scheme in Wireless Metropolitan Networks

A Modified DRR-Based Non-real-time Service Scheduling Scheme in Wireless Metropolitan Networks A Modified DRR-Based Non-real-time Service Scheduling Scheme in Wireless Metropolitan Networks Han-Sheng Chuang 1, Liang-Teh Lee 1 and Chen-Feng Wu 2 1 Department of Computer Science and Engineering, Tatung

More information

Implementation of WiFiRe PHY Sectorization in OPNET

Implementation of WiFiRe PHY Sectorization in OPNET P Sreedhar Reddy Roll No. 06305024 24th July, 2007 Under the Guidance Of Prof. Sridhar Iyer Department Of Computer Science and Engineering Indian Institute Of Technology, Bombay Outline WiFiRe overview.

More information

Quality of Service for wireless networks

Quality of Service for wireless networks How is QoS for wireless networks implemented? Analytical Network Project Master education in System and Network Engineering University of Amsterdam, the Netherlands ing. E. Hos hossie@chello.nl ing. N.

More information

Ubiquitous Internet & WiMAX open standard

Ubiquitous Internet & WiMAX open standard Copyright Alvarion Ltd. Ubiquitous Internet & WiMAX open standard Nir Cohen Sep 2007 2 Agenda WiMAX Forum is leading the way The IP behavior of mobile WiMAX networks WiMAX profiles and their role in open

More information

Design and Implementation of MAC Layer of WiFiRe protocol

Design and Implementation of MAC Layer of WiFiRe protocol Design and Implementation of MAC Layer of WiFiRe protocol Under the guidance of: Prof. Sridhar Iyer and Prof. Anirudha Sahoo Kanwal Rekhi School of Information Technology July 16, 2007 Introduction Problem

More information

OPNET Simulation of IEEE (WiFi) and IEEE (WiMAX) in a small area

OPNET Simulation of IEEE (WiFi) and IEEE (WiMAX) in a small area ENSC 895 - II: COMMUNICATION NETWORKS FINAL PROJECT PRESENTATION Spring 2010 OPNET Simulation of IEEE 802.11(WiFi) and IEEE 802.16(WiMAX) in a small area Azadeh Farzin www.sfu.ca/~afarzin afarzin@sfu.ca

More information

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi Overview 15-441 15-441: Computer Networking 15-641 Lecture 21: Wireless Justine Sherry Peter Steenkiste Fall 2017 www.cs.cmu.edu/~prs/15-441-f17 Link layer challenges and WiFi WiFi Basic WiFi design Some

More information

Guide to Wireless Communications, Third Edition. Objectives

Guide to Wireless Communications, Third Edition. Objectives Guide to Wireless Communications, Third Edition Chapter 7 Low-Speed Wireless Local Area Networks Objectives Describe how WLANs are used List the components and modes of a WLAN Describe how an RF WLAN works

More information

Providing QoS to Real and Non-Real Time Traffic in IEEE networks

Providing QoS to Real and Non-Real Time Traffic in IEEE networks Providing QoS to Real and Non-Real Time Traffic in IEEE 802.16 networks Joint work with my student Harish Shetiya Dept. of Electrical Communication Engg., Indian Institute of Science, Bangalore Overview

More information

Redline AN80i Point-to-Point System Terminal (AN-80i)

Redline AN80i Point-to-Point System Terminal (AN-80i) Product Name: Manufacturer: - Model Number: 80iRR Please Note: We no longer stock these products, please see our Point to Point products for an alternative solution. Redline AN-80i System Terminal with

More information

Wireless Networking: An Introduction. Hongwei Zhang

Wireless Networking: An Introduction. Hongwei Zhang Wireless Networking: An Introduction Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Networking as resource allocation A taxonomy of current practice Technical elements Outline Networking as resource

More information

DIFFERENCE BETWEEN WIMAX (WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS) AND Wi-Fi (WIRELESS FIDELITY)

DIFFERENCE BETWEEN WIMAX (WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS) AND Wi-Fi (WIRELESS FIDELITY) DIFFERENCE BETWEEN WIMAX (WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS) AND Wi-Fi (WIRELESS FIDELITY) 1 Deepa Solanki, 2 Santosh Upadhyay 1 Scholar, Department of Computer Science, Mewar University,

More information

Mobile Broadband Communications

Mobile Broadband Communications Mobile Broadband Communications (WiMAX & LTE) Teaching By Asst.Prof.Dr. Suwat Pattaramalai suwat.pat@kmutt.ac.th Tel. 02-470-9079 3GPP WiMAX FORUM Mobile Broadband Communications Contents Part I Fundamentals

