The Complex Network Phenomena. and Their Origin

Size: px
Start display at page:

Download "The Complex Network Phenomena. and Their Origin"

Transcription

1 The Complex Network Phenomena and Their Origin An Annotated Bibliography ESL 33C Instructor: Gerriet Janssen Match 18, 2004

2 Introduction A coupled system can be described as a complex network, in which the vertices represent the elements of a system, and the edges stand for the physical or logical interaction between different elements. Recently, with the development of modern statistical physics theory and computing technology, it has become possible to quantitatively study the topological and dynamical properties of huge networks that can be mapped into various real systems. Moreover, it has been proved that research in this field has both theoretical and practical significance. These studies not only offer us a great chance to further our understanding about the mechanisms underlying the real world, it also allow us to investigate some crucial problems in the fields other than physics, such as computer science, epidemiology, economics, and sociology, from the physicists aspects. A variety of real networks have recently been studied in detail; these networks include World Wide Web, communication networks, Protein interaction networks, citation networks, and epidemic spreading networks. Many physicists have reported on the different features they observed in these kinds of networks. However, most of recent work only focus on the phenomena appearing in the networks, and does not pay much attention to the mechanism underlying these phenomena. Therefore, the answers to two key questions are still little known: what is the connection between topological characteristics of one network and its unique dynamical properties? What is the origin why a special topology is chosen by a given real networks? This 1

3 bibliography will review some major research work about complex networks. The achievements in these articles will not only show the wide existence of complex network phenomena in this world, but also provide a step in the direction of discovering the answers to those two questions as well. Annotated Bibliography A. Barabási, R. Albert, & H. Jeong. Scale-free characteristics of random networks: the topology of the world-wide web. Physica A, 281, 69-77(2000). In his article Scale-free characteristics of random networks: the topology of the world-wide web, A. Barabási claims that the topology of the world-wide web (WWW) network presents some characteristics that belong to the special kind of networks named scale-free. If we consider all the HTML web pages as nodes connected by the hyperlinks pointing from one to another, the whole web documents then form a huge network. There are two most important topological features for this network. First, both P out (k) and P in (k) (defined as the probability that a node have k outgoing and incoming links respectively) follow power law relation with respect to the parameter k over several orders of magnitude, and such a property is called scale-free. Second, the diameter (defined as the average number of hyperlinks that we need to follow to go from one randomly chosen web page to another) of this network is only 19, which is remarkably small comparing with 2

4 the huge size of this WWW network. To understand what kind of the mechanism leads to these special properties, Barabási goes on to develop a numerical model to simulate the formation process of the real WWW network. In his model, the creative point is that there exist some popular nodes like and these nodes are so popular that most new added web pages would like to provide a hyperlink pointing to them. By simulation based on this rule, the power law distribution, as well as the rather small diameter, is obtained. The results obtained from the numerical model and the real network match with each other on a certain extent; however, there is a slight difference on power law exponent. Barabási claimed that this is probably because the numerical model can not include all the factors underlying the real WWW network, but their model does take some major ones into account. R. Guimerá, A. Arenas, A. Díaz-Guilera, & F. Giralt. Dynamical properties of model communication networks. Physical Review E, 66, (2002). In his article Dynamical properties of model communication networks, Roger Guimera states that the studies about the congestion phenomena in the communication networks information delivering process, such as the internet, has a very important practical meaning. Real communication networks can be simulated as hierarchical networks, 3

5 in which information packets are travelling from their starting nodes to their destinations. There exist a phase transition between the free regime, in which all the information packets can reach their destinations, to the congested regime, in which some packets are blocked in some key nodes. By a control parameter ξ, which represents the relation between the number of received packets for one node and its ability to deliver packets, Guimera characterized the situation of the whole networks as three typical cases. In the critical case, in which ξ = 1, a continuous phase transition is discovered. Moreover, the block phenomena in this case are investigated in detail in three typical network topologies, and the results indicate that congestion processes in 1 D and Cayley tree networks are nearly the same; but they are different from that in 2 D networks. The author further studies the noncritical cases. For ξ < 1, the phase transition from free regime to congested regime does not occur any more; however, for ξ > 1, a discontinuous transition happens, which means the information delivering process sharply changes into such a bad situation that information even can not flow, and at last the whole network collapses. S. Lehmann, B. Lautrup, & A. Jackson. Citation networks in high energy physics. Physical Review E, 68, (2003). S. Lehmann s recent work, Citation network in high energy physics is another good example of complex networks in our world. In this article, 4

6 the author studies the citation networks, in which the vertices are scientific publications, and an edge represents a citation from one paper pointing to another. Through basic statistics about the network composed by the data from SPIRES HEP database (a database about high-energy physics related articles), the authors demonstrates us that the citations in high energy physics and its different subfields, namely theory, experiment, phenomenology, reviews and instrumentation, have the same pattern, that is, the probability that a given article has been cited for k times by other articles follows the power law distribution P (k) k α, which means that highly cited, thus relatively important articles constitute only few percentage of all papers. At the second part of this article, Lehmann utilizes the result above to give a practical application of this research work. It is well known that how many times an article has been cited is a good reflection its quality. Similarly, the parameter r defined in this article is a criterion for evaluating the research achievements of an institute or an individual. This parameter takes many factors into account, thus the authors considers it to be an objective criterion for judging of the research work s value from many aspects. Moreover, it is especially suitable to make comparison between two research institutes, both of which publish papers in various fields. However, at the end of this article, the author emphasizes that any single parameter can not include all the meaning of this complex citation network, thus the role of a database that is entirely available to the users will be far more important than we have ever expected. 5

