Naming and Content Distribution

Size: px
Start display at page:

Download "Naming and Content Distribution"

Transcription

1 Naming and Content Distribution To do q q q What s in a name Flat, structured, attribute-based naming and DNS Content distribution networks What's in a name? That which we call a rose By any other name would smell as sweet. W. Shakespeare, Romeo and Juliet (II, ii, 1-2)

2 Names, identifiers and addresses Names are used to denote entities in a system Hosts, printers, files, processes, users. To operate on an entity, e.g. print a file, we need to access it at an access point An entity can offer one or more access points (think phone #s) Access points are entities too Access points Entity (Lisa) An address is the name of an access point 742 Evergreen Terrace Springfield 2

3 Other names Pure names un-interpreted bit patterns Have no meaning, random strings (only good for comparison) No-pure ones contain info about the object (e.g., location, URL) (True) Identifiers names interpreted by programs Each identifier refers to at most one entity (no reusing) Each entity is referred to by at most one identifier E.g. phone is not, passport number maybe An identifier need not necessarily be a pure name, i.e., it may have content Alias a name defined to denote the same info as another name 3

4 Name service and names Name service Stores a collection of textual names, as bindings between names and attributes Name space All valid names recognized by a particular service A name is resolved when it is translated into data about the named object Why a separate service? Unification resources managed by different services using the same naming scheme Integration resources created in different administrative domain may eventually be shared 4

5 Names in distributed systems Flat naming Names chosen from a flat set of numeric or symbolic ids Must be globally unique e.g., broadcasting (ARP), hierarchical, DHTs Structured naming Have an internal structure that represent their position in a hierarchic name space Unique only within immediately containing level Each level resolved within the context of the next higher one Attribute-based naming Maybe easier to look up entities by attributes {(attribute, value)} Entities have a collection of (attribute, value) pairs 5

6 Structured, hierarchical naming DNS Host names malbec.cs.northwestern.edu Mnemonic nice on humans Variable length With little information about location IP address Numerical, nice on routers Fixed length Hierarchical, loosely based on location Naming on the Internet before DNS (1983) Each computer retrieved HOST.TXT from a computer at SRI (Menlo Park, CA) Single server issues A legacy a fossil host file still exist in most modern OS 6

7 Domain Name System (DNS) DNS (Paul Mockapetris, then at UC Irvine) A wide-area distributed database Goals: scalability, robustness, global scope, distributed updates, good performance Non-goals: No need for strong consistency Some uses Hostname to IP translation And reverse lookups as well Hostname aliasing other DNS names for a host Lookup domain s server by domain name RFC 1034,

8 Structured, hierarchical naming Hierarchical name space Names organized into name spaces Name space hierarchical as a rooted tree Domain name space partitioned organizationally and geographically Hierarchical name servers Root servers and a number of Top Level Domain servers NS hierarchy matches server hierarchy Authoritative DNS servers root Doing the translation Local DNS servers, near clients Resolver software running on clients com ar chicago eecs edu gov northwestern music 8

9 DNS root nameservers 13 root servers Each really a cluster relying on IP anycast 9

10 TLD, authoritative and local name servers Top-level Domains (TLD) Responsible for.org,.edu, country codes ar, ca, Authoritative DNS servers An organization s DNS server with authoritative info for that organization Maintained by the ISP or the organization itself Local name server Doesn t quite fit in the hierarchy Each ISP, company, university or department has 1+ When host make a DNS query, that s where it is sent Acts as proxy forwarding the query (resolving) 10

11 DNS resource records Each node in the hierarchy is a collection of resource records Examples of RR (name value ttl) SOA Holds info on the represented zone ( of sys admin, host where data on zone can be found, ) A IP address of the host this node represents MX Mail server to handle mail address to this node NS Name server that implement the represented zone CNAME Canonical name of the host (alias implemented by a node storing a CNAME record) HINFO Info on this host 11

