Flash-Conscious Cache Population for Enterprise Database Workloads

Size: px
Start display at page:

Download "Flash-Conscious Cache Population for Enterprise Database Workloads"

Transcription

1 IBM Research ADMS st September 214 Flash-Conscious Cache Population for Enterprise Database Workloads Hyojun Kim, Ioannis Koltsidas, Nikolas Ioannou, Sangeetha Seshadri, Paul Muench, Clem Dickey, Larry Chiu IBM Research Almaden, Zurich ADMS st September 214 Hangzhou, China 213 IBM Corporation

2 Outline Flash-based caching and why it is different Weaknesses of existing approaches : The Scalable Cache Engine Experimental evaluation using TPC-E Conclusions IBM Corporation

3 IBM Research Host-based Flash Caching! Flash fills very well the gap between DRAM & HDDs Good fit as a caching layer between DRAM & HDDs! Host Server Application Server! Goal: Bring the date as close as possible to the application! Benefits " Low latency " Higher-throughput (typically) " Transparent to file systems, applications " Lower administration overhead compared to SAN Flash " SAN Congestion elimination, increased storage consolidation Direct-attached SSD Database Server Filesystem Block-level Cache Driver SAN! Typically employing a Write-Through mode SAN Storage IBM Corporation

4 Flash-based vs. DRAM-based Caching Inherent differences necessitate a different way of thinking A Different place in the hierarchy Flash caches typically see different workloads than DRAM caches B Different memory technology Flash caches use NAND Flash, while DRAM caches use DRAM # IBM Corporation

5 Difference A: Their place in the storage hierarchy! They encounter different workloads The DRAM cache receives the hottest portion The Flash cache sees a wider and sparser range of data with lower access frequency $ Flash caches see weaker locality! Flash caches need to have relatively large capacities $ Flash caches are prone to long warm-up times! Flash caches utilize a premium memory space for metadata High-performance Flash caches store metadata in main memory (DRAM) $ Flash cache metadata footprints may limit their scalability DRAM Flash Storage IBM Corporation

6 Difference B: Their underlying memory technology DRAM Symmetric Read/Write Uniform, extremely low latency Does not wear out Flash Asymmetric Read/Write Higher latency Heavily dependent on access patterns Limited Endurance With Flash:! Cache population is expensive With DRAM we can cache all cache-missed data by just a memory copy! Unnecessary Flash writes reduce performance and shorten the device lifetime Less Flash bandwidth available for reads More so for small and random writes! Unconditional population can result in thrashing! Populating just the cache missed data results in unacceptably long warm-up times More than 1 hours for a 3GB Flash cache* 6 * Byan et al., Mercury: Host-side flash caching for the data center, MSST IBM Corporation

7 Experimental setup for TPC-E! TPC-E workload! Experiments with existing open-source solutions:!!!! All three perform synchronous population of all cache misses in the user data path Write-through mode! Comparisons to: the baseline (nocache), an configuration ()!! Hypervisor: KVM!! OS: Fedora 19, Kernel fc19.x86_64! Hardware: IBM System x365 M3 / 24 Cores 64GiB RAM! TPC-E (5, customers, 3 days, 4 threads)! PCI-e SSD! DB2 Express-C v1.5!!guest virtual machine!!os: RHEL6.4, el6.x86_64!!Virtual hardware: 8 CPUs, 15GiB RAM! 16GiB volume with flash cache! Flash cache management layer! 2GB, enterprise-class device 16GiB partition on iscsi volume! Gigabit Ethernet!!! RAID:!!! 3x 73GB HDDs (15KRPM, 6Gb SAS)! iscsi Target! scsi-target-utils el6_4.x86_64! OS: RHEL6.4, Kernel el6.x86_64! Hardware: IBM System x365 M2 / 16 Cores 24GiB RAM! Transactions/sec! Avg. trans. latency! Cache statistics!! /proc/diskstats! raw storage access! statistics! IBM Corporation

8 Transactions per second (TpsE) - TPC-E Evaluation results x x Table 1: TPC-E average TpsE and memory usage with three open-source 1 2 flash cache 3 solutions: 4 shows the highest average TpsE and biggest Time memory (hours) Time (hours) usage. (Last 1 hour average) Memory Observations TpsE Read hit rate Usage! showed ~3.3x better performance 11.2 N/A N/A than, 87.9 N/A! N/A only achieved 67% of the % 1,212 performance MiB % 15! MiB The warm-up time was too long % 415 MiB! The hit rate is not the problem here IBM Corporation

9 Transactions per second (TpsE) - TPC-E Evaluation results The problem is that cache population occurs: 3 5x 3 - Unconditionally 2 1.5x In the foreground Table 1: TPC-E average TpsE and memory usage with three - open-source 1 At too 2 fine flash cache a granularity 3 solutions: 4 shows the highest average TpsE and biggest Time memory (hours) Time (hours) usage. (Last 1 hour average) Memory Observations TpsE Read hit rate Usage! showed ~3.3x better performance 11.2 N/A N/A than, 87.9 N/A! N/A only achieved 67% of the % 1,212 performance MiB % 15! MiB The warm-up time was too long % 415 MiB! The hit rate is not the problem here IBM Corporation

10 : the Scalable Cache Engine A cache engine the makes population as Flash-friendly as possible Selective Caching Coarse-grained Cache Management Asynchronous Cache Population Asynchronous Write-Through IBM Corporation

11 Selective Caching What?! Do not populate all read cache misses! Only populate the data that are deemed worthy of caching Why?! Benefits Cache pollution is avoided $ Increased hit rate Lower rate of writes to the SSD $ Higher SSD read bandwidth $ Lower SSD read latency Fewer total writes to the SSD $ Longer device lifetime How?! The cache continuously monitors the user access patterns! A recency-and-frequency filter is applied to population candidates! Only the data that are classified as hot are promoted into the cache! Various algorithms implemented For the presented experiments we have used a variation of MRU Cache miss Selective Caching Filter Hot? yes Populate no keep monitoring it IBM Corporation