7 N. Mathias, & V. Gopal. Small worlds: how and why. Physical Review E, 63, (2001). In her article Small worlds: how and why, the author Nisha Mathias states that it is the tradeoff between the highest efficiency of connectivity and the lowest cost of wiring that drives real networks to choose the topological structure of small world networks. In this article, Mathias first defines an objective function which includes the effects of both the efficiency of transportation and the cost of network s topology, and her aim is to find the special network topological structure for which this objective function reaches its minimum value, which meets the requirements of maximizing connectivity and minimizing wiring cost simultaneously. Numerical simulations then present a clear picture of how the structure of one network evolves from random to small world aiming this goal; in addition, it also demonstrates that the hubs will emerge in the networks during this optimizing process. In real networks, such as neural networks, a higher connectivity always means a more efficient way for transporting information or energy between nodes, however, the more links exist in networks, the more wasteful of space or materials they are. The simulation results in this article indicate that there exists a balance between these two contradictory requirements, and the balance is nothing but small world networks. After simulation, a comparison between the small world networks ob- 6

8 tained from this optimization model and the previous WS model is made in detail with respect to the small world characteristics, and this comparison reveals that the small world networks got from the optimization model are more efficient than that obtained from the WS model. Finally, the author ends her article with the conclusion that that any efficient transportation networks will have the structure of small world. D. Volchenkov, L. Volchenkova, & Ph. Blanchard. Epidemic spreading in a variety of scale free networks. Physical Review E, 66, (2002). In the article Epidemic spreading in a variety of scale free networks, the author D. Volchenkov claims that epidemic spreading properties are very sensitive to the characteristics of communication networks among people. It has been known for a long time that scale free networks can represent the communication network in our daily life, in which each node stands for a person. In this article, the author developed a epidemic spreading model based on the scale free network. In the model, only a few ratio of population are infected initially, and the virus can spread via contact between people. Based on the evolution equation that describes how the fraction of infected people varies, the author first discusses the stationary case, namely the final fraction of infected people. Results indicate that the stationary fraction increases with the effective spreading rate of the virus, but the effective ways for 7

9 preventing epidemic spread in two typical kinds of societies are divergent. In the unstructured society, the more popular an individual is, the more probable s/he is chosen to be partner by others. Calculations imply that the effective program in this society is to decentralize the network, say, decrease the contact between the popular star and others. However, things are quite different for the structured society, in which one prefer to choose partner in his same class, say, s/he would like to make friends within the equivalent social class. The efficient way for preventing the epidemic spread in the structured society should be to vaccinate the hubs and increase their communication with others. Following the stationary case, the author continues discussing the dynamical properties of the evolution equation, and finally finds an expression for relaxation time, in which the initial distribution of infected people in this network underlies the actual disease spreading. This parameter is very important since it indicates about how long the epidemic spreading will reach its stationary solution, perhaps in which a large number of the population are infected. Conclusion Though it has been only less than ten years since researchers began to study the phenomena in the field of complex networks, a variety of interesting phenomena have been reported in different kinds of real networks, and obviously, this implies the broad application of this new born subject. However, as pointed out in the 8

10 Introduction, two basic questions about the complex networks still require further studies: what are the connections between one network s topological and dynamical properties? What is the origin why a given real network chooses a special topological structure? In the articles cited above, the authors Barabási, Lehmann, Volchenkov, Guimera investigate the special features in four different kinds of real networks, and their studies indicate the relation between the topological structure and dynamical properties in WWW network, citation networks, epidemic spreading networks, and communication networks respectively. Moreover, the studies of Barabási and Mathias give the possible explanation of the origin of scale-free and small-world networks. In conclusion, the studies aimed to those two key questions have been carried in some typical networks; however, the general theories that can be applied into each kind of networks are still not discovered. The field of complex networks is rapidly developing. Due to its young age and importance, we can foresee this prolific subject has great potential to discover new theories that have very practical applications. So far we lack some important knowledge that would help us to overcome those two central questions; however, recent research work, such as articles cited in this bibliography, does present a good path towards this final destination. 9

From Centrality to Temporary Fame: Dynamic Centrality in Complex Networks

From Centrality to Temporary Fame: Dynamic Centrality in Complex Networks From Centrality to Temporary Fame: Dynamic Centrality in Complex Networks Dan Braha 1, 2 and Yaneer Bar-Yam 2 1 University of Massachusetts Dartmouth, MA 02747, USA 2 New England Complex Systems Institute

More information

Global dynamic routing for scale-free networks

Global dynamic routing for scale-free networks Global dynamic routing for scale-free networks Xiang Ling, Mao-Bin Hu,* Rui Jiang, and Qing-Song Wu School of Engineering Science, University of Science and Technology of China, Hefei 230026, People s

More information

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno Wednesday, March 8, 2006 Complex Networks Presenter: Jirakhom Ruttanavakul CS 790R, University of Nevada, Reno Presented Papers Emergence of scaling in random networks, Barabási & Bonabeau (2003) Scale-free

More information

M.E.J. Newman: Models of the Small World

M.E.J. Newman: Models of the Small World A Review Adaptive Informatics Research Centre Helsinki University of Technology November 7, 2007 Vocabulary N number of nodes of the graph l average distance between nodes D diameter of the graph d is

More information

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC) Part 1 Motivation and emergence of Network Science

More information

Modeling Traffic of Information Packets on Graphs with Complex Topology

Modeling Traffic of Information Packets on Graphs with Complex Topology Modeling Traffic of Information Packets on Graphs with Complex Topology Bosiljka Tadić Jožef Stefan Institute, Box 3000, 1001 Ljubljana, Slovenia Bosiljka.Tadic ijs.si http://phobos.ijs.si/ tadic/ Abstract.