12 Name resolution DNS in action To resolve a name we need a directory node; how do we actually find that (initial) node? Closure mechanism Many times implicit, e.g., in the Unix FS the i-node of the root directory is the first i-node in the FS Root Two type of queries Recursive NS response with answer or error Iterative NS may respond with referral (go talk to x) 12

13 A recursive DNS lookup.(root) authority edu: NS com: NS edu authority northwestern.edu: NS Talk to for edu Client Talk to for northwestern.edu Local nameserver northwestern.edu authority A

14 Recursive or iterative Interactive client drives the resolution Caching by clients only (a second client s resolution of the same name has to go through the same sequence ) Less burden on servers and more on the query initiator Potentially costly communication Recursive a name server passes result to next server Less burden on the one asking, higher demand on servers More effective caching Reduced communication costs Most root and TLD servers won t answer (shed load) 14

15 Scaling DNS Scalability though partitioning, replication and caching Tree sub-divides into zones beginning at the root Each zone could be 1+ domains and sub-domains Zone files the txt file that describes a zone Includes name and address for 2+ authoritative servers and for delegated subdomains Management parameters (e.g. caching) and RR Information in a zone is kept in 2+ name servers (redundancy) Any server can cache data from other servers If a non-authoritative server caches data, it notes the TTL 15

16 16

17 Trends and application need Some clear trends Growing number of networks Faster networks Growing availability and demand for content For applications, higher demand on performance and reliability Small degradation are expensive in lost revenue $2.8m/hour in 2009 damage reputation reduced productivity 17

18 Content delivery The common answer Replicate content around the world, closer to users Bring users to nearby content, nearby in a network sense A few ways to do this Content distribution networks deep into ISPs or bring ISPs to home Peer-to-peer Hybrid peer-assisted CDNs 18

19 Distributing content through CDNs Content provider determines which objects it wants the CDN to distribute tags and pushes content to CDN CDN replicates and pushes the content to its servers provides a mechanism for Replicating content on multiple servers in the Internet Letting clients pick the best servers to get the content from Mapping network proximity!= geographic proximity CDN replica CDN replica Client optimicdn 19

20 CDNs potential benefits Closeness to end users for performance and reliability Good scalability Avoid congestion and long latencies Redundancy for reliability and some resilience to DoS attacks Economies of scale Costly to maintain that many servers, control, replicate content, etc 20

21 Internet delivery challenges Peering point congestion Inefficient routing protocols Unreliable networks Inefficient communication protocols TCP can be a serious bottleneck to video delivery Scalability under and overprovisioning costs Application limitation and slow rate of change adoption IE6 still in use (<6%) Distance (server/user) RTT Typical packet loss Throughput 4GB DVD download time Local <100mi 1.6ms 0.6% 44 Mbps (high quality HDTV) 12min Regional 500-1,000mi 16ms 0.7% 4 Mbs (basic HDTV) 2.2hrs Cross-continent 48ms 1.0% 1 Mbps (SD TV) 8.2hrs Multi-continent~6,000mi 96ms 1.4% 0.4 Mbps (poor) 20hrs 21

22 Akamai as an example A deep into ISPs CDN Placing replica servers at ISP s POPs Distributed servers 100k servers, 1k of networks, 10s of countries Client requests >20m per second, 20-30% of all web traffic Customers Apple, BBC, FOX, MTV, NASA, 22

23 Components of a delivery network Edge servers/ replicas Origin End users Edge servers/ replicas Transport system Customers Communication and control system Mapping Data collection and analysis Management portal 23

24 CDN through an example When a browser is asked to get how does it know it should go to the CDN or get it from CNN? Users get an html document from this could be index.html index.html uses a modified URL for replicated content Example: If the jpeg files are what has been replicated then <img src= may be modified as follows: <img src= 24

25 CDN through an example What does this mean? <img src= host part: a73.g.akamai.net Akamai control part: /7/23 Content URL: /af/foo.jpg 25