12 Coarse-grained Cache Management! A Fragment is 1MB of contiguous logical space! Cache management occurs at a fragment granularity A fragment is the unit of population, eviction, workload monitoring! User operations occur at 4kB page granularity Reads, invalidates, write-through Benefits! Small metadata footprint $ Scalability Only 76 bytes per 1MB-Fragment!! Exploits spatial locality in workloads Works effectively as a prefetching mechanism! Fast cache warm-up Metadata Footprint for a 2TB cache 12GB 4GB 152 MB IBM Corporation

13 Asynchronous Background Population Linux Device Mapper Framework!! Population is a background task The population unit a fragment (1MB)! Outside the user data path Does not add latency to user reads! The cache has full control How much to populate When to populate! The cache limits the population rate by limiting the number of threads as the hit rate grows as the SSD latency increases A pop.! task! Write a fragment! P" Scalable Cache Engine ()! Completion! of tasks! Asynchronous population worker worker! thread! Caching device! (SSD)! Invalidation! AWT worker thread! Read! a fragment! Cache hit / miss! Write! Request! Cache-hit! Read! Request! Backing device! (HDD)! Cache-miss! Controlled population rate, flash-friendly writes, minimum impact to the foreground operations IBM Corporation

14 Asynchronous Write-Through 1. 4KiB Write! 4KiB! AWT Task Queue! Background AWT Worker Thread! 6. De-queue AWT task! 7. Update flash! 8. Validate Bitmap! 4KiB! 3. En-queue AWT Task! (Memory copy)! 4KiB! 4KiB! 2. Invalidate Bitmap! 5. Complete write I/O! Page validity bitmap! 4. Write-through to the backing device! Caching device! (SSD)!! Follows the same principles as Population! Occurs outside the user data path Backing device! (HDD)!! The cache can control how much and when to write through The user write latency becomes independent from the SSD write latency! IBM Corporation

15 TPC-E with 2GB Flash Cache Transactions per second (TpsE) Read Read hit rate hit becomes rate becomes 1%: 1%: only one thread remains active for cache population only one thread remains active for cache population flashcac 6 6 Read Read hit rate hit becomes rate becomes 95%: 95%: only only two threads two threads do population do population 7.5x 4 1% % 1% % 98 5x %96.5% 96.7%96.5% x d rate hit rate becomes becomes 1%: 1%: one thread thread remains remains active active for for cache population no-cac Time (hours) on Time (h 1% -cache 1 1% 98.7% (a) (b) (b) % %96.5% %96.5% Time (hour) 15 (a) IBM Corporation Time (hour) (c) Avg. read hit rate (%) Avg. read hit rate (%) ur r Avg. read hit rate (%) Avg. read hit rate (%) Avg. Res.(ms) / last hour Avg. Res.(ms) / last hour

16 TPC-E with 2GB Flash Cache Transactions per second (TpsE) Read Read hit rate hit becomes rate becomes 1%: 1%: only one thread remains active for cache population only one thread remains active for cache population flashcac 6 6 Read Read hit rate hit becomes rate becomes 95%: 95%: only only two threads two threads do population do population 7.5x 4 1% % 1% % 98 5x %96.5% 96.7%96.5% x d rate hit rate becomes becomes 1%: 1%: one thread thread remains remains active active for for cache population no-cac Time (hours) on Time (h 1% -cache 1 1% 98.7% (a) (b) (b) % %96.5% %96.5% Time (hour) 16 (a) IBM Corporation Time (hour) (c) Avg. read hit rate (%) Avg. read hit rate (%) ur r Avg. read hit rate (%) Avg. read hit rate (%) Avg. Res.(ms) / last hour Avg. Res.(ms) / last hour

17 TPC-E with 3GB Flash Cache The data (16GB) do not fit in the cache Continuous population and eviction are exercised 1 1 TpsE Transactions per second (TpsE) Read hit rate becomes 95%: only two threads do population Read hit rate becomes 1%: only one thread remains active for cache population flashcach no-cach Time (a) (hours) Time (hour) Time (ho (a) Thrashing amplifies the problem 3.6x - 4.9x 213 IBM Corporation

18 TPC-E with 3GB Flash Cache I/O Statistics I/O traffic (MiB/s) I/O traffic (MiB/s) SSD Read SSD Read SSD Write iscsi Read iscsi Read iscsi Write SSD Write Time (hour) (a) iscsi Read SSD Write SSD Read Time (hour) (d) IBM Corporation

19 Volume of Flash writes SSD Write Amount / Transaction (KiB) % - 59% fewer writes % - 57% fewer writes hour TPC-E with 2GiB Flash cache 4 hour TPC-E with 3GiB Flash cache Increasingly important as we are moving towards c-mlc and TLC Flash! IBM Corporation

20 Conclusions! Traditional cache population schemes are bad for Flash-based caches Main conclusions: 1. 1 Population should be selective i.e., do not promote all cache-missed data 2. 2 A coarse-grained cache management is beneficial Small metadata footprint Short warm-times Benefits from prefetching 3. Population should be a background operation i.e., outside the user data path Similarly for write-through operations 4. 4 Population should occur in chunks in the order of 1MB IBM Corporation

21 IBM Easy Tier Server for DS8 Distributed host-based Flash caching for DS8 client hosts! Implements the algorithms and techniques described! For IBM Power hosts running the IBM AIX OS! The storage server manages cluster cache coherence! Integration between the host-side Flash caches and the automated tiering on the storage server (Easy Tier )! More information: Software-defined just-in-time caching in an enterprise storage system IBM Journal of Research and Development vol.58, no.2/3, pp.7:1,7:13, March-May 214 IBM System Storage DS8 Easy Tier Server IBM Corporation

22 IBM Corporation

23 Backup IBM Corporation

24 Transactions per second (TpsE) with varying fragment size Baseline (1M sized frag., with AWT) without AWT 4 Read hit rate becomes 95%: only two threads do population % % 82.9% 91.1% 89.8% 8M sized frag % ne (1M 2sized frag., with AWT) % % 2 2 no-cach Time (hours) Time (ho (a) ache 1% (b) (b) % 98.7% 91.1% 89.8% % 8M sized frag %96.5% lashcache IBM Corporation (a) (b) Time (hour) (c) thout AWT Avg. read hit-rate (%) Avg. read hit rate (%) our r 128K sized frag. frag.8m frag.128k without AWT baseline Read hit rate becomes 1%: only one thread remains active for cache population without AWT Avg. read hit-rate (%) Avg. read hit-rate (%) Avg. Res.(ms) / last hour Avg. Res.(ms) / last hour frag.8m frag.128k without AWT baseline frag.8m frag.128k without AWT baseline EnhanceI flashcach