More information

ECS 253 / MAE 253, Lecture 8 April 21, Web search and decentralized search on small-world networks

ECS 253 / MAE 253, Lecture 8 April 21, Web search and decentralized search on small-world networks ECS 253 / MAE 253, Lecture 8 April 21, 2016 Web search and decentralized search on small-world networks Search for information Assume some resource of interest is stored at the vertices of a network: Web

More information

Critical Phenomena in Complex Networks

Critical Phenomena in Complex Networks Critical Phenomena in Complex Networks Term essay for Physics 563: Phase Transitions and the Renormalization Group University of Illinois at Urbana-Champaign Vikyath Deviprasad Rao 11 May 2012 Abstract

More information

Integrating local static and dynamic information for routing traffic

Integrating local static and dynamic information for routing traffic Integrating local static and dynamic information for routing traffic Wen-Xu Wang, 1 Chuan-Yang Yin, 1 Gang Yan, 2 and Bing-Hong Wang 1, * 1 Nonlinear Science Center and Department of Modern Physics, University

More information

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds MAE 298, Lecture 9 April 30, 2007 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in

More information

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Kouhei Sugiyama, Hiroyuki Ohsaki and Makoto Imase Graduate School of Information Science and Technology,

More information

A Generating Function Approach to Analyze Random Graphs

A Generating Function Approach to Analyze Random Graphs A Generating Function Approach to Analyze Random Graphs Presented by - Vilas Veeraraghavan Advisor - Dr. Steven Weber Department of Electrical and Computer Engineering Drexel University April 8, 2005 Presentation

More information

On Complex Dynamical Networks. G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong

On Complex Dynamical Networks. G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong On Complex Dynamical Networks G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong 1 Complex Networks: Some Typical Examples 2 Complex Network Example: Internet (William

More information

Onset of traffic congestion in complex networks

Onset of traffic congestion in complex networks Onset of traffic congestion in complex networks Liang Zhao, 1,2 Ying-Cheng Lai, 1,3 Kwangho Park, 1 and Nong Ye 4 1 Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287,

More information

Internet as a Complex Network. Guanrong Chen City University of Hong Kong

Internet as a Complex Network. Guanrong Chen City University of Hong Kong Internet as a Complex Network Guanrong Chen City University of Hong Kong 1 Complex Network: Internet (K. C. Claffy) 2 Another View of the Internet http://www.caida.org/analysis/topology/as_core_network/

More information

An Agent-Based Adaptation of Friendship Games: Observations on Network Topologies

An Agent-Based Adaptation of Friendship Games: Observations on Network Topologies An Agent-Based Adaptation of Friendship Games: Observations on Network Topologies David S. Dixon University of New Mexico, Albuquerque NM 87131, USA Abstract. A friendship game in game theory is a network

More information

γ : constant Goett 2 P(k) = k γ k : degree

γ : constant Goett 2 P(k) = k γ k : degree Goett 1 Jeffrey Goett Final Research Paper, Fall 2003 Professor Madey 19 December 2003 Abstract: Recent observations by physicists have lead to new theories about the mechanisms controlling the growth

More information

Complex networks: A mixture of power-law and Weibull distributions

Complex networks: A mixture of power-law and Weibull distributions Complex networks: A mixture of power-law and Weibull distributions Ke Xu, Liandong Liu, Xiao Liang State Key Laboratory of Software Development Environment Beihang University, Beijing 100191, China Abstract:

More information

Constructing a G(N, p) Network

Constructing a G(N, p) Network Random Graph Theory Dr. Natarajan Meghanathan Associate Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Introduction At first inspection,

More information

Failure in Complex Social Networks

Failure in Complex Social Networks Journal of Mathematical Sociology, 33:64 68, 2009 Copyright # Taylor & Francis Group, LLC ISSN: 0022-250X print/1545-5874 online DOI: 10.1080/00222500802536988 Failure in Complex Social Networks Damon

More information

Complex Networks. Structure and Dynamics

Complex Networks. Structure and Dynamics Complex Networks Structure and Dynamics Ying-Cheng Lai Department of Mathematics and Statistics Department of Electrical Engineering Arizona State University Collaborators! Adilson E. Motter, now at Max-Planck

More information

Preliminary results from an agent-based adaptation of friendship games

Preliminary results from an agent-based adaptation of friendship games Preliminary results from an agent-based adaptation of friendship games David S. Dixon June 29, 2011 This paper presents agent-based model (ABM) equivalents of friendshipbased games and compares the results

More information

Constructing a G(N, p) Network

Constructing a G(N, p) Network Random Graph Theory Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Introduction At first inspection, most

