Multipath QUIC: Design and Evaluation

Size: px
Start display at page:

Download "Multipath QUIC: Design and Evaluation"

Transcription

1 Multipath QUIC: Design and Evaluation Quentin De Coninck, Olivier Bonaventure multipath-quic.org

2 QUIC = Quick UDP Internet Connection TCP/TLS1.3 atop UDP Stream multiplexing HTTP/2 use case 0-RTT establishment (most of the time) HTTP/2 TLS TCP IP HTTP/2 shim QUIC UDP IP 2

3 QUIC Packet Flags Connection ID Packet Number Encrypted Payload... 3

4 QUIC Packet Flags Connection ID Packet Number Encrypted Payload... Cleartext Public Header 4

5 QUIC Packet Does not depend on 4-tuple Flags Connection ID Packet Number Encrypted Payload... Cleartext Public Header 5

6 QUIC Packet Does not depend on 4-tuple Monotonically Increasing Flags Connection ID Packet Number Encrypted Payload... Cleartext Public Header 6

7 QUIC Packet Does not depend on 4-tuple Monotonically Increasing Flags Connection ID Packet Number Contains control/data frames Encrypted Payload... Cleartext Public Header 7

8 QUIC Data Transfer H1 H2 8

9 QUIC Data Transfer H1 F CID PN=25 STREAM(id=5,of==): Some data in my long frame H2 9

10 QUIC Data Transfer H1 Actual data F CID PN=25 STREAM(id=5,of==): Some data in my long frame H2 10

11 QUIC Data Transfer H1 F CID PN=25 STREAM(id=5,of==): Some data in my long frame F CID PN=19 H2 ACK(25) MAX_DATA(for stream=5): 1=24 11

12 QUIC Data Transfer H1 F CID PN=25 STREAM(id=5,of==): Some data in my long frame H2 Control Frames F CID PN=19 ACK(25) MAX_DATA(for stream=5): 1=24 12

13 QUIC Data Transfer H1 F CID PN=25 STREAM(id=5,of==): Some data in my long frame F CID PN=19 H2 ACK(25) MAX_DATA(for stream=5): 1=24 F CID PN=26 STREAM(id=5,of=26):. STREAM(id=7,of==): Y ACK(19) 13

14 QUIC Data Transfer H1 F CID PN=25 STREAM(id=5,of==): Some data in my long frame F CID PN=19 H2 ACK(25) MAX_DATA(for stream=5): 1=24 Multiplexing F CID PN=26 STREAM(id=5,of=26):. STREAM(id=7,of==): Y ACK(19) 14

15 QUIC Data Transfer H1 F CID PN=25 STREAM(id=5,of==): Some data in my long frame F CID PN=19 H2 ACK(25) MAX_DATA(for stream=5): 1=24 F CID PN=26 STREAM(id=5,of=26):. STREAM(id=7,of==): Y ACK(19) F CID PN=2= ACK(26) 15

16 Why Multipath QUIC? QUIC assumes a single-path foo 16

17 Why Multipath QUIC? QUIC assumes a single-path foo 17

18 Why Multipath QUIC? QUIC assumes a single-path foo 18

19 Why Multipath QUIC? QUIC assumes a single-path foo Multipath QUIC Bandwidth aggregation Seamless network handover Can try new WiFi while keeping using LTE 19

20 Design of Multipath QUIC Connection is composed of a set of paths 20

21 Design of Multipath QUIC Connection is composed of a set of paths 21

22 Design of Multipath QUIC Connection is composed of a set of paths? Pkt Performance monitoring? Loss detection? Path congestion control? 22

23 Design of Multipath QUIC Connection is composed of a set of paths Pkt 23

24 Design of Multipath QUIC Connection is composed of a set of paths Pkt Flags Connection ID Path ID Packet Number Explicit path identifcation Encrypted Payload... 24

25 Design of Multipath QUIC Connection is composed of a set of paths Pkt Flags Connection ID Path ID Packet Number Explicit path identifcation No path handshake Encrypted Payload... 25

26 Design of Multipath QUIC Connection is composed of a set of paths Pkt Flags Connection ID Path ID Packet Number Explicit path identifcation Encrypted Payload... Per-path numbering space No path handshake 26

27 Multipath QUIC Data Transfer Server via WiFi Server via LTE Phone Path 1: WiFi Path 2: LTE 27

28 Multipath QUIC Data Transfer Server via WiFi F CID 1 PN=1 STR(id=5) Path 1: WiFi Server via LTE Phone Path 2: LTE 28

29 Multipath QUIC Data Transfer Server via WiFi F CID 1 PN=1 STR(id=5) F CID 1 PN=1 STR(id=7,of==) Path 1: WiFi Server via LTE Phone F CID 2 PN=1 STR(id=7,of=1=24) Path 2: LTE 29

30 Multipath QUIC Data Transfer Server via WiFi F CID 1 PN=1 STR(id=5) F CID 1 PN=1 STR(id=7,of==) Server via LTE Phone F CID 2 PN=1 STR(id=7,of=1=24) F CID 1 PN=2 ACK(pid=1,1) ACK(pid=2,1) Path 1: WiFi Path 2: LTE 30

31 Multipath QUIC Data Transfer Server via WiFi F CID 1 PN=1 STR(id=5) F CID 1 PN=1 STR(id=7,of==) Server via LTE Phone F CID 2 PN=1 STR(id=7,of=1=24) F CID 1 PN=2 ACK(pid=1,1) ACK(pid=2,1) Path 1: WiFi Multiple paths acked on a single path Path 2: LTE 31