25 Memory Footprint Memory usage (MiB) G 15M 415M 34M Memory usage (MiB) G 34M 2.1G 93M Flash cache size: 2 GiB Flash cache size: 1 TiB IBM Corporation

Flash-Conscious Cache Population for Enterprise Database Workloads

Flash-Conscious Cache Population for Enterprise Database Workloads Flash-Conscious Cache Population for Enterprise Database Workloads Hyojun Kim IBM Research - Almaden hyojun@us.ibm.com Sangeetha Seshadri IBM Research - Almaden seshadrs@us.ibm.com Ioannis Koltsidas IBM

More information

SFS: Random Write Considered Harmful in Solid State Drives

SFS: Random Write Considered Harmful in Solid State Drives SFS: Random Write Considered Harmful in Solid State Drives Changwoo Min 1, 2, Kangnyeon Kim 1, Hyunjin Cho 2, Sang-Won Lee 1, Young Ik Eom 1 1 Sungkyunkwan University, Korea 2 Samsung Electronics, Korea

More information

From server-side to host-side:

From server-side to host-side: From server-side to host-side: Flash memory for enterprise storage Jiri Schindler et al. (see credits) Advanced Technology Group NetApp May 9, 2012 v 1.0 Data Centers with Flash SSDs iscsi/nfs/cifs Shared

More information

NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory

NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory NVMFS: A New File System Designed Specifically to Take Advantage of Nonvolatile Memory Dhananjoy Das, Sr. Systems Architect SanDisk Corp. 1 Agenda: Applications are KING! Storage landscape (Flash / NVM)

More information

Presented by: Nafiseh Mahmoudi Spring 2017

Presented by: Nafiseh Mahmoudi Spring 2017 Presented by: Nafiseh Mahmoudi Spring 2017 Authors: Publication: Type: ACM Transactions on Storage (TOS), 2016 Research Paper 2 High speed data processing demands high storage I/O performance. Flash memory

More information

EMC VFCache. Performance. Intelligence. Protection. #VFCache. Copyright 2012 EMC Corporation. All rights reserved.

EMC VFCache. Performance. Intelligence. Protection. #VFCache. Copyright 2012 EMC Corporation. All rights reserved. EMC VFCache Performance. Intelligence. Protection. #VFCache Brian Sorby Director, Business Development EMC Corporation The Performance Gap Xeon E7-4800 CPU Performance Increases 100x Every Decade Pentium

More information

PowerVault MD3 SSD Cache Overview

PowerVault MD3 SSD Cache Overview PowerVault MD3 SSD Cache Overview A Dell Technical White Paper Dell Storage Engineering October 2015 A Dell Technical White Paper TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS

More information

Disclaimer This presentation may contain product features that are currently under development. This overview of new technology represents no commitme

Disclaimer This presentation may contain product features that are currently under development. This overview of new technology represents no commitme FUT3040BU Storage at Memory Speed: Finally, Nonvolatile Memory Is Here Rajesh Venkatasubramanian, VMware, Inc Richard A Brunner, VMware, Inc #VMworld #FUT3040BU Disclaimer This presentation may contain

More information

Evaluating Phase Change Memory for Enterprise Storage Systems

Evaluating Phase Change Memory for Enterprise Storage Systems Hyojun Kim Evaluating Phase Change Memory for Enterprise Storage Systems IBM Almaden Research Micron provided a prototype SSD built with 45 nm 1 Gbit Phase Change Memory Measurement study Performance Characteris?cs

More information

Using Transparent Compression to Improve SSD-based I/O Caches

Using Transparent Compression to Improve SSD-based I/O Caches Using Transparent Compression to Improve SSD-based I/O Caches Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bilas {mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

More information

D E N A L I S T O R A G E I N T E R F A C E. Laura Caulfield Senior Software Engineer. Arie van der Hoeven Principal Program Manager

D E N A L I S T O R A G E I N T E R F A C E. Laura Caulfield Senior Software Engineer. Arie van der Hoeven Principal Program Manager 1 T HE D E N A L I N E X T - G E N E R A T I O N H I G H - D E N S I T Y S T O R A G E I N T E R F A C E Laura Caulfield Senior Software Engineer Arie van der Hoeven Principal Program Manager Outline Technology

More information

LEVERAGING FLASH MEMORY in ENTERPRISE STORAGE

LEVERAGING FLASH MEMORY in ENTERPRISE STORAGE LEVERAGING FLASH MEMORY in ENTERPRISE STORAGE Luanne Dauber, Pure Storage Author: Matt Kixmoeller, Pure Storage SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless

More information

OSSD: A Case for Object-based Solid State Drives

OSSD: A Case for Object-based Solid State Drives MSST 2013 2013/5/10 OSSD: A Case for Object-based Solid State Drives Young-Sik Lee Sang-Hoon Kim, Seungryoul Maeng, KAIST Jaesoo Lee, Chanik Park, Samsung Jin-Soo Kim, Sungkyunkwan Univ. SSD Desktop Laptop

More information

A Prototype Storage Subsystem based on PCM

A Prototype Storage Subsystem based on PCM PSS A Prototype Storage Subsystem based on IBM Research Zurich Ioannis Koltsidas, Roman Pletka, Peter Mueller, Thomas Weigold, Evangelos Eleftheriou University of Patras Maria Varsamou, Athina Ntalla,

More information

Implica(ons of Non Vola(le Memory on So5ware Architectures. Nisha Talagala Lead Architect, Fusion- io

Implica(ons of Non Vola(le Memory on So5ware Architectures. Nisha Talagala Lead Architect, Fusion- io Implica(ons of Non Vola(le Memory on So5ware Architectures Nisha Talagala Lead Architect, Fusion- io Overview Non Vola;le Memory Technology NVM in the Datacenter Op;mizing sobware for the iomemory Tier