More information

Heuristics for the Critical Node Detection Problem in Large Complex Networks

Heuristics for the Critical Node Detection Problem in Large Complex Networks Heuristics for the Critical Node Detection Problem in Large Complex Networks Mahmood Edalatmanesh Department of Computer Science Submitted in partial fulfilment of the requirements for the degree of Master

More information

Cognitive Analysis of Software Interfaces

Cognitive Analysis of Software Interfaces 2011 International Conference on Information and Network Technology IPCSIT vol.4 (2011) (2011) IACSIT Press, Singapore Cognitive Analysis of Software Interfaces B.Venkata Raju, Ph.D Scholar, Reg.No.2004199506

More information

Pheromone Static Routing Strategy for Complex Networks. Abstract

Pheromone Static Routing Strategy for Complex Networks. Abstract Pheromone Static Routing Strategy for Complex Networks Xiang Ling 1, Henry Y.K. Lau 2, Rui Jiang 1, and Mao-Bin Hu 1 1.School of Engineering Science, University of Science and Technology of China, arxiv:1108.6119v1

More information

arxiv:cond-mat/ v1 9 Jan 2003

arxiv:cond-mat/ v1 9 Jan 2003 Search and Congestion in Complex Networks Alex Arenas 1, Antonio Cabrales 2, Albert Díaz-Guilera 3, Roger Guimerà 4, and Fernando Vega-Redondo 5 arxiv:cond-mat/0301124 v1 9 Jan 2003 1 Departament d Enginyeria

More information

Modelling data networks research summary and modelling tools

Modelling data networks research summary and modelling tools Modelling data networks research summary and modelling tools a 1, 3 1, 2 2, 2 b 0, 3 2, 3 u 1, 3 α 1, 6 c 0, 3 v 2, 2 β 1, 1 Richard G. Clegg (richard@richardclegg.org) December 2011 Available online at

More information

Mathematics of networks. Artem S. Novozhilov

Mathematics of networks. Artem S. Novozhilov Mathematics of networks Artem S. Novozhilov August 29, 2013 A disclaimer: While preparing these lecture notes, I am using a lot of different sources for inspiration, which I usually do not cite in the

More information

CSCI5070 Advanced Topics in Social Computing

CSCI5070 Advanced Topics in Social Computing CSCI5070 Advanced Topics in Social Computing Irwin King The Chinese University of Hong Kong king@cse.cuhk.edu.hk!! 2012 All Rights Reserved. Outline Scale-Free Networks Generation Properties Analysis Dynamic

More information

Universal Behavior of Load Distribution in Scale-free Networks

Universal Behavior of Load Distribution in Scale-free Networks Universal Behavior of Load Distribution in Scale-free Networks K.-I. Goh, B. Kahng, and D. Kim School of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea (February

More information

Traffic dynamics based on an efficient routing strategy on scale free networks

Traffic dynamics based on an efficient routing strategy on scale free networks Eur. Phys. J. B 49, 205 211 (2006) DOI: 10.1140/epjb/e2006-00040-2 THE EUROPEAN PHYSICAL JOURNAL B Traffic dynamics based on an efficient routing strategy on scale free networks C.-Y. Yin 1,B.-H.Wang 1a,W.-X.Wang

More information

An Evolving Network Model With Local-World Structure

An Evolving Network Model With Local-World Structure The Eighth International Symposium on Operations Research and Its Applications (ISORA 09) Zhangjiajie, China, September 20 22, 2009 Copyright 2009 ORSC & APORC, pp. 47 423 An Evolving Network odel With

More information

The Establishment Game. Motivation

The Establishment Game. Motivation Motivation Motivation The network models so far neglect the attributes, traits of the nodes. A node can represent anything, people, web pages, computers, etc. Motivation The network models so far neglect

More information

6 TOOLS FOR A COMPLETE MARKETING WORKFLOW

6 TOOLS FOR A COMPLETE MARKETING WORKFLOW 6 S FOR A COMPLETE MARKETING WORKFLOW 01 6 S FOR A COMPLETE MARKETING WORKFLOW FROM ALEXA DIFFICULTY DIFFICULTY MATRIX OVERLAP 6 S FOR A COMPLETE MARKETING WORKFLOW 02 INTRODUCTION Marketers use countless

More information

E-Companion: On Styles in Product Design: An Analysis of US. Design Patents

E-Companion: On Styles in Product Design: An Analysis of US. Design Patents E-Companion: On Styles in Product Design: An Analysis of US Design Patents 1 PART A: FORMALIZING THE DEFINITION OF STYLES A.1 Styles as categories of designs of similar form Our task involves categorizing

More information

Complexity in Network Economics

Complexity in Network Economics Complexity in Network Economics The notion of complexity (in) science has become a bit fuzzy over time. Thus, in this talk I want to shed some light on its meaning, its paradigmatic implication for research

More information

Properties of Biological Networks

Properties of Biological Networks Properties of Biological Networks presented by: Ola Hamud June 12, 2013 Supervisor: Prof. Ron Pinter Based on: NETWORK BIOLOGY: UNDERSTANDING THE CELL S FUNCTIONAL ORGANIZATION By Albert-László Barabási

More information

Quick Review of Graphs

Quick Review of Graphs COMP 102: Excursions in Computer Science Lecture 11: Graphs Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp102 Quick Review of Graphs A graph is an abstract representation