26 CDN redirection The browser needs to resolve a73.g.akamai.net hostname for replicated content All DNS queries for g.akamai.net are sent to an authoritative DNS server for g.akamai.net Based on the IP address and information that it has about the Internet (called a map), the IP address of an Akamai regional server is returned to the requesting browser based on policy 26

27 CDN through an example Hierarchy of CDN DNS servers Multiple redirections to find nearby edge servers Customer DNS servers (3) Web replica servers (4) (2) (5) (6) Client gets CNAME entry with domain name in Akamai Client requests translation for cnn.com Local DNS (1) End user Client is given 2 web replica servers (fault tolerance) 27

28 CDN redirection Akamai IPs are cached at local DNS server Not always necessary to go to the root DNS server TTL associated with the IP address of an Akamai edge server is relatively small If content is not there Edge server gets it from others Or eventually from origin One tricky part, selecting the right edge server Want to spread load evenly Want minimal impact if server is added or removed 28

29 Mapping or server selection Picking a server Lowest load è To balance customer load Best performance è To improve client s experience Best on geography? RTT? Throughput? Load? Any server that is up è For reliability How to direct clients to the selected server As part of routing è Anycast As part of application è HTTP redirect 30X responses (301: moved permanently, 307: temporary redirect, ) As part of naming è DNS 29

30 CDN growth and impact Flattening of the Internet More content served from the edge Increase in peering Growth of IXPs More traffic at the edge, less in the core Changing economics Clients are happier with closer content So are CDNs And perhaps ISPs (reducing traffic from providers) CDN market worth Billion USD by 2022 Compound annual growth rate of 32.8% 30

31 Some interesting trends Content providers have CDNs If you are big enough it could be cheaper Tune caching to your particular service Can still rely on CDN services ISPs have CDNs Not just putting up pipes Reduce cross-isp traffic Hard to develop relationships with content providers Users have CDNs CoralCDN, BitTorrent, Hybrid solutions CDNs and ISPs Content providers and CDNs Peers and CDNs 31

32 CDNs models and markets Much more than Akamai Tons of commercial CDNs: Amazon CloudFront, BitGravity, CacheFly, CDNetworks, ChinaCache, CloudFare, Cotendo, Distil Networks, EdgeCast, Limelight, MaxCDN, Speedera, A few non-commercial ones: BootstrapCDN, CloudFare, Coral, Incapsula Some from telcos: AT&T, Bell, DT, Telecom, Telefonica, Level 3, 32

33 CDNs or P2P? P2P systems Cheap, easy to scale Security issues, potential low-quality, hard to find unpopular content, difficult accounting Infrastructure-based systems Expensive to setup and scale Akamai 137,000 servers in 87 countries (probably out of date) Can provide predictable QoS and reliable accounting Hybrid? Peer-assisted CDNs Deliver content by peers, with operation coordinated (and backstopped) by dedicated infrastructure Akamai s NetSession Operating commercially since 2010 True global coverage 239 countries in

34 CDNs or P2P? Both Hybrid? Peer-assisted CDNs Deliver content by peers, with operation coordinated (and backstopped) by dedicated infrastructure Akamai s NetSession Operating commercially since 2010 True global coverage 239 countries in 2013 Risks/Issues Need for revenue, unlike P2P No transparency users are aware of them Heterogeneity NATs and firewalls Impact to ISP change of traffic patterns 34

35 Some interesting trends Electricity costs of datacenters are high Estimated cost of Google in 2009 ~ over $38M/year And growing Systems growth outpacing energy efficiency gains Relative cost of electricity is growing Compared to hardware or bandwidth What s being done Energy efficient hardware, virtualization and consolidation, power off servers when possible, cheaper cooling Key observation: electricity prices vary on an hourly basis across markets 35

36 Price volatility across markets Locational pricing not well correlated CA-VA correlation California Virginia RT market price $/MWh Hourly variation Illinois peaks ~ $350/MWh negative prices day one day two day three time (hours) From A. Qureshi et al, SIGCOMM09 36

37 Price volatility across markets California has min. price 100 California Virginia RT market price $/MWh Virginia has min. price 0 day one day two day three time (hours) From A. Qureshi et al, SIGCOMM09 37