More information

New HPE 3PAR StoreServ 8000 and series Optimized for Flash

New HPE 3PAR StoreServ 8000 and series Optimized for Flash New HPE 3PAR StoreServ 8000 and 20000 series Optimized for Flash AGENDA HPE 3PAR StoreServ architecture fundamentals HPE 3PAR Flash optimizations HPE 3PAR portfolio overview HPE 3PAR Flash example from

More information

CSCI-GA Database Systems Lecture 8: Physical Schema: Storage

CSCI-GA Database Systems Lecture 8: Physical Schema: Storage CSCI-GA.2433-001 Database Systems Lecture 8: Physical Schema: Storage Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com View 1 View 2 View 3 Conceptual Schema Physical Schema 1. Create a

More information

Mass-Storage Structure

Mass-Storage Structure Operating Systems (Fall/Winter 2018) Mass-Storage Structure Yajin Zhou (http://yajin.org) Zhejiang University Acknowledgement: some pages are based on the slides from Zhi Wang(fsu). Review On-disk structure

More information

Design Considerations for Using Flash Memory for Caching

Design Considerations for Using Flash Memory for Caching Design Considerations for Using Flash Memory for Caching Edi Shmueli, IBM XIV Storage Systems edi@il.ibm.com Santa Clara, CA August 2010 1 Solid-State Storage In a few decades solid-state storage will

More information

Validating the NetApp Virtual Storage Tier in the Oracle Database Environment to Achieve Next-Generation Converged Infrastructures

Validating the NetApp Virtual Storage Tier in the Oracle Database Environment to Achieve Next-Generation Converged Infrastructures Technical Report Validating the NetApp Virtual Storage Tier in the Oracle Database Environment to Achieve Next-Generation Converged Infrastructures Tomohiro Iwamoto, Supported by Field Center of Innovation,

More information

Readings. Storage Hierarchy III: I/O System. I/O (Disk) Performance. I/O Device Characteristics. often boring, but still quite important

Readings. Storage Hierarchy III: I/O System. I/O (Disk) Performance. I/O Device Characteristics. often boring, but still quite important Storage Hierarchy III: I/O System Readings reg I$ D$ L2 L3 memory disk (swap) often boring, but still quite important ostensibly about general I/O, mainly about disks performance: latency & throughput

More information

Adaptation of Distributed File System to VDI Storage by Client-Side Cache

Adaptation of Distributed File System to VDI Storage by Client-Side Cache Adaptation of Distributed File System to VDI Storage by Client-Side Cache Cheiyol Kim 1*, Sangmin Lee 1, Youngkyun Kim 1, Daewha Seo 2 1 Storage System Research Team, Electronics and Telecommunications

More information

Optimizing Server Designs for Speed

Optimizing Server Designs for Speed Optimizing Server Designs for Speed Optimizing Server Designs for Speed We will discuss the latest in server hardware, virtualization, and disk storage that boosts Skyward s performance. We will also discuss

More information

UCS Invicta: A New Generation of Storage Performance. Mazen Abou Najm DC Consulting Systems Engineer

UCS Invicta: A New Generation of Storage Performance. Mazen Abou Najm DC Consulting Systems Engineer UCS Invicta: A New Generation of Storage Performance Mazen Abou Najm DC Consulting Systems Engineer HDDs Aren t Designed For High Performance Disk 101 Can t spin faster (200 IOPS/Drive) Can t seek faster

More information

Red Hat Enterprise 7 Beta File Systems

Red Hat Enterprise 7 Beta File Systems Red Hat Enterprise 7 Beta File Systems New Scale, Speed & Features Ric Wheeler Director Red Hat Kernel File & Storage Team Red Hat Storage Engineering Agenda Red Hat Enterprise Linux 7 Storage Features

More information

Azor: Using Two-level Block Selection to Improve SSD-based I/O caches

Azor: Using Two-level Block Selection to Improve SSD-based I/O caches Azor: Using Two-level Block Selection to Improve SSD-based I/O caches Yannis Klonatos, Thanos Makatos, Manolis Marazakis, Michail D. Flouris, Angelos Bilas {klonatos, makatos, maraz, flouris, bilas}@ics.forth.gr

More information

Evaluating Phase Change Memory for Enterprise Storage Systems: A Study of Caching and Tiering Approaches

Evaluating Phase Change Memory for Enterprise Storage Systems: A Study of Caching and Tiering Approaches Evaluating Phase Change Memory for Enterprise Storage Systems: A Study of Caching and Tiering Approaches Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu, IBM Almaden Research Center

More information

Computer Architecture 计算机体系结构. Lecture 6. Data Storage and I/O 第六讲 数据存储和输入输出. Chao Li, PhD. 李超博士

Computer Architecture 计算机体系结构. Lecture 6. Data Storage and I/O 第六讲 数据存储和输入输出. Chao Li, PhD. 李超博士 Computer Architecture 计算机体系结构 Lecture 6. Data Storage and I/O 第六讲 数据存储和输入输出 Chao Li, PhD. 李超博士 SJTU-SE346, Spring 2018 Review Memory hierarchy Cache and virtual memory Locality principle Miss cache, victim

More information

IBM Spectrum NAS. Easy-to-manage software-defined file storage for the enterprise. Overview. Highlights

IBM Spectrum NAS. Easy-to-manage software-defined file storage for the enterprise. Overview. Highlights IBM Spectrum NAS Easy-to-manage software-defined file storage for the enterprise Highlights Reduce capital expenditures with storage software on commodity servers Improve efficiency by consolidating all

More information

Evaluation Report: Improving SQL Server Database Performance with Dot Hill AssuredSAN 4824 Flash Upgrades

Evaluation Report: Improving SQL Server Database Performance with Dot Hill AssuredSAN 4824 Flash Upgrades Evaluation Report: Improving SQL Server Database Performance with Dot Hill AssuredSAN 4824 Flash Upgrades Evaluation report prepared under contract with Dot Hill August 2015 Executive Summary Solid state

More information

Deploy a High-Performance Database Solution: Cisco UCS B420 M4 Blade Server with Fusion iomemory PX600 Using Oracle Database 12c