More information

ECS 289 / MAE 298, Lecture 9 April 29, Web search and decentralized search on small-worlds

ECS 289 / MAE 298, Lecture 9 April 29, Web search and decentralized search on small-worlds ECS 289 / MAE 298, Lecture 9 April 29, 2014 Web search and decentralized search on small-worlds Announcements HW2 and HW2b now posted: Due Friday May 9 Vikram s ipython and NetworkX notebooks posted Project

More information

Case Studies in Complex Networks

Case Studies in Complex Networks Case Studies in Complex Networks Introduction to Scientific Modeling CS 365 George Bezerra 08/27/2012 The origin of graph theory Königsberg bridge problem Leonard Euler (1707-1783) The Königsberg Bridge

More information

Core Percolation in Coupled Networks

Core Percolation in Coupled Networks Core Percolation in Coupled Networks Jiayu Pan 1, Yuhang Yao 2, Luoyi Fu 2, Xinbing Wang2 Department of {Zhiyuan College 1, Computer Science 2,}, Shanghai Jiao Tong University, China ABSTRACT Core percolation,

More information

Plan of the lecture I. INTRODUCTION II. DYNAMICAL PROCESSES. I. Networks: definitions, statistical characterization, examples II. Modeling frameworks

Plan of the lecture I. INTRODUCTION II. DYNAMICAL PROCESSES. I. Networks: definitions, statistical characterization, examples II. Modeling frameworks Plan of the lecture I. INTRODUCTION I. Networks: definitions, statistical characterization, examples II. Modeling frameworks II. DYNAMICAL PROCESSES I. Resilience, vulnerability II. Random walks III. Epidemic

More information

Volume 2, Issue 11, November 2014 International Journal of Advance Research in Computer Science and Management Studies

Volume 2, Issue 11, November 2014 International Journal of Advance Research in Computer Science and Management Studies Volume 2, Issue 11, November 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com

More information

Lectures 8/9. 1 Overview. 2 Prelude:Routing on the Grid. 3 A couple of networks.

Lectures 8/9. 1 Overview. 2 Prelude:Routing on the Grid. 3 A couple of networks. U.C. Berkeley CS273: Parallel and Distributed Theory Lectures 8/9 Professor Satish Rao September 23,2010 Lecturer: Satish Rao Last revised October 23, 2010 Lectures 8/9 1 Overview We will give a couple

More information

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich (Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Outline Network Topological Analysis Network Models Random Networks Small-World Networks Scale-Free Networks

More information

Networks in economics and finance. Lecture 1 - Measuring networks

Networks in economics and finance. Lecture 1 - Measuring networks Networks in economics and finance Lecture 1 - Measuring networks What are networks and why study them? A network is a set of items (nodes) connected by edges or links. Units (nodes) Individuals Firms Banks

More information

Lecture #3: PageRank Algorithm The Mathematics of Google Search

Lecture #3: PageRank Algorithm The Mathematics of Google Search Lecture #3: PageRank Algorithm The Mathematics of Google Search We live in a computer era. Internet is part of our everyday lives and information is only a click away. Just open your favorite search engine,

More information

Selection of Best Web Site by Applying COPRAS-G method Bindu Madhuri.Ch #1, Anand Chandulal.J #2, Padmaja.M #3

Selection of Best Web Site by Applying COPRAS-G method Bindu Madhuri.Ch #1, Anand Chandulal.J #2, Padmaja.M #3 Selection of Best Web Site by Applying COPRAS-G method Bindu Madhuri.Ch #1, Anand Chandulal.J #2, Padmaja.M #3 Department of Computer Science & Engineering, Gitam University, INDIA 1. binducheekati@gmail.com,

More information

Chapter 5 (Week 9) The Network Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP BLM431 Computer Networks Dr.

Chapter 5 (Week 9) The Network Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP BLM431 Computer Networks Dr. Chapter 5 (Week 9) The Network Layer ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP. 343-396 1 5.1. NETWORK LAYER DESIGN ISSUES 5.2. ROUTING ALGORITHMS 5.3. CONGESTION CONTROL ALGORITHMS 5.4.

More information

Social and Technological Network Analysis. Lecture 6: Network Robustness and Applica=ons. Dr. Cecilia Mascolo

Social and Technological Network Analysis. Lecture 6: Network Robustness and Applica=ons. Dr. Cecilia Mascolo Social and Technological Network Analysis Lecture 6: Network Robustness and Applica=ons Dr. Cecilia Mascolo In This Lecture We revisit power- law networks and define the concept of robustness We show the

More information

An Introduction to Complex Systems Science

An Introduction to Complex Systems Science DEIS, Campus of Cesena Alma Mater Studiorum Università di Bologna andrea.roli@unibo.it Disclaimer The field of Complex systems science is wide and it involves numerous themes and disciplines. This talk

More information

COMPUTER SIMULATION OF COMPLEX SYSTEMS USING AUTOMATA NETWORKS K. Ming Leung

COMPUTER SIMULATION OF COMPLEX SYSTEMS USING AUTOMATA NETWORKS K. Ming Leung POLYTECHNIC UNIVERSITY Department of Computer and Information Science COMPUTER SIMULATION OF COMPLEX SYSTEMS USING AUTOMATA NETWORKS K. Ming Leung Abstract: Computer simulation of the dynamics of complex