More information

WiMAX Overview. Max Riegel Siemens Co-chair WiMAX NWG

WiMAX Overview. Max Riegel Siemens Co-chair WiMAX NWG WiMAX Overview Max Riegel Siemens Co-chair WiMAX NWG maximilian.riegel@siemens.com 2006-06-28 Copyright 2006 WiMAX Forum WiMAX Forum and "WiMAX Forum CERTIFIED are trademarks of the WiMAX Forum. All other

More information

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs ( wi-fi ) 6.4 Cellular Internet Access architecture standards (e.g., GSM) Mobility 6.5

More information

HIPERLAN/2 and a: A Comparative Study

HIPERLAN/2 and a: A Comparative Study HIPERLAN/2 and 802.11a: A Comparative Study PADMA BONDE Reader, Department of Computer Science Shri Vaishnav Institute of Technology and Science Indore, INDIA JAYESH BONDE Executive Engineer, Department

More information

Naveen Kumar. 1 Wi-Fi Technology

Naveen Kumar. 1 Wi-Fi Technology Naveen Kumar 1 Contents 2 Introduction Need of Purpose History How a Wi-Fi Network Works Topologies & Configurations Applications Wi-Fi Security Advantages & Limitations Innovations Introduction 3 Wireless

More information

IEEE Broadband Wireless Access Working Group <

IEEE Broadband Wireless Access Working Group < Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Procedures Clarifications and Improvement for MBS Logical Channel support in 802.16REV2 2008-04-20

More information

Wireless LANs. The Protocol Stack The Physical Layer The MAC Sublayer Protocol The Frame Structure Services 802.

Wireless LANs. The Protocol Stack The Physical Layer The MAC Sublayer Protocol The Frame Structure Services 802. Wireless LANs The 802.11 Protocol Stack The 802.11 Physical Layer The 802.11 MAC Sublayer Protocol The 802.11 Frame Structure Services 56 802.11 The 802.11 Working Group The IEEE 802.11 was formed in July

More information

ITRAINONLINE MMTK WIRELESS STANDARDS HANDOUT

ITRAINONLINE MMTK WIRELESS STANDARDS HANDOUT ITRAINONLINE MMTK WIRELESS STANDARDS HANDOUT Developed by: Alberto Escudero Pascual / IT +46 Based on the original work of: Bruno Roger / ESMT Table of Contents 1. About this document...1 1.1 Copyright

More information

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross Wireless Networks CSE 3461: Introduction to Computer Networking Reading: 6.1 6.3, Kurose and Ross 1 Wireless Networks Background: Number of wireless (mobile) phone subscribers now exceeds number of wired

More information

IEEE C802.16maint-08/064r4

IEEE C802.16maint-08/064r4 Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Clarifications and Improvement in the MBS definitions and procedures in 802.16REV2 2008-03-17 Source(s)

More information

Kanika, Virk Singh Amardeep, International Journal of Advance Research, Ideas and Innovations in Technology. ISSN: X

Kanika, Virk Singh Amardeep, International Journal of Advance Research, Ideas and Innovations in Technology. ISSN: X ISSN: 2454-132X (Volume2, Issue4) Available online at: www.ijariit.com Analyze the Effect of Base Station and Node Failure and Recovery on the performance of Wimax Kanika Student Adesh Institute of Engineering

More information

IEEE m Reference Model

IEEE m Reference Model CHAPTER IEEE 802.16m Reference Model 3 and Protocol Structure INTRODUCTION The IEEE 802.16-2009 standard defines a generic reference model where major functional blocks (i.e., physical layer, security

More information

NCTUns Simulation Tool for WiMAX Modeling

NCTUns Simulation Tool for WiMAX Modeling NCTUns Simulation Tool for WiMAX Modeling (Invited Paper) Shiang-Ming Huang smhuang@csnctuedutw Ya-Chin Sung ycsung@csienctuedutw Yi-Bing Lin liny@linycsienctuedutw Shie-Yuan Wang shieyuan@csienctuedutw

More information

DOCSIS. Introduction. Gabor Major. UPC Magyarorszag Kft. Liberty Global Inc.

DOCSIS. Introduction. Gabor Major. UPC Magyarorszag Kft. Liberty Global Inc. DOCSIS Introduction Gabor Major UPC Magyarorszag Kft. Liberty Global Inc. Agenda Introduction Signal transmission Provisioning flow Docsis protocol Docsis management traffic QoS Baseline privacy Dynamic

More information