Deploy a High-Performance Database Solution: Cisco UCS B420 M4 Blade Server with Fusion iomemory PX600 Using Oracle Database 12c White Paper Deploy a High-Performance Database Solution: Cisco UCS B420 M4 Blade Server with Fusion iomemory PX600 Using Oracle Database 12c What You Will Learn This document demonstrates the benefits

More information

SSD Applications in the Enterprise Area

SSD Applications in the Enterprise Area SSD Applications in the Enterprise Area Tony Kim Samsung Semiconductor January 8, 2010 Outline Part I: SSD Market Outlook Application Trends Part II: Challenge of Enterprise MLC SSD Understanding SSD Lifetime

More information

Storage Technologies - 3

Storage Technologies - 3 Storage Technologies - 3 COMP 25212 - Lecture 10 Antoniu Pop antoniu.pop@manchester.ac.uk 1 March 2019 Antoniu Pop Storage Technologies - 3 1 / 20 Learning Objectives - Storage 3 Understand characteristics

More information

Virtual Storage Tier and Beyond

Virtual Storage Tier and Beyond Virtual Storage Tier and Beyond Manish Agarwal Sr. Product Manager, NetApp Santa Clara, CA 1 Agenda Trends Other Storage Trends and Flash 5 Min Rule Issues for Flash Dedupe and Flash Caching Architectural

More information

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives

Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Middleware and Flash Translation Layer Co-Design for the Performance Boost of Solid-State Drives Chao Sun 1, Asuka Arakawa 1, Ayumi Soga 1, Chihiro Matsui 1 and Ken Takeuchi 1 1 Chuo University Santa Clara,

More information

SHRD: Improving Spatial Locality in Flash Storage Accesses by Sequentializing in Host and Randomizing in Device

SHRD: Improving Spatial Locality in Flash Storage Accesses by Sequentializing in Host and Randomizing in Device SHRD: Improving Spatial Locality in Flash Storage Accesses by Sequentializing in Host and Randomizing in Device Hyukjoong Kim 1, Dongkun Shin 1, Yun Ho Jeong 2 and Kyung Ho Kim 2 1 Samsung Electronics

More information

Next-Generation NVMe-Native Parallel Filesystem for Accelerating HPC Workloads

Next-Generation NVMe-Native Parallel Filesystem for Accelerating HPC Workloads Next-Generation NVMe-Native Parallel Filesystem for Accelerating HPC Workloads Liran Zvibel CEO, Co-founder WekaIO @liranzvibel 1 WekaIO Matrix: Full-featured and Flexible Public or Private S3 Compatible

More information

Solid State Performance Comparisons: SSD Cache Performance

Solid State Performance Comparisons: SSD Cache Performance Solid State Performance Comparisons: SSD Cache Performance Dennis Martin, President, Demartek This presentation is available at http://www.demartek.com/demartek_presenting_snwusa_2013-10.html Agenda Demartek

More information

Storage. Hwansoo Han

Storage. Hwansoo Han Storage Hwansoo Han I/O Devices I/O devices can be characterized by Behavior: input, out, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections 2 I/O System Characteristics

More information

ZD-XL SQL Accelerator 1.6

ZD-XL SQL Accelerator 1.6 ZD-XL SQL Accelerator 1.6 Integrated Flash Hardware & Software Acceleration Solution for SQL Server Features Supports Microsoft Hyper-V and VMware ESXi environments Accelerates SQL Server at a per database

More information

Introducing the Cray XMT. Petr Konecny May 4 th 2007

Introducing the Cray XMT. Petr Konecny May 4 th 2007 Introducing the Cray XMT Petr Konecny May 4 th 2007 Agenda Origins of the Cray XMT Cray XMT system architecture Cray XT infrastructure Cray Threadstorm processor Shared memory programming model Benefits/drawbacks/solutions

More information

CSE 451: Operating Systems. Section 10 Project 3 wrap-up, final exam review

CSE 451: Operating Systems. Section 10 Project 3 wrap-up, final exam review CSE 451: Operating Systems Section 10 Project 3 wrap-up, final exam review Final exam review Goal of this section: key concepts you should understand Not just a summary of lectures Slides coverage and

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 35 Mass Storage Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions For You Local/Global

More information

Maximizing Data Center and Enterprise Storage Efficiency

Maximizing Data Center and Enterprise Storage Efficiency Maximizing Data Center and Enterprise Storage Efficiency Enterprise and data center customers can leverage AutoStream to achieve higher application throughput and reduced latency, with negligible organizational

More information

Chapter 6. Storage and Other I/O Topics

Chapter 6. Storage and Other I/O Topics Chapter 6 Storage and Other I/O Topics Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections

More information

Flash In the Data Center

Flash In the Data Center Flash In the Data Center Enterprise-grade Morgan Littlewood: VP Marketing and BD Violin Memory, Inc. Email: littlewo@violin-memory.com Mobile: +1.650.714.7694 7/12/2009 1 Flash in the Data Center Nothing

More information

Two hours - online. The exam will be taken on line. This paper version is made available as a backup

Two hours - online. The exam will be taken on line. This paper version is made available as a backup COMP 25212 Two hours - online The exam will be taken on line. This paper version is made available as a backup UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE System Architecture Date: Monday 21st

More information

Webinar Series: Triangulate your Storage Architecture with SvSAN Caching. Luke Pruen Technical Services Director

Webinar Series: Triangulate your Storage Architecture with SvSAN Caching. Luke Pruen Technical Services Director Webinar Series: Triangulate your Storage Architecture with SvSAN Caching Luke Pruen Technical Services Director What can you expect from this webinar? To answer a simple question How can I create the perfect

More information

Storage Systems : Disks and SSDs. Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018

Storage Systems : Disks and SSDs. Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018 Storage Systems : Disks and SSDs Manu Awasthi July 6 th 2018 Computer Architecture Summer School 2018 Why study storage? Scalable High Performance Main Memory System Using Phase-Change Memory Technology,

More information

Identifying Performance Bottlenecks with Real- World Applications and Flash-Based Storage

Identifying Performance Bottlenecks with Real- World Applications and Flash-Based Storage Identifying Performance Bottlenecks with Real- World Applications and Flash-Based Storage TechTarget Dennis Martin 1 Agenda About Demartek Enterprise Data Center Environments Storage Performance Metrics