More information

Theory and Applications of Complex Networks

Theory and Applications of Complex Networks Theory and Applications of Complex Networks 1 Theory and Applications of Complex Networks Class One College of the Atlantic David P. Feldman 12 September 2008 http://hornacek.coa.edu/dave/ 1. What is a

More information

CE4031 and CZ4031 Database System Principles

CE4031 and CZ4031 Database System Principles CE431 and CZ431 Database System Principles Course CE/CZ431 Course Database System Principles CE/CZ21 Algorithms; CZ27 Introduction to Databases CZ433 Advanced Data Management (not offered currently) Lectures

More information

Optimizing Random Walk Search Algorithms in P2P Networks

Optimizing Random Walk Search Algorithms in P2P Networks Optimizing Random Walk Search Algorithms in P2P Networks Nabhendra Bisnik Rensselaer Polytechnic Institute Troy, New York bisnin@rpi.edu Alhussein A. Abouzeid Rensselaer Polytechnic Institute Troy, New

More information

Complex Networks: Ubiquity, Importance and Implications. Alessandro Vespignani

Complex Networks: Ubiquity, Importance and Implications. Alessandro Vespignani Contribution : 2005 NAE Frontiers of Engineering Complex Networks: Ubiquity, Importance and Implications Alessandro Vespignani School of Informatics and Department of Physics, Indiana University, USA 1

More information

Optimal structure of complex networks for minimizing traffic congestion

Optimal structure of complex networks for minimizing traffic congestion CHAOS 17, 043103 2007 Optimal structure of complex networks for minimizing traffic congestion Liang Zhao and Thiago Henrique Cupertino Institute of Mathematics and Computer Science, University of São Paulo,

More information

Strategies, approaches and ethical considerations

Strategies, approaches and ethical considerations Strategies, approaches and ethical considerations q Internet design principles and measurements q Strategies and standards q Experimental approaches q Ethical considerations Design principles of the Internet

More information

Characteristics of Preferentially Attached Network Grown from. Small World

Characteristics of Preferentially Attached Network Grown from. Small World Characteristics of Preferentially Attached Network Grown from Small World Seungyoung Lee Graduate School of Innovation and Technology Management, Korea Advanced Institute of Science and Technology, Daejeon

More information

Network Theory: Social, Mythological and Fictional Networks. Math 485, Spring 2018 (Midterm Report) Christina West, Taylor Martins, Yihe Hao

Network Theory: Social, Mythological and Fictional Networks. Math 485, Spring 2018 (Midterm Report) Christina West, Taylor Martins, Yihe Hao Network Theory: Social, Mythological and Fictional Networks Math 485, Spring 2018 (Midterm Report) Christina West, Taylor Martins, Yihe Hao Abstract: Comparative mythology is a largely qualitative and

More information

Scale-free user-network approach to telephone network traffic analysis

Scale-free user-network approach to telephone network traffic analysis Scale-free user-network approach to telephone network traffic analysis Yongxiang Xia,* Chi K. Tse, WaiM.Tam, Francis C. M. Lau, and Michael Small Department of Electronic and Information Engineering, Hong

More information

Scalable P2P architectures

Scalable P2P architectures Scalable P2P architectures Oscar Boykin Electrical Engineering, UCLA Joint work with: Jesse Bridgewater, Joseph Kong, Kamen Lozev, Behnam Rezaei, Vwani Roychowdhury, Nima Sarshar Outline Introduction to

More information

Mapping the Internet

Mapping the Internet Mapping the Internet Arman Danesh and Ljiljana Trajkovic Stuart H. Rubin Michael H. Smith Simon Fraser University SPAWAR Systems Center University of California Burnaby, BC, Canada San Diego, CA, USA Berkeley,

More information

Navigation in Networks. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Navigation in Networks. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Navigation in Networks Networked Life NETS 112 Fall 2017 Prof. Michael Kearns The Navigation Problem You are an individual (vertex) in a very large social network You want to find a (short) chain of friendships

More information

On the Interdependence of Congestion and Contention in Wireless Sensor Networks

On the Interdependence of Congestion and Contention in Wireless Sensor Networks On the Interdependence of Congestion and Contention in Wireless Sensor Networks Mehmet C. Vuran Vehbi C. Gungor School of Electrical & Computer Engineering Georgia Institute of Technology, Atlanta, GA

More information

The Coral Project: Defending against Large-scale Attacks on the Internet. Chenxi Wang

The Coral Project: Defending against Large-scale Attacks on the Internet. Chenxi Wang 1 The Coral Project: Defending against Large-scale Attacks on the Internet Chenxi Wang chenxi@cmu.edu http://www.ece.cmu.edu/coral.html The Motivation 2 Computer viruses and worms are a prevalent threat

More information

What is a Network? Theory and Applications of Complex Networks. Network Example 1: High School Friendships

What is a Network? Theory and Applications of Complex Networks. Network Example 1: High School Friendships 1 2 Class One 1. A collection of nodes What is a Network? 2. A collection of edges connecting nodes College of the Atlantic 12 September 2008 http://hornacek.coa.edu/dave/ 1. What is a network? 2. Many

More information

Adaptive packet scheduling for requests delay guaranties in packetswitched computer communication network