32 Multipath Mechanisms Path management IP1 IP3 IP2 IP4 32

33 Multipath Mechanisms Path management IP1 IP3 IP2 IP4 33

34 Multipath Mechanisms Path management IP1 IP3 IP2 IP4 Packet scheduling 2= ms RTT 10 ms RTT 34

35 Multipath Mechanisms Path management IP1 IP3 IP2 IP4 Packet scheduling 2= ms RTT 10 ms RTT 35

36 Multipath Mechanisms Path management IP1 IP3 IP2 IP4 Packet scheduling 2= ms RTT 10 ms RTT 2= ms RTT? 36

37 Multipath Mechanisms Path management IP1 IP3 IP2 IP4 Packet scheduling 2= ms RTT 10 ms RTT 2= ms RTT Duplicate? 37

38 Multipath Mechanisms Path management IP3 IP2 IP4 Packet scheduling 2= ms RTT 10 ms RTT IP1 2= ms RTT Duplicate? Congestion control Opportunistic Linked Increase Algorithm 38

39 Evaluation of Multipath QUIC (Multipath) QUIC vs. (Multipath) TCP Multipath QUIC: quic-go Linux Multipath TCP v=.91 with default settings Mininet environment oith 2 paths 39

40 Evaluating Bandoith Aggregation Doonload of 20 MB fle Over a single stream Collect the transfer time 40

41 Evaluating Bandoith Aggregation Doonload of 20 MB fle Over a single stream Collect the transfer time For a loss-free scenario 2=ms RTT, 2= Mbps 4=ms RTT, 15 Mbps 41

42 Evaluating Bandoith Aggregation Doonload of 20 MB fle Over a single stream Collect the transfer time For a loss-free scenario 2=ms RTT, 2= Mbps 4=ms RTT, 15 Mbps MPQUIC has 13% speedup compared to MPTCP 42

43 Evaluating Bandoith Aggregation Doonload of 20 MB fle Over a single stream Collect the transfer time For a loss-free scenario 2=ms RTT, 2= Mbps 4=ms RTT, 15 Mbps MPQUIC has 13% speedup compared to MPTCP But ohat about other topologies? 43

44 Evaluating Bandoidth Aggregation Experimental design, WSP algorithm 2x253 netoork scenarios Vary the initial path Median over 15 runs Factor Minimum Maximum Capacity [Mbps] Round-Trip-Time [ms] 0 50 Queuing Delay [ms] Random Loss [%]

45 Large File Doonload No Loss TCP better QUIC better 45

46 Large File Doonload No Loss Single-path TCP better QUIC better 46

47 Large File Doonload No Loss 47

48 Large File Doonload No Loss MPQUIC better in 85% of cases 48

49 Large File Doonload No Loss MPQUIC better in 85% of cases Our extracted scenario 49

50 Large File Doonload No Loss MPQUIC better in 85% of cases Path 1: 27.2 ms RTT, =.14 Mbps, 34 ms queuing delay Path 2: 46.4 ms RTT, Mbps, 47 ms queuing delay Path 1: 49.4 ms RTT, 18.9= Mbps, 82 ms queing delay Path 2: 1=.6 ms RTT, =.43 Mbps, 11 ms queuing delay Our extracted scenario 50

51 Large File Doonload Losses 51

52 Large File Doonload Losses QUIC copes better with losses 52

53 Additional Results (see paper) QUIC benefts more of Multipath than TCP Bandoidth aggregation in high BDP Short fle transfers MPQUIC still better performs than MPTCP (MP)QUIC better thanks to its low latency handshake Netoork handover MPQUIC can be very efcient New frame to communicate path state 53

54 Conclusion Multipath should be part of any transport protocol Most devices are multihomed Designed and implemented Multipath QUIC Source code + artifacts + IETF draft available See multipath-quic.org Multipath more promising oith QUIC than TCP 54

55 What s Next? Perform tests in actual netoorks Does (MP)QUIC work in your networks? Does MPQUIC provides better performances? Application running on ios11 Feel free to provide feedback :-) QUICTester 55

56 Thanks! multipath-quic.org 56

Multipath QUIC: Design and Evaluation

Multipath QUIC: Design and Evaluation Multipath QUIC: Design and Evaluation Quentin De Coninck, Olivier Bonaventure quentin.deconinck@uclouvain.be multipath-quic.org Outline The QUIC protocol Designing Multipath for QUIC Experimental Design

More information

Quickly Starting Media Streams Using QUIC

Quickly Starting Media Streams Using QUIC Quickly Starting Media Streams Using QUIC Packet Video Workshop 2018 Şevket Arısu and Ali C. Begen Agenda Motivation and our goal Previous work and our contributions Approach, setup and evaluation Results

More information

Schahin Rajab TCP or QUIC Which protocol is most promising for the future of the internet?