More information

Disks and RAID. CS 4410 Operating Systems. [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse]

Disks and RAID. CS 4410 Operating Systems. [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse] Disks and RAID CS 4410 Operating Systems [R. Agarwal, L. Alvisi, A. Bracy, E. Sirer, R. Van Renesse] Storage Devices Magnetic disks Storage that rarely becomes corrupted Large capacity at low cost Block

More information

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili Virtual Memory Lecture notes from MKP and S. Yalamanchili Sections 5.4, 5.5, 5.6, 5.8, 5.10 Reading (2) 1 The Memory Hierarchy ALU registers Cache Memory Memory Memory Managed by the compiler Memory Managed

More information

Introducing Tegile. Company Overview. Product Overview. Solutions & Use Cases. Partnering with Tegile

Introducing Tegile. Company Overview. Product Overview. Solutions & Use Cases. Partnering with Tegile Tegile Systems 1 Introducing Tegile Company Overview Product Overview Solutions & Use Cases Partnering with Tegile 2 Company Overview Company Overview Te gile - [tey-jile] Tegile = technology + agile Founded

More information

Webscale, All Flash, Distributed File Systems. Avraham Meir Elastifile

Webscale, All Flash, Distributed File Systems. Avraham Meir Elastifile Webscale, All Flash, Distributed File Systems Avraham Meir Elastifile 1 Outline The way to all FLASH The way to distributed storage Scale-out storage management Conclusion 2 Storage Technology Trend NAND

More information

High-Performance Transaction Processing in Journaling File Systems Y. Son, S. Kim, H. Y. Yeom, and H. Han

High-Performance Transaction Processing in Journaling File Systems Y. Son, S. Kim, H. Y. Yeom, and H. Han High-Performance Transaction Processing in Journaling File Systems Y. Son, S. Kim, H. Y. Yeom, and H. Han Seoul National University, Korea Dongduk Women s University, Korea Contents Motivation and Background

More information

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson

Strata: A Cross Media File System. Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson A Cross Media File System Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, Thomas Anderson 1 Let s build a fast server NoSQL store, Database, File server, Mail server Requirements

More information

Design Tradeoffs for Data Deduplication Performance in Backup Workloads

Design Tradeoffs for Data Deduplication Performance in Backup Workloads Design Tradeoffs for Data Deduplication Performance in Backup Workloads Min Fu,DanFeng,YuHua,XubinHe, Zuoning Chen *, Wen Xia,YuchengZhang,YujuanTan Huazhong University of Science and Technology Virginia

More information

Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs

Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs Open-Channel SSDs Offer the Flexibility Required by Hyperscale Infrastructure Matias Bjørling CNEX Labs 1 Public and Private Cloud Providers 2 Workloads and Applications Multi-Tenancy Databases Instance

More information

Exploiting the benefits of native programming access to NVM devices

Exploiting the benefits of native programming access to NVM devices Exploiting the benefits of native programming access to NVM devices Ashish Batwara Principal Storage Architect Fusion-io Traditional Storage Stack User space Application Kernel space Filesystem LBA Block

More information

AutoStream: Automatic Stream Management for Multi-stream SSDs

AutoStream: Automatic Stream Management for Multi-stream SSDs AutoStream: Automatic Stream Management for Multi-stream SSDs Jingpei Yang, PhD, Rajinikanth Pandurangan, Changho Choi, PhD, Vijay Balakrishnan Memory Solutions Lab Samsung Semiconductor Agenda SSD NAND

More information

Computer Architecture Computer Science & Engineering. Chapter 6. Storage and Other I/O Topics BK TP.HCM

Computer Architecture Computer Science & Engineering. Chapter 6. Storage and Other I/O Topics BK TP.HCM Computer Architecture Computer Science & Engineering Chapter 6 Storage and Other I/O Topics Introduction I/O devices can be characterized by Behaviour: input, output, storage Partner: human or machine

More information

SvSAN Data Sheet - StorMagic

SvSAN Data Sheet - StorMagic SvSAN Data Sheet - StorMagic A Virtual SAN for distributed multi-site environments StorMagic SvSAN is a software storage solution that enables enterprises to eliminate downtime of business critical applications

More information

BENEFITS AND BEST PRACTICES FOR DEPLOYING SSDS IN AN OLTP ENVIRONMENT USING DELL EQUALLOGIC PS SERIES

BENEFITS AND BEST PRACTICES FOR DEPLOYING SSDS IN AN OLTP ENVIRONMENT USING DELL EQUALLOGIC PS SERIES WHITE PAPER BENEFITS AND BEST PRACTICES FOR DEPLOYING SSDS IN AN OLTP ENVIRONMENT USING DELL EQUALLOGIC PS SERIES Using Solid State Disks (SSDs) in enterprise storage arrays is one of today s hottest storage

More information

AN ALTERNATIVE TO ALL- FLASH ARRAYS: PREDICTIVE STORAGE CACHING

AN ALTERNATIVE TO ALL- FLASH ARRAYS: PREDICTIVE STORAGE CACHING AN ALTERNATIVE TO ALL- FLASH ARRAYS: PREDICTIVE STORAGE CACHING THE EASIEST WAY TO INCREASE PERFORMANCE AND LOWER STORAGE COSTS Bruce Kornfeld, Chief Marketing Officer, StorMagic Luke Pruen, Technical

More information

Optimizing Flash-based Key-value Cache Systems

Optimizing Flash-based Key-value Cache Systems Optimizing Flash-based Key-value Cache Systems Zhaoyan Shen, Feng Chen, Yichen Jia, Zili Shao Department of Computing, Hong Kong Polytechnic University Computer Science & Engineering, Louisiana State University

More information

Ben Walker Data Center Group Intel Corporation

Ben Walker Data Center Group Intel Corporation Ben Walker Data Center Group Intel Corporation Notices and Disclaimers Intel technologies features and benefits depend on system configuration and may require enabled hardware, software or service activation.