Adaptive packet scheduling for requests delay guaranties in packetswitched computer communication network Paweł Świątek Institute of Computer Science Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland Email: pawel.swiatek@pwr.wroc.pl Adam Grzech Institute of Computer Science

More information

Incoming, Outgoing Degree and Importance Analysis of Network Motifs

Incoming, Outgoing Degree and Importance Analysis of Network Motifs Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 6, June 2015, pg.758

More information

CE4031 and CZ4031 Database System Principles

CE4031 and CZ4031 Database System Principles CE4031 and CZ4031 Database System Principles Academic AY1819 Semester 1 CE/CZ4031 Database System Principles s CE/CZ2001 Algorithms; CZ2007 Introduction to Databases CZ4033 Advanced Data Management (not

More information

Higher order clustering coecients in Barabasi Albert networks

Higher order clustering coecients in Barabasi Albert networks Physica A 316 (2002) 688 694 www.elsevier.com/locate/physa Higher order clustering coecients in Barabasi Albert networks Agata Fronczak, Janusz A. Ho lyst, Maciej Jedynak, Julian Sienkiewicz Faculty of

More information

Example of a large network: connections among words in dictionary

Example of a large network: connections among words in dictionary A. Mrvar: Network Analysis using Pajek 1 Example of a large network: connections among words in dictionary A large network can be generated from words of dictionary. Two words are connected using an undirected

More information

Attack Vulnerability of Network with Duplication-Divergence Mechanism

Attack Vulnerability of Network with Duplication-Divergence Mechanism Commun. Theor. Phys. (Beijing, China) 48 (2007) pp. 754 758 c International Academic Publishers Vol. 48, No. 4, October 5, 2007 Attack Vulnerability of Network with Duplication-Divergence Mechanism WANG

More information

Topologies and Centralities of Replied Networks on Bulletin Board Systems

Topologies and Centralities of Replied Networks on Bulletin Board Systems Topologies and Centralities of Replied Networks on Bulletin Board Systems Qin Sen 1,2 Dai Guanzhong 2 Wang Lin 2 Fan Ming 2 1 Hangzhou Dianzi University, School of Sciences, Hangzhou, 310018, China 2 Northwestern

More information

Modeling and Analysis of Random Walk Search Algorithms in P2P Networks

Modeling and Analysis of Random Walk Search Algorithms in P2P Networks Modeling and Analysis of Random Walk Search Algorithms in P2P Networks Nabhendra Bisnik and Alhussein Abouzeid Electrical, Computer and Systems Engineering Department Rensselaer Polytechnic Institute Troy,

More information

Erasure Codes for Heterogeneous Networked Storage Systems

Erasure Codes for Heterogeneous Networked Storage Systems Erasure Codes for Heterogeneous Networked Storage Systems Lluís Pàmies i Juárez Lluís Pàmies i Juárez lpjuarez@ntu.edu.sg . Introduction Outline 2. Distributed Storage Allocation Problem 3. Homogeneous

More information

Optimal Channel Selection for Cooperative Spectrum Sensing Using Coordination Game

Optimal Channel Selection for Cooperative Spectrum Sensing Using Coordination Game 2012 7th International ICST Conference on Communications and Networking in China (CHINACOM) Optimal Channel Selection for Cooperative Spectrum Sensing Using Coordination Game Yuhua Xu, Zhan Gao and Wei

More information

Finding Meaning of Clusters

Finding Meaning of Clusters Finding Meaning of Clusters Yutaka Matsuo National Institute of Advanced Industrial Science and Technology (AIST) Aomi 2-41-6, Tokyo 135-0064, Japan y.matsuo@aist.go.jp Yukio Ohsawa Japan Science and Technology

More information

UNIT-V WEB MINING. 3/18/2012 Prof. Asha Ambhaikar, RCET Bhilai.

UNIT-V WEB MINING. 3/18/2012 Prof. Asha Ambhaikar, RCET Bhilai. UNIT-V WEB MINING 1 Mining the World-Wide Web 2 What is Web Mining? Discovering useful information from the World-Wide Web and its usage patterns. 3 Web search engines Index-based: search the Web, index

More information

The quantitative analysis of interactions takes bioinformatics to the next higher dimension: we go from 1D to 2D with graph theory.

The quantitative analysis of interactions takes bioinformatics to the next higher dimension: we go from 1D to 2D with graph theory. 1 The human protein-protein interaction network of aging-associated genes. A total of 261 aging-associated genes were assembled using the GenAge Human Database. Protein-protein interactions of the human

More information

Algorithms, Games, and Networks February 21, Lecture 12

Algorithms, Games, and Networks February 21, Lecture 12 Algorithms, Games, and Networks February, 03 Lecturer: Ariel Procaccia Lecture Scribe: Sercan Yıldız Overview In this lecture, we introduce the axiomatic approach to social choice theory. In particular,

More information

Smallest small-world network

Smallest small-world network Smallest small-world network Takashi Nishikawa, 1, * Adilson E. Motter, 1, Ying-Cheng Lai, 1,2 and Frank C. Hoppensteadt 1,2 1 Department of Mathematics, Center for Systems Science and Engineering Research,

More information

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov Algorithms and Applications in Social Networks 2017/2018, Semester B Slava Novgorodov 1 Lesson #1 Administrative questions Course overview Introduction to Social Networks Basic definitions Network properties