Schahin Rajab TCP or QUIC Which protocol is most promising for the future of the internet? Schahin Rajab sr2@kth.se 2016 04 20 TCP or QUIC Which protocol is most promising for the future of the internet? Table of contents 1 Introduction 3 2 Background 4 2.1 TCP 4 2.2 UDP 4 2.3 QUIC 4 2.4 HTTP

More information

QUIC: the details. Robin Marx PhD researcher Hasselt University. Curl-up Prague March 2019

QUIC: the details. Robin Marx PhD researcher Hasselt University.   Curl-up Prague March 2019 QUIC: the details Robin Marx - @programmingart PhD researcher Hasselt University https://quic.edm.uhasselt.be Curl-up Prague March 2019 QUIC in Theory and Practice @ DeltaV 2018 https://www.youtube.com/watch?v=b1sqfjixjtc

More information

Advanced Computer Networking. CYBR 230 Jeff Shafer University of the Pacific QUIC

Advanced Computer Networking. CYBR 230 Jeff Shafer University of the Pacific QUIC CYBR 230 Jeff Shafer University of the Pacific QUIC 2 It s a Google thing. (Originally) 3 Google Engineering Motivations Goal: Decrease end-user latency on web To increase user engagement So they see more

More information

Improving Multipath TCP. PhD Thesis - Christoph Paasch

Improving Multipath TCP. PhD Thesis - Christoph Paasch Improving Multipath TCP PhD Thesis - Christoph Paasch The Internet is like a map... highly connected Communicating over the Internet A 1 A A 2 A 3 A 4 A 5 Multipath communication A 1 A 2 A 3 A 4 A 5 A

More information

QUIC evaluation. HTTP Workshop. 28 July 2015 Münster - Germany. G. Carlucci, L. De Cicco, S. Mascolo. Politecnico di Bari, Italy

QUIC evaluation. HTTP Workshop. 28 July 2015 Münster - Germany. G. Carlucci, L. De Cicco, S. Mascolo. Politecnico di Bari, Italy QUIC evaluation HTTP Workshop 28 July 2015 Münster - Germany G. Carlucci, L. De Cicco, S. Mascolo Politecnico di Bari, Italy Goal FOCUS OF THE TALK We want to answer to these questions: Can QUIC be safely

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.1 Kaan Bür, Jens Andersson Transport Layer Protocols Process-to-process delivery [ed.4 ch.23.1] [ed.5 ch.24.1] Transmission Control

More information

A New Internet? RIPE76 - Marseille May Jordi Palet

A New Internet? RIPE76 - Marseille May Jordi Palet A New Internet? RIPE76 - Marseille May 2018 Jordi Palet (jordi.palet@theipv6company.com) -1 (a quick) Introduction to HTTP/2, QUIC and DOH and more RIPE76 - Marseille May 2018 Jordi Palet (jordi.palet@theipv6company.com)

More information

SPDY - A Web Protocol. Mike Belshe Velocity, Dec 2009

SPDY - A Web Protocol. Mike Belshe Velocity, Dec 2009 SPDY - A Web Protocol Mike Belshe Velocity, Dec 2009 What is SPDY? Concept SPDY is an application layer protocol for transporting content over the web with reduced latency. Basic Features 1. Multiplexed

More information

A New Internet? Introduction to HTTP/2, QUIC and DOH

A New Internet? Introduction to HTTP/2, QUIC and DOH A New Internet? Introduction to HTTP/2, QUIC and DOH and more LACNIC 29 - Panamá May 2018 Jordi Palet (jordi.palet@theipv6company.com) -1 Internet is Changing More and more, Internet traffic is moving

More information

CS519: Computer Networks. Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing

CS519: Computer Networks. Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing : Computer Networks Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing Recall our protocol layers... ... and our protocol graph IP gets the packet to the host Really

More information

LISA: A Linked Slow-Start Algorithm for MPTCP draft-barik-mptcp-lisa-01

LISA: A Linked Slow-Start Algorithm for MPTCP draft-barik-mptcp-lisa-01 LISA: A Linked Slow-Start Algorithm for draft-barik-mptcp-lisa-1 Runa Barik (UiO), Simone Ferlin (SRL), Michael Welzl (UiO) Multipath TCP @96th IETF Meeting Berlin, Germany th July 16 IETF96 LISA: A Linked

More information

CSE 461 Midterm Winter 2018

CSE 461 Midterm Winter 2018 CSE 461 Midterm Winter 2018 Your Name: UW Net ID: General Information This is a closed book/laptop examination. You have 50 minutes to answer as many questions as possible. The number in parentheses at

More information

QUIC. Internet-Scale Deployment on Linux. Ian Swett Google. TSVArea, IETF 102, Montreal

QUIC. Internet-Scale Deployment on Linux. Ian Swett Google. TSVArea, IETF 102, Montreal QUIC Internet-Scale Deployment on Linux TSVArea, IETF 102, Montreal Ian Swett Google 1 A QUIC History - SIGCOMM 2017 Protocol for HTTPS transport, deployed at Google starting 2014 Between Google services

More information

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness Recap TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness 81 Feedback Signals Several possible signals, with different

More information

Multipath Transport for Virtual Private Networks

Multipath Transport for Virtual Private Networks Multipath Transport for Virtual Private Networks Daniel Lukaszewski 1 Geoffrey Xie 2 1 U.S. Department of Defense 2 Department of Computer Science Naval Postgraduate School USENIX Security 2017 Computer

More information

Washington State University CptS 455 Sample Final Exam (corrected 12/11/2011 to say open notes) A B C

Washington State University CptS 455 Sample Final Exam (corrected 12/11/2011 to say open notes) A B C Washington State University CptS 455 Sample Final Exam (corrected 12/11/2011 to say open notes) Your name: This exam consists 13 numbered problems on 6 pages printed front and back on 3 sheets. Please