More information

Introduction I/O 1. I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec

Introduction I/O 1. I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec Introduction I/O 1 I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections I/O Device Summary I/O 2 I/O System

More information

A Semi Preemptive Garbage Collector for Solid State Drives. Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp Oral, Feiyi Wang, and Jongman Kim

A Semi Preemptive Garbage Collector for Solid State Drives. Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp Oral, Feiyi Wang, and Jongman Kim A Semi Preemptive Garbage Collector for Solid State Drives Junghee Lee, Youngjae Kim, Galen M. Shipman, Sarp Oral, Feiyi Wang, and Jongman Kim Presented by Junghee Lee High Performance Storage Systems

More information

W H I T E P A P E R. Comparison of Storage Protocol Performance in VMware vsphere 4

W H I T E P A P E R. Comparison of Storage Protocol Performance in VMware vsphere 4 W H I T E P A P E R Comparison of Storage Protocol Performance in VMware vsphere 4 Table of Contents Introduction................................................................... 3 Executive Summary............................................................

More information

Hewlett Packard Enterprise HPE GEN10 PERSISTENT MEMORY PERFORMANCE THROUGH PERSISTENCE

Hewlett Packard Enterprise HPE GEN10 PERSISTENT MEMORY PERFORMANCE THROUGH PERSISTENCE Hewlett Packard Enterprise HPE GEN10 PERSISTENT MEMORY PERFORMANCE THROUGH PERSISTENCE Digital transformation is taking place in businesses of all sizes Big Data and Analytics Mobility Internet of Things

More information

Extremely Fast Distributed Storage for Cloud Service Providers

Extremely Fast Distributed Storage for Cloud Service Providers Solution brief Intel Storage Builders StorPool Storage Intel SSD DC S3510 Series Intel Xeon Processor E3 and E5 Families Intel Ethernet Converged Network Adapter X710 Family Extremely Fast Distributed

More information

StorMagic SvSAN 6.1. Product Announcement Webinar and Live Demonstration. Mark Christie Senior Systems Engineer

StorMagic SvSAN 6.1. Product Announcement Webinar and Live Demonstration. Mark Christie Senior Systems Engineer StorMagic SvSAN 6.1 Product Announcement Webinar and Live Demonstration Mark Christie Senior Systems Engineer Introducing StorMagic What do we do? StorMagic SvSAN eliminates the need for physical SANs

More information

HP visoko-performantna OLTP rješenja

HP visoko-performantna OLTP rješenja HP visoko-performantna OLTP rješenja Tomislav Alpeza Presales Consultant, BCS/SD 2011 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Performance

More information

VMware vstorage APIs FOR ARRAY INTEGRATION WITH EMC VNX SERIES FOR SAN

VMware vstorage APIs FOR ARRAY INTEGRATION WITH EMC VNX SERIES FOR SAN White Paper VMware vstorage APIs FOR ARRAY INTEGRATION WITH EMC VNX SERIES FOR SAN Benefits of EMC VNX for Block Integration with VMware VAAI EMC SOLUTIONS GROUP Abstract This white paper highlights the

More information

Accelerate Applications Using EqualLogic Arrays with directcache

Accelerate Applications Using EqualLogic Arrays with directcache Accelerate Applications Using EqualLogic Arrays with directcache Abstract This paper demonstrates how combining Fusion iomemory products with directcache software in host servers significantly improves

More information

First-In-First-Out (FIFO) Algorithm

First-In-First-Out (FIFO) Algorithm First-In-First-Out (FIFO) Algorithm Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1 3 frames (3 pages can be in memory at a time per process) 15 page faults Can vary by reference string:

More information

Evaluating Cloud Storage Strategies. James Bottomley; CTO, Server Virtualization

Evaluating Cloud Storage Strategies. James Bottomley; CTO, Server Virtualization Evaluating Cloud Storage Strategies James Bottomley; CTO, Server Virtualization Introduction to Storage Attachments: - Local (Direct cheap) SAS, SATA - Remote (SAN, NAS expensive) FC net Types - Block

More information

LightNVM: The Linux Open-Channel SSD Subsystem Matias Bjørling (ITU, CNEX Labs), Javier González (CNEX Labs), Philippe Bonnet (ITU)

LightNVM: The Linux Open-Channel SSD Subsystem Matias Bjørling (ITU, CNEX Labs), Javier González (CNEX Labs), Philippe Bonnet (ITU) ½ LightNVM: The Linux Open-Channel SSD Subsystem Matias Bjørling (ITU, CNEX Labs), Javier González (CNEX Labs), Philippe Bonnet (ITU) 0% Writes - Read Latency 4K Random Read Latency 4K Random Read Percentile

More information

HGST: Market Creator to Market Leader

HGST: Market Creator to Market Leader HGST: Market Creator to Market Leader Gaetano Pastore Enterprise Sales EMEA gaetano.pastore@hgst.com +4915122674411 HGST's Transformation: http://www.youtube.com/watch?v=ehiyhn0jlie Growth of the Digital

More information

Flash Trends: Challenges and Future

Flash Trends: Challenges and Future Flash Trends: Challenges and Future John D. Davis work done at Microsoft Researcher- Silicon Valley in collaboration with Laura Caulfield*, Steve Swanson*, UCSD* 1 My Research Areas of Interest Flash characteristics

More information

Sun N1: Storage Virtualization and Oracle

Sun N1: Storage Virtualization and Oracle OracleWorld 2003 Session 36707 - Sun N1: Storage Virtualization and Oracle Glenn Colaco Performance Engineer Sun Microsystems Performance and Availability Engineering September 9, 2003 Background PAE works

More information

Caches. Samira Khan March 23, 2017

Caches. Samira Khan March 23, 2017 Caches Samira Khan March 23, 2017 Agenda Review from last lecture Data flow model Memory hierarchy More Caches The Dataflow Model (of a Computer) Von Neumann model: An instruction is fetched and executed

More information

Purity: building fast, highly-available enterprise flash storage from commodity components

Purity: building fast, highly-available enterprise flash storage from commodity components Purity: building fast, highly-available enterprise flash storage from commodity components J. Colgrove, J. Davis, J. Hayes, E. Miller, C. Sandvig, R. Sears, A. Tamches, N. Vachharajani, and F. Wang 0 Gala