More information

CS6200 Information Retreival. The WebGraph. July 13, 2015

CS6200 Information Retreival. The WebGraph. July 13, 2015 CS6200 Information Retreival The WebGraph The WebGraph July 13, 2015 1 Web Graph: pages and links The WebGraph describes the directed links between pages of the World Wide Web. A directed edge connects

More information

Topology and Dynamics of Complex Networks

Topology and Dynamics of Complex Networks CS 790R Seminar Modeling & Simulation Topology and Dynamics of Complex Networks ~ Lecture 3: Review based on Strogatz (2001), Barabási & Bonabeau (2003), Wang, X. F. (2002) ~ René Doursat Department of

More information

- relationships (edges) among entities (nodes) - technology: Internet, World Wide Web - biology: genomics, gene expression, proteinprotein

- relationships (edges) among entities (nodes) - technology: Internet, World Wide Web - biology: genomics, gene expression, proteinprotein Complex networks Phys 7682: Computational Methods for Nonlinear Systems networks are everywhere (and always have been) - relationships (edges) among entities (nodes) explosion of interest in network structure,

More information

Is IPv4 Sufficient for Another 30 Years?

Is IPv4 Sufficient for Another 30 Years? Is IPv4 Sufficient for Another 30 Years? October 7, 2004 Abstract TCP/IP was developed 30 years ago. It has been successful over the past 30 years, until recently when its limitation started emerging.

More information

SELF-HEALING NETWORKS: REDUNDANCY AND STRUCTURE

SELF-HEALING NETWORKS: REDUNDANCY AND STRUCTURE SELF-HEALING NETWORKS: REDUNDANCY AND STRUCTURE Guido Caldarelli IMT, CNR-ISC and LIMS, London UK DTRA Grant HDTRA1-11-1-0048 INTRODUCTION The robustness and the shape Baran, P. On distributed Communications

More information

The research and design of user interface in parallel computer system

The research and design of user interface in parallel computer system 5th International Conference on Education, Management, Information and Medicine (EMIM 2015) The research and design of user interface in parallel computer system Liu Xiang 1 Shang Liyuan 2 Lu Zhenting

More information

Degree Distribution: The case of Citation Networks

Degree Distribution: The case of Citation Networks Network Analysis Degree Distribution: The case of Citation Networks Papers (in almost all fields) refer to works done earlier on same/related topics Citations A network can be defined as Each node is a

More information

Math 1505G, 2013 Graphs and Matrices

Math 1505G, 2013 Graphs and Matrices Math 505G, 0 Graphs and Matrices September 7, 0 These are some notes for the short talk I gave the other day. We ll discuss an interesting application of matrix algebra. This is outside what will be tested

More information

Samuel Coolidge, Dan Simon, Dennis Shasha, Technical Report NYU/CIMS/TR

Samuel Coolidge, Dan Simon, Dennis Shasha, Technical Report NYU/CIMS/TR Detecting Missing and Spurious Edges in Large, Dense Networks Using Parallel Computing Samuel Coolidge, sam.r.coolidge@gmail.com Dan Simon, des480@nyu.edu Dennis Shasha, shasha@cims.nyu.edu Technical Report

More information

Network Infrastructure

Network Infrastructure Network Infrastructure For building computer networks more complex than e.g. a short bus, some additional components are needed. They can be arranged hierarchically regarding their functionality: Repeater

More information

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING International Journal of Latest Research in Science and Technology Volume 3, Issue 3: Page No. 201-205, May-June 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 AN EVOLUTIONARY APPROACH

More information

Vasileios Vlachos, Eirini Kalliamvakou and Diomidis Spinellis Athens University of Economics and Business. 11th Panhellenic Conference on Informatics

Vasileios Vlachos, Eirini Kalliamvakou and Diomidis Spinellis Athens University of Economics and Business. 11th Panhellenic Conference on Informatics Simulating Bandwidth-Limited Worms, One Graph to Rule Them All? Vasileios Vlachos, Eirini Kalliamvakou and Diomidis Spinellis Athens University of Economics and Business Rapid Malcode Is rapid malcode

More information

Modelling Infrastructure Systems for Resilience and Sustainability

Modelling Infrastructure Systems for Resilience and Sustainability Modelling Infrastructure Systems for Resilience and Sustainability Sarah Dunn a* Sean WilkinsonError! Bookmark not defined. a Gaihua Fu a Richard Dawson a Abstract: Modern infrastructure systems are vital

More information

level 1 branch level 2 level 3 level 4

level 1 branch level 2 level 3 level 4 Computational approach to organizational design A. Arenas 1, A. D az-guilera 2, and R. Guimer a 3 1 Departament d'enginyeria Inform atica, Universitat Rovira i Virgili, Tarragona, Spain 2 Departament de

More information

Centrality Book. cohesion.

Centrality Book. cohesion. Cohesion The graph-theoretic terms discussed in the previous chapter have very specific and concrete meanings which are highly shared across the field of graph theory and other fields like social network

More information

Networks and Discrete Mathematics

Networks and Discrete Mathematics Aristotle University, School of Mathematics Master in Web Science Networks and Discrete Mathematics Small Words-Scale-Free- Model Chronis Moyssiadis Vassilis Karagiannis 7/12/2012 WS.04 Webscience: lecture

More information