More information

IPoC: IP over CCN for seamless 5G mobility

IPoC: IP over CCN for seamless 5G mobility IPoC: IP over CCN for seamless 5G mobility draft-white-icnrg-ipoc-00 ICNRG March 20, 2018 Greg White, CableLabs Susmit Shannigrahi, Colorado State Univ. Chengyu Fan, Colorado State Univ. Background ICN

More information

Student ID: CS457: Computer Networking Date: 3/20/2007 Name:

Student ID: CS457: Computer Networking Date: 3/20/2007 Name: CS457: Computer Networking Date: 3/20/2007 Name: Instructions: 1. Be sure that you have 9 questions 2. Be sure your answers are legible. 3. Write your Student ID at the top of every page 4. This is a closed

More information

0-RTT TCP Convert Protocol

0-RTT TCP Convert Protocol 0-RTT TCP Convert Protocol draft-ietf-tcpm-converters-01 IETF101, March 2018 O. Bonaventure, M. Boucadair, B. Peirens, S. Seo, A. Nandugudi Converter Initial Motivation More MPTCP enabled clients than

More information

SCTP: A new networking protocol for super-computing. Mohammed Atiquzzaman Shaojian Fu Department of Computer Science University of Oklahoma.

SCTP: A new networking protocol for super-computing. Mohammed Atiquzzaman Shaojian Fu Department of Computer Science University of Oklahoma. SCTP: A new networking protocol for super-computing Mohammed Atiquzzaman Shaojian Fu Department of Computer Science University of Oklahoma. atiq@ou ou.edu Networking Characteristics in Supercomputing High

More information

Expected Time: 90 min PART-A Max Marks: 42

Expected Time: 90 min PART-A Max Marks: 42 Birla Institute of Technology & Science, Pilani First Semester 2010-2011 Computer Networks (BITS C481) Comprehensive Examination Thursday, December 02, 2010 (AN) Duration: 3 Hrs Weightage: 40% [80M] Instructions-:

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 11 MIDTERM EXAMINATION #1 OCT. 16, 2013 COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2013-75 minutes This examination

More information

Exploring Alternative Routes Using Multipath TCP

Exploring Alternative Routes Using Multipath TCP Exploring Alternative Routes Using Multipath TCP 1/51 Exploring Alternative Routes Using Multipath TCP Stephen Brennan Case Western Reserve University June 5, 2017 Exploring Alternative Routes Using Multipath

More information

SharkFest 17 Europe. 20 QUIC Dissection. Using Wireshark to Understand QUIC Quickly. Megumi Takeshita. ikeriri network service

SharkFest 17 Europe. 20 QUIC Dissection. Using Wireshark to Understand QUIC Quickly. Megumi Takeshita. ikeriri network service SharkFest 17 Europe 20 QUIC Dissection Using Wireshark to Understand QUIC Quickly ParkSuite Classroom 11 November 2017 11:15am-12:30pm Megumi Takeshita ikeriri network service supplimental files http://www.ikeriri.ne.jp/sharkfest

More information

Using HTTP/2 as a Transport for Arbitrary Bytestreams

Using HTTP/2 as a Transport for Arbitrary Bytestreams Using HTTP/2 as a Transport for Arbitrary Bytestreams draft-kinnear-httpbis-http2-transport Eric Kinnear (ekinnear@apple.com) Tommy Pauly (tpauly@apple.com) HTTPBIS IETF 104, March 2019, Prague!1 Transport

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

A Path Layer for the Internet

A Path Layer for the Internet A Path Layer for the Internet Enabling Network Operations on Encrypted Traffic Mirja Kühlewind, Tobias Bühler, Brian Trammell, ETH Zürich Stephan Neuhaus, Roman Müntener, Zürich Univ. of Applied Sciences

More information

Developing Multipath TCP. Damon Wischik, Mark Handley, Costin Raiciu

Developing Multipath TCP. Damon Wischik, Mark Handley, Costin Raiciu Developing Multipath TCP Damon Wischik, Mark Handley, Costin Raiciu 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2 * * 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

More information

4. What is the sequence number of the SYNACK segment sent by spinlab.wpi.edu to the client computer in reply to the SYN? Also Seq=0 (relative

4. What is the sequence number of the SYNACK segment sent by spinlab.wpi.edu to the client computer in reply to the SYN? Also Seq=0 (relative 1. What is the IP address and TCP port number used by your client computer (source) to transfer the file to spinlab.wpi.edu? My computer is at 10.211.55.3. The source port is 49247. See screenshot below.

More information

Fall 2012: FCM 708 Bridge Foundation I

Fall 2012: FCM 708 Bridge Foundation I Fall 2012: FCM 708 Bridge Foundation I Prof. Shamik Sengupta Instructor s Website: http://jjcweb.jjay.cuny.edu/ssengupta/ Blackboard Website: https://bbhosted.cuny.edu/ Intro to Computer Networking Transport

More information

Probe or Wait : Handling tail losses using Multipath TCP

Probe or Wait : Handling tail losses using Multipath TCP Probe or Wait : Handling tail losses using Multipath TCP Kiran Yedugundla, Per Hurtig, Anna Brunstrom 12/06/2017 Probe or Wait : Handling tail losses using Multipath TCP Outline Introduction Handling tail

More information

MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E

MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Intersession 2008 Last Name: First Name: Student ID: PLEASE