38 Some interesting trends Can you use request routing and replication to route away from high energy costs? [A. Qureshi et al, SIGCOMM09] 2% without increasing bw costs or worsening client performance Depends on the energy elasticity of clusters with full elasticity (an no bw constraints) over 30% Environmental impact, rather than energy? [P. Gao et al., SIGCOMM12] CO 2 emission of datacenters ~ Netherlands in 2008, reaching 2.6% of global total in 2020, > Germany Source (i.e., emission) changes per hour (termal generators on peak) Can you redirect traffic to a cleaner location? Gas 10% Washington Nuclear 9% Other Coal 6% 8% Hydro 67% Coal 37% Texas Other 8% Nuclear 10% Gas 45% Generator fuel type* 38

39 Summary Demand for content drives CDNs CDNs are interesting distributed systems Conceptually a virtual network Higher performance, reliability, security Works on the existing Internet as-is Alternatively, a clean slate re-design of the Internet could address the challenges Slow change due to sunk investment and entrenched adoption 39

Content Distribution. Today. l Challenges of content delivery l Content distribution networks l CDN through an example

Content Distribution. Today. l Challenges of content delivery l Content distribution networks l CDN through an example Content Distribution Today l Challenges of content delivery l Content distribution networks l CDN through an example Trends and application need " Some clear trends Growing number of and faster networks

More information

Naming. To do. q What s in a name q Flat naming q Structured naming q Attribute-based naming q Next: Content distribution networks

Naming. To do. q What s in a name q Flat naming q Structured naming q Attribute-based naming q Next: Content distribution networks Naming To do q What s in a name q Flat naming q Structured naming q Attribute-based naming q Next: Content distribution networks What's in a name? That which we call a rose By any other name would smell

More information

IP ADDRESSES, NAMING, AND DNS

IP ADDRESSES, NAMING, AND DNS IP ADDRESSES, NAMING, AND DNS George Porter Apr 9, 2018 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license These

More information

CSE 124: CONTENT-DISTRIBUTION NETWORKS. George Porter December 4, 2017

CSE 124: CONTENT-DISTRIBUTION NETWORKS. George Porter December 4, 2017 CSE 124: CONTENT-DISTRIBUTION NETWORKS George Porter December 4, 2017 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons

More information

CONTENT-DISTRIBUTION NETWORKS

CONTENT-DISTRIBUTION NETWORKS CONTENT-DISTRIBUTION NETWORKS George Porter June 1, 2018 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license These

More information

Mul$media Networking. #9 CDN Solu$ons Semester Ganjil 2012 PTIIK Universitas Brawijaya

Mul$media Networking. #9 CDN Solu$ons Semester Ganjil 2012 PTIIK Universitas Brawijaya Mul$media Networking #9 CDN Solu$ons Semester Ganjil 2012 PTIIK Universitas Brawijaya Schedule of Class Mee$ng 1. Introduc$on 2. Applica$ons of MN 3. Requirements of MN 4. Coding and Compression 5. RTP

More information

EECS 122: Introduction to Computer Networks DNS and WWW. Internet Names & Addresses

EECS 122: Introduction to Computer Networks DNS and WWW. Internet Names & Addresses EECS 122: Introduction to Computer Networks DNS and WWW Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776 Internet

More information

416 Distributed Systems. March 23, 2018 CDNs

416 Distributed Systems. March 23, 2018 CDNs 416 Distributed Systems March 23, 2018 CDNs Outline DNS Design (317) Content Distribution Networks 2 Typical Workload (Web Pages) Multiple (typically small) objects per page File sizes are heavy-tailed

More information

Internet Content Distribution

Internet Content Distribution Internet Content Distribution Chapter 1: Introduction Jussi Kangasharju Chapter Outline Introduction into content distribution Basic concepts TCP DNS HTTP Outline of the rest of the course Kangasharju:

More information

context: massive systems

context: massive systems cutting the electric bill for internetscale systems Asfandyar Qureshi (MIT) Rick Weber (Akamai) Hari Balakrishnan (MIT) John Guttag (MIT) Bruce Maggs (Duke/Akamai) Éole @ flickr context: massive systems

More information

CSE 123b Communications Software

CSE 123b Communications Software CSE 123b Communications Software Spring 2002 Lecture 13: Content Distribution Networks (plus some other applications) Stefan Savage Some slides courtesy Srini Seshan Today s class Quick examples of other

More information

Today s class. CSE 123b Communications Software. Telnet. Network File System (NFS) Quick descriptions of some other sample applications

Today s class. CSE 123b Communications Software. Telnet. Network File System (NFS) Quick descriptions of some other sample applications CSE 123b Communications Software Spring 2004 Today s class Quick examples of other application protocols Mail, telnet, NFS Content Distribution Networks (CDN) Lecture 12: Content Distribution Networks

More information

How Akamai delivers your packets - the insight. Christian Kaufmann SwiNOG #21 11th Nov 2010

How Akamai delivers your packets - the insight. Christian Kaufmann SwiNOG #21 11th Nov 2010 How Akamai delivers your packets - the insight Christian Kaufmann SwiNOG #21 11th Nov 2010 What is a Content Distribution Network? The RFCs and Internet Drafts define a Content Distribution Network, CDN,

More information

11/13/2018 CACHING, CONTENT-DISTRIBUTION NETWORKS, AND OVERLAY NETWORKS ATTRIBUTION

11/13/2018 CACHING, CONTENT-DISTRIBUTION NETWORKS, AND OVERLAY NETWORKS ATTRIBUTION CACHING, CONTENT-DISTRIBUTION NETWORKS, AND OVERLAY NETWORKS George Porter November 1, 2018 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike.0 Unported (CC BY-NC-SA.0)

More information

Server Selection Mechanism. Server Selection Policy. Content Distribution Network. Content Distribution Networks. Proactive content replication

Server Selection Mechanism. Server Selection Policy. Content Distribution Network. Content Distribution Networks. Proactive content replication Content Distribution Network Content Distribution Networks COS : Advanced Computer Systems Lecture Mike Freedman Proactive content replication Content provider (e.g., CNN) contracts with a CDN CDN replicates

More information

Application Layer Protocols

Application Layer Protocols Application Layer Protocols Dr. Ihsan Ullah Department of Computer Science & IT University of Balochistan, Quetta Pakistan Email: ihsan.ullah.cs@gmail.com These slides are adapted from the slides accompanying

More information

Domain Name System.

Domain Name System. Domain Name System http://xkcd.com/302/ CSCI 466: Networks Keith Vertanen Fall 2011 Overview Final project + presentation Some TCP and UDP experiments Domain Name System (DNS) Hierarchical name space Maps

More information

CSE 5306 Distributed Systems

CSE 5306 Distributed Systems CSE 5306 Distributed Systems Naming Jia Rao http://ranger.uta.edu/~jrao/ 1 Naming Names play a critical role in all computer systems To access resources, uniquely identify entities, or refer to locations

More information

Content Delivery Networks

Content Delivery Networks Content Delivery Networks Richard T. B. Ma School of Computing National University of Singapore CS 4226: Internet Architecture Motivation Serving web content from one location scalability -- flash crowd

More information

Overview General network terminology. Chapter 9.1: DNS

Overview General network terminology. Chapter 9.1: DNS Overview General network terminology Chapter 9.1: DNS Jan-29-04 4/598N: Computer Networks 1 Connection mechanisms Connectionless or packet switching Each packet carries with it the source and destination

More information

Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer

Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer CPSC 360 Network Programming Applications & Application-Layer Protocols: The Domain Name System and Peerto-Peer Systems Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu

More information

Outline Applications. Central Server Hierarchical Peer-to-peer. 31-Jan-02 Ubiquitous Computing 1