More information

Virtualization of the MS Exchange Server Environment

Virtualization of the MS Exchange Server Environment MS Exchange Server Acceleration Maximizing Users in a Virtualized Environment with Flash-Powered Consolidation Allon Cohen, PhD OCZ Technology Group Introduction Microsoft (MS) Exchange Server is one of

More information

Scalable High Performance Main Memory System Using PCM Technology

Scalable High Performance Main Memory System Using PCM Technology Scalable High Performance Main Memory System Using PCM Technology Moinuddin K. Qureshi Viji Srinivasan and Jude Rivers IBM T. J. Watson Research Center, Yorktown Heights, NY International Symposium on

More information

Hitachi Virtual Storage Platform Family

Hitachi Virtual Storage Platform Family Hitachi Virtual Storage Platform Family Advanced Storage Capabilities for All Organizations Andre Lahrmann 23. November 2017 Hitachi Vantara Vorweg: Aus Hitachi Data Systems wird Hitachi Vantara The efficiency

More information

Achieving Memory Level Performance: Secrets Beyond Shared Flash

Achieving Memory Level Performance: Secrets Beyond Shared Flash Achieving Memory Level Performance: Secrets Beyond Shared Flash Kothanda (Kodi) Umamageswaran Vice President, Exadata Development Gurmeet Goindi Exadata Product Management Safe Harbor Statement The following

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 11: File System Implementation Prof. Alan Mislove (amislove@ccs.neu.edu) File-System Structure File structure Logical storage unit Collection

More information

A Case Study: Performance Evaluation of a DRAM-Based Solid State Disk

A Case Study: Performance Evaluation of a DRAM-Based Solid State Disk A Case Study: Performance Evaluation of a DRAM-Based Solid State Disk Hitoshi Oi The University of Aizu November 2, 2007 Japan-China Joint Workshop on Frontier of Computer Science and Technology (FCST)

More information

Creating the Fastest Possible Backups Using VMware Consolidated Backup. A Design Blueprint

Creating the Fastest Possible Backups Using VMware Consolidated Backup. A Design Blueprint Creating the Fastest Possible Backups Using VMware Consolidated Backup A Design Blueprint George Winter Technical Product Manager NetBackup Symantec Corporation Agenda Overview NetBackup for VMware and

More information

Copyright 2012 EMC Corporation. All rights reserved.

Copyright 2012 EMC Corporation. All rights reserved. 1 FLASH 1 ST THE STORAGE STRATEGY FOR THE NEXT DECADE Iztok Sitar Sr. Technology Consultant EMC Slovenia 2 Information Tipping Point Ahead The Future Will Be Nothing Like The Past 140,000 120,000 100,000

More information

ARCHITECTURE WHITEPAPER

ARCHITECTURE WHITEPAPER ARCHITECTURE WHITEPAPER ARCHITECTURE WHITEPAPER Table of Contents Data Value... 2 NexGen Storage Architecture... 3 Storage Quality of Service and Service Levels... 5 PCIe Flash Multi-tier Design... 10

More information

M7: Next Generation SPARC. Hotchips 26 August 12, Stephen Phillips Senior Director, SPARC Architecture Oracle

M7: Next Generation SPARC. Hotchips 26 August 12, Stephen Phillips Senior Director, SPARC Architecture Oracle M7: Next Generation SPARC Hotchips 26 August 12, 2014 Stephen Phillips Senior Director, SPARC Architecture Oracle Safe Harbor Statement The following is intended to outline our general product direction.

More information

Database Solutions Engineering. Best Practices for Deploying SSDs in an Oracle OLTP Environment using Dell TM EqualLogic TM PS Series

Database Solutions Engineering. Best Practices for Deploying SSDs in an Oracle OLTP Environment using Dell TM EqualLogic TM PS Series Best Practices for Deploying SSDs in an Oracle OLTP Environment using Dell TM EqualLogic TM PS Series A Dell Technical White Paper Database Solutions Engineering Dell Product Group April 2009 THIS WHITE

More information

Dell Reference Configuration for Large Oracle Database Deployments on Dell EqualLogic Storage

Dell Reference Configuration for Large Oracle Database Deployments on Dell EqualLogic Storage Dell Reference Configuration for Large Oracle Database Deployments on Dell EqualLogic Storage Database Solutions Engineering By Raghunatha M, Ravi Ramappa Dell Product Group October 2009 Executive Summary

More information

E-Store: Fine-Grained Elastic Partitioning for Distributed Transaction Processing Systems

E-Store: Fine-Grained Elastic Partitioning for Distributed Transaction Processing Systems E-Store: Fine-Grained Elastic Partitioning for Distributed Transaction Processing Systems Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore, Ashraf Aboulnaga, Andrew Pavlo, Michael

More information

Innovations in Non-Volatile Memory 3D NAND and its Implications May 2016 Rob Peglar, VP Advanced Storage,

Innovations in Non-Volatile Memory 3D NAND and its Implications May 2016 Rob Peglar, VP Advanced Storage, Innovations in Non-Volatile Memory 3D NAND and its Implications May 2016 Rob Peglar, VP Advanced Storage, Micron @peglarr 2015 Micron Technology, Inc All rights reserved Products are warranted only to

More information

IBM System Storage DS8800 Overview

IBM System Storage DS8800 Overview DATE VENUE IBM System Storage DS8800 Overview Tran Thanh Tu tutt@vn.ibm.com Storage FTSS IBM Vietnam 1 Agenda Introducing new DS8800 model What s new what s not Dramatic efficiency performance benefits

More information

ZBD: Using Transparent Compression at the Block Level to Increase Storage Space Efficiency

ZBD: Using Transparent Compression at the Block Level to Increase Storage Space Efficiency ZBD: Using Transparent Compression at the Block Level to Increase Storage Space Efficiency Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bilas {mcatos,klonatos,maraz,flouris,bilas}@ics.forth.gr

More information

Interface Trends for the Enterprise I/O Highway

Interface Trends for the Enterprise I/O Highway Interface Trends for the Enterprise I/O Highway Mitchell Abbey Product Line Manager Enterprise SSD August 2012 1 Enterprise SSD Market Update One Size Does Not Fit All : Storage solutions will be tiered

More information