More information

Reliable Transport I: Concepts and TCP Protocol

Reliable Transport I: Concepts and TCP Protocol Reliable Transport I: Concepts and TCP Protocol Stefano Vissicchio UCL Computer Science COMP0023 Today Transport Concepts Layering context Transport goals Transport mechanisms and design choices TCP Protocol

More information

Transport Protocols for Data Center Communication. Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti

Transport Protocols for Data Center Communication. Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti Transport Protocols for Data Center Communication Evisa Tsolakou Supervisor: Prof. Jörg Ott Advisor: Lect. Pasi Sarolahti Contents Motivation and Objectives Methodology Data Centers and Data Center Networks

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START MIDTERM EXAMINATION #2 NETWORKING CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R - S c h o o l o f C o m p u t e r S c i e n c e Fall 2011 Question Paper NOTE: Students may take this question

More information

An SCTP-Protocol Data Unit with several chunks

An SCTP-Protocol Data Unit with several chunks SCTP for Beginners Section 2 SCTP Packets he protocol data units (PDU) of SCTP are called SCTP packets. If SCTP runs over IP (as described in RFC2960 ), an SCTP packet forms the payload of an IP packet.

More information

STMS: Improving MPTCP Throughput Under Heterogenous Networks

STMS: Improving MPTCP Throughput Under Heterogenous Networks STMS: Improving MPTCP Throughput Under Heterogenous Networks Hang Shi 1, Yong Cui 1, Xin Wang 2, Yuming Hu 1, Minglong Dai 1, anzhao Wang 3, Kai Zheng 3 1 Tsinghua University, 2 Stony Brook University,

More information

ADVANCED TRANSPORT OPTIONS FOR THE DYNAMIC ADAPTIVE STREAMING OVER HTTP. Christian Timmerer, and Alan Bertoni

ADVANCED TRANSPORT OPTIONS FOR THE DYNAMIC ADAPTIVE STREAMING OVER HTTP. Christian Timmerer, and Alan Bertoni ADVANCED TRANSPORT OPTIONS FOR THE DYNAMIC ADAPTIVE STREAMING OVER HTTP Christian Timmerer, and Alan Bertoni Alpen-Adria-Universität Klagenfurt, Institute of Information Technology (ITEC), Austria {firsname.lastname}@itec.aau.at

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Instructions The exam is closed book, notes, computers, phones. You can use calculator, but not one from your

More information

Transport Layer. Gursharan Singh Tatla. Upendra Sharma. 1

Transport Layer. Gursharan Singh Tatla.   Upendra Sharma. 1 Transport Layer Gursharan Singh Tatla mailme@gursharansingh.in Upendra Sharma 1 Introduction The transport layer is the fourth layer from the bottom in the OSI reference model. It is responsible for message

More information

Advanced Networking Technologies

Advanced Networking Technologies Advanced Networking Technologies Chapter 7 Transport Layer Evolution 1 Content TCP congestion control schemes Multipath TCP SCTP SPDY and HTTP/2 QUIC 2 TCP congestion control: What is the problem? Relies

More information

Designing a Resource Pooling Transport Protocol

Designing a Resource Pooling Transport Protocol Designing a Resource Pooling Transport Protocol Michio Honda, Keio University Elena Balandina, Nokia Research Center Pasi Sarolahti, Nokia Research Center Lars Eggert, Nokia Research Center Global Internet

More information

CS644 Advanced Networks

CS644 Advanced Networks What we know so far CS644 Advanced Networks Lecture 6 Beyond TCP Congestion Control Andreas Terzis TCP Congestion control based on AIMD window adjustment [Jac88] Saved Internet from congestion collapse

More information

SMig: A Stream Migration Extension For HTTP/2

SMig: A Stream Migration Extension For HTTP/2 SMig: A Stream Migration Extension For HTTP/2 Xianghang Mi Feng Qian XiaoFeng Wang Department of Computer Science Indiana University Bloomington IETF 98 httpbis Meeting Chicago IL, 3/31/2017 Motivations

More information

Intro to LAN/WAN. Transport Layer

Intro to LAN/WAN. Transport Layer Intro to LAN/WAN Transport Layer Transport Layer Topics Introduction (6.1) Elements of Transport Protocols (6.2) Internet Transport Protocols: TDP (6.5) Internet Transport Protocols: UDP (6.4) socket interface

More information

BLEST: Blocking Estimation-based MPTCP Scheduler for Heterogeneous Networks. Simone Ferlin, Ozgu Alay, Olivier Mehani and Roksana Boreli

BLEST: Blocking Estimation-based MPTCP Scheduler for Heterogeneous Networks. Simone Ferlin, Ozgu Alay, Olivier Mehani and Roksana Boreli BLEST: Blocking Estimation-based MPTCP Scheduler for Heterogeneous Networks Simone Ferlin, Ozgu Alay, Olivier Mehani and Roksana Boreli Multipath TCP: What is it? TCP/IP is built around the notion of a

More information

Initial connection setup. Adding subflow setup. Three-way handshake with MP_CAPABLE Exchange 64 bit key(key-a, Key-B)

Initial connection setup. Adding subflow setup. Three-way handshake with MP_CAPABLE Exchange 64 bit key(key-a, Key-B) - 2 - Despite the short history, Multipath TCP(MPTCP) prevails drastically As MPTCP was deployed, security concerns increase There have been multiple attempts at verifications to security of MPTCP Initial