Outline Applications. Central Server Hierarchical Peer-to-peer. 31-Jan-02 Ubiquitous Computing 1 Outline Applications Central Server Hierarchical Peer-to-peer 31-Jan-02 Ubiquitous Computing 1 Networked distributed system architectures Central Server based Web servers Hierarchical Services Domain Name

More information

CS519: Computer Networks. Lecture 6: Apr 5, 2004 Naming and DNS

CS519: Computer Networks. Lecture 6: Apr 5, 2004 Naming and DNS : Computer Networks Lecture 6: Apr 5, 2004 Naming and DNS Any problem in computer science can be solved with another layer of indirection David Wheeler Naming is a layer of indirection What problems does

More information

The Application Layer: Sockets, DNS

The Application Layer: Sockets, DNS The Application Layer: Sockets, DNS CS 352, Lecture 3 http://www.cs.rutgers.edu/~sn624/352-s19 Srinivas Narayana 1 App-layer protocol Types of messages exchanged, e.g., request, response Message format:

More information

Networking Applications

Networking Applications Networking Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab Academy for Science & Technology and Maritime Transport 1 Outline Introduction Name Space concepts Domain Name Space

More information

0 0& Basic Background. Now let s get into how things really work!

0 0& Basic Background. Now let s get into how things really work! +,&&-# Department of Electrical Engineering and Computer Sciences University of California Berkeley Basic Background General Overview of different kinds of networks General Design Principles Architecture

More information

CSE 5306 Distributed Systems. Naming

CSE 5306 Distributed Systems. Naming CSE 5306 Distributed Systems Naming 1 Naming Names play a critical role in all computer systems To access resources, uniquely identify entities, or refer to locations To access an entity, you have resolve

More information

Domain Name Service. DNS Overview. October 2009 Computer Networking 1

Domain Name Service. DNS Overview. October 2009 Computer Networking 1 Domain Name Service DNS Overview October 2009 Computer Networking 1 Why DNS? Addresses are used to locate objects (contain routing information) Names are easier to remember and use than numbers DNS provides

More information

CSEN 404 Introduction to Networks. Mervat AbuElkheir Mohamed Abdelrazik. ** Slides are attributed to J. F. Kurose

CSEN 404 Introduction to Networks. Mervat AbuElkheir Mohamed Abdelrazik. ** Slides are attributed to J. F. Kurose CSEN 404 Introduction to Networks Mervat AbuElkheir Mohamed Abdelrazik ** Slides are attributed to J. F. Kurose HTTP Method Types HTTP/1.0 GET POST HEAD asks server to leave requested object out of response

More information

Naming in Distributed Systems

Naming in Distributed Systems Naming in Distributed Systems Dr. Yong Guan Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Outline for Today s Talk Overview: Names, Identifiers,

More information

CS November 2018

CS November 2018 Distributed Systems 21. Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2018 1 2 Motivation Serving web content from one location presents problems Scalability Reliability Performance

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Application Layer Video Streaming, CDN and Sockets Sec 2.6 2.7 Prof. Lina Battestilli Fall 2017 Outline Application Layer (ch 2) 2.1 principles of network

More information

Lecture 05: Application Layer (Part 02) Domain Name System. Dr. Anis Koubaa

Lecture 05: Application Layer (Part 02) Domain Name System. Dr. Anis Koubaa NET 331 Computer Networks Lecture 05: Application Layer (Part 02) Domain Name System Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose and

More information

Distributed Systems. 21. Content Delivery Networks (CDN) Paul Krzyzanowski. Rutgers University. Fall 2018

Distributed Systems. 21. Content Delivery Networks (CDN) Paul Krzyzanowski. Rutgers University. Fall 2018 Distributed Systems 21. Content Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2018 1 2 Motivation Serving web content from one location presents problems Scalability Reliability Performance

More information

Distributed Naming. EECS 591 Farnam Jahanian University of Michigan. Reading List

Distributed Naming. EECS 591 Farnam Jahanian University of Michigan. Reading List Distributed Naming EECS 591 Farnam Jahanian University of Michigan Reading List Tanenbaum Chapter 4.1-4.2, 4.3(optional) Any problem in computer science can be solved with another layer of indirection

More information

DNS & Iodine. Christian Grothoff.