More information

SCTP. Stream Control Transmission Protocol. François Buntschu. Ecole d Ingénieurs et d Architectes de Fribourg HES-SO

SCTP. Stream Control Transmission Protocol. François Buntschu. Ecole d Ingénieurs et d Architectes de Fribourg HES-SO SCTP Stream Control Transmission Protocol François Buntschu Ecole d Ingénieurs et d Architectes de Fribourg HES-SO SCTP Stream Control Transmission Protocol EIA-FR, F.Buntschu August 2003 1 / 32 Agenda

More information

Performance Evaluation of NEMO Basic Support Implementations

Performance Evaluation of NEMO Basic Support Implementations Performance Evaluation of NEMO Basic Support Implementations Romain Kuntz, Koshiro Mitsuya, Ryuji Wakikawa Keio University, Japan E-mail: {kuntz,mitsuya,ryuji}@sfc.wide.ad.jp Abstract. The NEMO Basic Support

More information

TCP and BBR. Geoff Huston APNIC

TCP and BBR. Geoff Huston APNIC TCP and BBR Geoff Huston APNIC Computer Networking is all about moving data The way in which data movement is controlled is a key characteristic of the network architecture The Internet protocol passed

More information

Outline. History Introduction Packets Association/ Termination Data Transmission concepts Multihoming Streams

Outline. History Introduction Packets Association/ Termination Data Transmission concepts Multihoming Streams Outline History Introduction Packets Association/ Termination Data Transmission concepts Multihoming Streams 1 History Developed by IETF SIGTRAN working group (Internet Engineering Task Force) (SIGnaling

More information

Path Awareness and Selection in the Socket Intents prototype. Theresa Enghardt TU Berlin

Path Awareness and Selection in the Socket Intents prototype. Theresa Enghardt TU Berlin Path Awareness and Selection in the Socket Intents prototype Theresa Enghardt TU Berlin theresa@inet.tu-berlin.de Scenario: Multiple paths Multiple paths via different access networks Laptop can use WiFi

More information

Datagram Congestion Control Protocol (DCCP)

Datagram Congestion Control Protocol (DCCP) Datagram Congestion Control Protocol (DCCP) Chung, Kwangsue kchung@kw.ac.kr June, 2003 1 Contents Introduction & Motivation DCCP Mechanisms Current Issues & Implementations 2 DCCP: Introduction & Motivation

More information

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP What is a transport protocol? Choosing to use a transport protocol Ports and Addresses Datagrams UDP What is a

More information

CCNA 1 Chapter 7 v5.0 Exam Answers 2013

CCNA 1 Chapter 7 v5.0 Exam Answers 2013 CCNA 1 Chapter 7 v5.0 Exam Answers 2013 1 A PC is downloading a large file from a server. The TCP window is 1000 bytes. The server is sending the file using 100-byte segments. How many segments will the

More information

cs144 Midterm Review Fall 2010

cs144 Midterm Review Fall 2010 cs144 Midterm Review Fall 2010 Administrivia Lab 3 in flight. Due: Thursday, Oct 28 Midterm is this Thursday, Oct 21 (during class) Remember Grading Policy: - Exam grade = max (final, (final + midterm)/2)

More information

End-to-End Transport Layer Services in the MobilityFirst Network

End-to-End Transport Layer Services in the MobilityFirst Network End-to-End Transport Layer Services in the MobilityFirst Network Kai Su, Francesco Bronzino, Dipankar Raychaudhuri, K.K. Ramakrishnan WINLAB Research Review Winter 2014 Transport Services From TCP/IP to

More information

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2 Transport Protocols Reading: Sections 2.5, 5.1, and 5.2 CE443 - Fall 1390 Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides

More information

TCP/IP Performance ITL

TCP/IP Performance ITL TCP/IP Performance ITL Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25, HDLC etc. ATM 4/30/2002 Hans Kruse & Shawn Ostermann,

More information

Summary of last time!

Summary of last time! Summary of last time Part1: Lecture 2 More TCP and beyond TCP TCP congestion control Multiplexing TCP header TCP flags TCP flow control End-to-end principle Sequence numbers and acks Establish and terminate

More information

Chapter 3: Transport Layer Part A

Chapter 3: Transport Layer Part A Chapter 3: Transport Layer Part A Course on Computer Communication and Networks, CTH/GU The slides are adaptation of the slides made available by the authors of the course s main textbook 3: Transport

More information

Congestion Control for High Bandwidth-delay Product Networks

Congestion Control for High Bandwidth-delay Product Networks Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Presented by Chi-Yao Hong Adapted from slides by Dina Katabi CS598pbg Sep. 10, 2009 Trends in the Future

More information

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2. Goals for Todayʼs Lecture. Role of Transport Layer

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2. Goals for Todayʼs Lecture. Role of Transport Layer Transport Protocols Reading: Sections 2.5, 5.1, and 5.2 CS 375: Computer Networks Thomas C. Bressoud 1 Goals for Todayʼs Lecture Principles underlying transport-layer services (De)multiplexing Detecting

More information

Computer Networks. Homework #4: No Grading

Computer Networks. Homework #4: No Grading Computer Networks Homework #4: No Grading Problem #1. Assume you need to write and test a client-server application program on two hosts you have at home. a. What is the range of port numbers you would

More information

Multipath Networking at Transport Layer. Babil (Golam Sarwar), Roksana Boreli (NICTA) Emmanuel Lochin (ISAE)

Multipath Networking at Transport Layer. Babil (Golam Sarwar), Roksana Boreli (NICTA) Emmanuel Lochin (ISAE) Multipath Networking at Transport Layer Babil (Golam Sarwar), Roksana Boreli (NICTA) Emmanuel Lochin (ISAE) Background New generation devices with multiple interfaces: e.g. iphone, Android, Various technologies

More information

MPTCP: Design and Deployment. Day 11

MPTCP: Design and Deployment. Day 11 MPTCP: Design and Deployment Day 11 Use of Multipath TCP in ios 7 Multipath TCP in ios 7 Primary TCP connection over WiFi Backup TCP connection over cellular data Enables fail-over Improves performance

More information

Making Multipath TCP friendlier to Load Balancers and Anycast

Making Multipath TCP friendlier to Load Balancers and Anycast Making Multipath TCP friendlier to Load Balancers and Anycast Fabien Duchêne Olivier Bonaventure Université Catholique de Louvain ICNP 2017

More information

Transport Layer. The transport layer is responsible for the delivery of a message from one process to another. RSManiaol

Transport Layer. The transport layer is responsible for the delivery of a message from one process to another. RSManiaol Transport Layer Transport Layer The transport layer is responsible for the delivery of a message from one process to another Types of Data Deliveries Client/Server Paradigm An application program on the

More information

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs

Congestion Control for High Bandwidth-delay Product Networks. Dina Katabi, Mark Handley, Charlie Rohrs Congestion Control for High Bandwidth-delay Product Networks Dina Katabi, Mark Handley, Charlie Rohrs Outline Introduction What s wrong with TCP? Idea of Efficiency vs. Fairness XCP, what is it? Is it

More information

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16 Guide To TCP/IP, Second Edition Chapter 5 Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol (UDP) Explain the mechanisms that drive segmentation,

More information

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance

An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance An In-depth Study of LTE: Effect of Network Protocol and Application Behavior on Performance Authors: Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley Mao, Subhabrata Sen, Oliver

More information

Chapter 5 End-to-End Protocols

Chapter 5 End-to-End Protocols Chapter 5 End-to-End Protocols Transport layer turns the host-to-host packet delivery service of the underlying network into a process-to-process communication channel Common properties that application

More information

Programming Assignment 3: Transmission Control Protocol

Programming Assignment 3: Transmission Control Protocol CS 640 Introduction to Computer Networks Spring 2005 http://www.cs.wisc.edu/ suman/courses/640/s05 Programming Assignment 3: Transmission Control Protocol Assigned: March 28,2005 Due: April 15, 2005, 11:59pm

More information

Does current Internet Transport work over Wireless? Reviewing the status of IETF work in this area

Does current Internet Transport work over Wireless? Reviewing the status of IETF work in this area Does current Internet Transport work over Wireless? Reviewing the status of IETF work in this area Sally Floyd March 2, 2000 IAB Workshop on Wireless Internetworking 1 Observations: Transport protocols

More information

Square Pegs in a Round Pipe: Wire-Compatible Unordered Delivery In TCP and TLS

Square Pegs in a Round Pipe: Wire-Compatible Unordered Delivery In TCP and TLS Square Pegs in a Round Pipe: Wire-Compatible Unordered Delivery In TCP and TLS Michael F. Nowlan 2 Nabin Tiwari 1 Jana Iyengar 1 Syed Obaid Amin 12 Bryan Ford 2 1 Franklin & Marshall College 2 Yale University

More information

Reliable Transport I: Concepts and TCP Protocol

Reliable Transport I: Concepts and TCP Protocol Reliable Transport I: Concepts and TCP Protocol Brad Karp UCL Computer Science CS 3035/GZ01 29 th October 2013 Part I: Transport Concepts Layering context Transport goals Transport mechanisms 2 Context:

More information

bitcoin allnet exam review: transport layer TCP basics congestion control project 2 Computer Networks ICS 651

bitcoin allnet exam review: transport layer TCP basics congestion control project 2 Computer Networks ICS 651 bitcoin allnet exam review: transport layer TCP basics congestion control project 2 Computer Networks ICS 651 Bitcoin distributed, reliable ("hard to falsify") time-stamping network each time-stamp record

More information

ECE697AA Lecture 3. Today s lecture

ECE697AA Lecture 3. Today s lecture ECE697AA Lecture 3 Transport Layer: TCP and UDP Tilman Wolf Department of Electrical and Computer Engineering 09/09/08 Today s lecture Transport layer User datagram protocol (UDP) Reliable data transfer

More information

Solving HTTP Problems With Code and Protocols NATASHA ROONEY

Solving HTTP Problems With Code and Protocols NATASHA ROONEY Solving HTTP Problems With Code and Protocols NATASHA ROONEY Web HTTP TLS TCP IP 7. Application Data HTTP / IMAP 6. Data Presentation, Encryption SSL / TLS 5. Session and connection management - 4. Transport

More information

Chapter 13 TRANSPORT. Mobile Computing Winter 2005 / Overview. TCP Overview. TCP slow-start. Motivation Simple analysis Various TCP mechanisms

Chapter 13 TRANSPORT. Mobile Computing Winter 2005 / Overview. TCP Overview. TCP slow-start. Motivation Simple analysis Various TCP mechanisms Overview Chapter 13 TRANSPORT Motivation Simple analysis Various TCP mechanisms Distributed Computing Group Mobile Computing Winter 2005 / 2006 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