DNS & Iodine. Christian Grothoff. DNS & Iodine christian@grothoff.org http://grothoff.org/christian/ The Domain Name System is the Achilles heel of the Web. Tim Berners-Lee 1 DNS: Domain Name System Unique Distributed Database Application-layer

More information

Drafting Behind Akamai (Travelocity-Based Detouring)

Drafting Behind Akamai (Travelocity-Based Detouring) (Travelocity-Based Detouring) Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic and Fabián E. Bustamante Department of EECS Northwestern University ACM SIGCOMM 2006 Drafting Detour 2 Motivation Growing

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Application Layer III Dmitri Loguinov Texas A&M University February 8, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

DNS and Modern Network Services. Amin Vahdat CSE 123b April 27, 2006

DNS and Modern Network Services. Amin Vahdat CSE 123b April 27, 2006 DNS and Modern Network Services Amin Vahdat CSE 123b April 27, 2006 Midterm: May 9 Annoucements Second assignment due May 15 Domain Name System Motivation 1982: single hosts.txt file stored and distributed

More information

Distributed Systems. Distributed Systems Within the Internet Nov. 9, 2011

Distributed Systems. Distributed Systems Within the Internet Nov. 9, 2011 15-440 Distributed Systems Distributed Systems Within the Internet Nov. 9, 2011 Topics Domain Name System Finding IP address Content Delivery Networks Caching content within the network Domain Name System

More information

Web, HTTP, Caching, CDNs

Web, HTTP, Caching, CDNs Web, HTTP, Caching, CDNs Outline Web HyperText Transfer Protocol (HTTP) Inefficiencies in HTTP HTTP Persistent Connections Caching CDNs Consistent Hashing CS 640 1 Web Original goal of the web: mechanism

More information

A DNS Tutorial

A DNS Tutorial http://ntrg.cs.tcd.ie/undergrad/4ba2/multicast/ Copyright Table of Contents What is a DNS?... 3 Why do we need a DNS?... 3 Why do computers prefer addresses based on numbers?... 3 What is a Domain Name,

More information

CSc 450/550 Computer Networks Domain Name System

CSc 450/550 Computer Networks Domain Name System CSc 450/550 Computer Networks Domain Name System Jianping Pan Summer 2007 5/28/07 CSc 450/550 1 Review: Web/HTTP Web URI/URL, HTML tags, embedded objects HTTP request and response persistence, statefulness

More information

Page 1. CS162 Operating Systems and Systems Programming Lecture 22. Networking III. Automatic Repeat Request

Page 1. CS162 Operating Systems and Systems Programming Lecture 22. Networking III. Automatic Repeat Request Review CS162 Operating Systems and Systems Programming Lecture 22 Networking III April 22, 2010 Ion Stoica http://inst.eecs.berkeley.edu/~cs162 Link (link) layer: Broadcast network; frames sent by one

More information

Send me up to 5 good questions in your opinion, I ll use top ones Via direct message at slack. Can be a group effort. Try to add some explanation.

Send me up to 5 good questions in your opinion, I ll use top ones Via direct message at slack. Can be a group effort. Try to add some explanation. Notes Midterm reminder Second midterm next week (04/03), regular class time 20 points, more questions than midterm 1 non-comprehensive exam: no need to study modules before midterm 1 Online testing like

More information

CS November 2017

CS November 2017 Distributed Systems 21. Delivery Networks () Paul Krzyzanowski Rutgers University Fall 2017 1 2 Motivation Serving web content from one location presents problems Scalability Reliability Performance Flash

More information

Applications & Application-Layer Protocols: (SMTP) and DNS

Applications & Application-Layer Protocols:  (SMTP) and DNS CS 312 Internet Concepts Applications & Application-Layer Protocols: E (SMTP) and DNS Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu http://www.cs.odu.edu/~mweigle/cs312-f11