More information

A proposal for MPTCP Robust session Establishment (MPTCP RobE) enable full multipath capability for MPTCP Markus Amend, Eckard Bogenfeld, Andreas

A proposal for MPTCP Robust session Establishment (MPTCP RobE) enable full multipath capability for MPTCP Markus Amend, Eckard Bogenfeld, Andreas A proposal for MPTCP Robust session Establishment (MPTCP RobE) enable full multipath capability for MPTCP Markus Amend, Eckard Bogenfeld, Andreas Matz 18 July 2017 Agenda 01 The role of the initial flow

More information

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 18 th class; 7 th Oct 2011 Instructor: Sridhar Iyer IIT Bombay Reliable Transport We have already designed a reliable communication protocol for an analogy

More information

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm

QoS on Low Bandwidth High Delay Links. Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm QoS on Low Bandwidth High Delay Links Prakash Shende Planning & Engg. Team Data Network Reliance Infocomm Agenda QoS Some Basics What are the characteristics of High Delay Low Bandwidth link What factors

More information

Experimental Evaluation of Multipath TCP Schedulers

Experimental Evaluation of Multipath TCP Schedulers Experimental Evaluation of Multipath TCP Schedulers Christoph Paasch ICTEAM, UCLouvain Belgium Ozgu Alay Simula Research Laboratory Fornebu, Norway Simone Ferlin Simula Research Laboratory Fornebu, Norway

More information

Internet Applications and the Application Layer Material from Kurose and Ross, Chapter 2: The Application Layer

Internet Applications and the Application Layer Material from Kurose and Ross, Chapter 2: The Application Layer Midterm Study Sheet Below is a list of topics that will be covered on the midterm exam. Some topics may have summaries to clarify the coverage of the topic during the lecture. Disclaimer: the list may

More information

Homework 4 assignment for ECE671 Posted: 03/20/18 Due: 03/27/18

Homework 4 assignment for ECE671 Posted: 03/20/18 Due: 03/27/18 ECE671: Homework 4 1 Homework 4 assignment for ECE671 Posted: 03/20/18 Due: 03/27/18 Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can

More information

CS457 Transport Protocols. CS 457 Fall 2014

CS457 Transport Protocols. CS 457 Fall 2014 CS457 Transport Protocols CS 457 Fall 2014 Topics Principles underlying transport-layer services Demultiplexing Detecting corruption Reliable delivery Flow control Transport-layer protocols User Datagram

More information

Implementation and Evaluation of Coupled Congestion Control for Multipath TCP

Implementation and Evaluation of Coupled Congestion Control for Multipath TCP Implementation and Evaluation of Coupled Congestion Control for Multipath TCP Régel González Usach and Mirja Kühlewind Institute of Communication Networks and Computer Engineering (IKR), University of

More information

NWEN 243. Networked Applications. Transport layer and application layer

NWEN 243. Networked Applications. Transport layer and application layer NWEN 243 Networked Applications Transport layer and application layer 1 Topic TCP flow control TCP congestion control The Application Layer 2 Fast Retransmit Time-out period often relatively long: long

More information

School of Engineering Department of Computer and Communication Engineering Semester: Fall Course: CENG415 Communication Networks

School of Engineering Department of Computer and Communication Engineering Semester: Fall Course: CENG415 Communication Networks School of Engineering Department of Computer and Communication Engineering Semester: Fall 2012 2013 Course: CENG415 Communication Networks Instructors: Mr Houssam Ramlaoui, Dr Majd Ghareeb, Dr Michel Nahas,

More information

Effect of SCTP Multistreaming over Satellite Links

Effect of SCTP Multistreaming over Satellite Links Effect of SCTP Multistreaming over Satellite Links Mohammed Atiquzzaman (Co-author: William Ivancic (NASA)) School of Computer Science University of Oklahoma. Email: atiq@ieee.org Web: www.cs.ou.edu/~atiq

More information

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Structured Streams: A New Transport Abstraction

Structured Streams: A New Transport Abstraction Structured Streams: A New Transport Abstraction Bryan Ford Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology ACM SIGCOMM, August 30, 2007 http://pdos.csail.mit.edu/uia/sst/

More information

The Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) The Transmission Control Protocol (TCP) Application Services (Telnet, FTP, e-mail, WWW) Reliable Stream Transport (TCP) Unreliable Transport Service (UDP) Connectionless Packet Delivery Service (IP) Goals

More information

QUIC Making Web Browsing Even Faster and Improving over SPDY

QUIC Making Web Browsing Even Faster and Improving over SPDY QUIC Making Web Browsing Even Faster and Improving over SPDY Version 1.0 Guenter I. Klas Aug 02, 2014 The 1 minute takeaway Google has been developing QUIC as an experimental protocol to solve a number

More information

CSE 4215/5431: Mobile Communications Winter Suprakash Datta

CSE 4215/5431: Mobile Communications Winter Suprakash Datta CSE 4215/5431: Mobile Communications Winter 2013 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/4215 Some slides are adapted

More information

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Network Layer (1) Networked Systems 3 Lecture 8

Network Layer (1) Networked Systems 3 Lecture 8 Network Layer (1) Networked Systems 3 Lecture 8 Role of the Network Layer Application Application The network layer is the first end-to-end layer in the OSI reference model Presentation Session Transport

More information