More information

Development of the Domain Name System

Development of the Domain Name System Development of the Domain Name System Paul V. Mockapetris, Keven J. Dunlap Presenter: Gigis Petros ACM SIGCOMM 88 Introduction What was before DNS? Before DNS we were using HOSTS.TXT system for publishing

More information

CSEN 503 Introduction to Communication Networks

CSEN 503 Introduction to Communication Networks CSEN 503 Introduction to Communication Networks 1-1 Mervat AbuElkheir Hana Medhat Ayman Dayf ** Slides are attributed to J. F. Kurose Roadmap: Application layer Cookies and User-Server State Web caches

More information

John S. Otto Mario A. Sánchez John P. Rula Fabián E. Bustamante

John S. Otto Mario A. Sánchez John P. Rula Fabián E. Bustamante John S. Otto Mario A. Sánchez John P. Rula Fabián E. Bustamante Northwestern, EECS http://aqualab.cs.northwestern.edu ! DNS designed to map names to addresses Evolved into a large-scale distributed system!

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

ECE 650 Systems Programming & Engineering. Spring 2018

ECE 650 Systems Programming & Engineering. Spring 2018 ECE 650 Systems Programming & Engineering Spring 2018 Dynamic Host Configuration Protocol (DHCP) and Domain Name System (DNS) Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) Dynamic

More information

Protocol Classification

Protocol Classification DNS and DHCP TCP/IP Suite Suite of protocols (not just TCP and IP) Main protocols TCP and UDP at the Transport Layer, and IP at the Network Layer Other protocols ICMP, ARP, Telnet, Ftp, HTTP, SMTP, SNMP

More information

Content Distribu-on Networks (CDNs)

Content Distribu-on Networks (CDNs) Second Half of the Course Content Distribu-on Networks (CDNs) Mike Freedman COS 461: Computer Networks h@p://www.cs.princeton.edu/courses/archive/spr14/cos461/ Applica-on case studies Content distribu-on,

More information

CS 43: Computer Networks. 14: DHTs and CDNs October 3, 2018

CS 43: Computer Networks. 14: DHTs and CDNs October 3, 2018 CS 43: Computer Networks 14: DHTs and CDNs October 3, 2018 If Alice wants to stream Mad Men over a highspeed Internet connection her browser may choose a video rate A. in the range of Mbps. B. in the range

More information

Chapter 2 Application Layer. Lecture 5 DNS. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 2 Application Layer. Lecture 5 DNS. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Chapter 2 Application Layer Lecture 5 DNS Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Application Layer 2-1 Chapter 2: outline 2.1 principles

More information

DNS Basics BUPT/QMUL

DNS Basics BUPT/QMUL DNS Basics BUPT/QMUL 2018-04-16 Related Information Basic function of DNS Host entry structure in Unix Two system calls for DNS database retrieving gethostbyname () gethostbyaddr () 2 Agenda Brief introduction

More information

CS4/MSc Computer Networking. Lecture 3: The Application Layer

CS4/MSc Computer Networking. Lecture 3: The Application Layer CS4/MSc Computer Networking Lecture 3: The Application Layer Computer Networking, Copyright University of Edinburgh 2005 Network Applications Examine a popular network application: Web Client-server architecture

More information

DNS and CDNs : Fundamentals of Computer Networks Bill Nace

DNS and CDNs : Fundamentals of Computer Networks Bill Nace DNS and CDNs 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia HW #1 is posted Mission: Learn

More information

A Better Way to a Redundant DNS.

A Better Way to a Redundant DNS. WHITEPAPE R A Better Way to a Redundant DNS. +1.855.GET.NSONE (6766) NS1.COM 2019.02.12 Executive Summary DNS is a mission critical application for every online business. In the words of Gartner If external

More information

From Internet Data Centers to Data Centers in the Cloud

From Internet Data Centers to Data Centers in the Cloud From Internet Data Centers to Data Centers in the Cloud This case study is a short extract from a keynote address given to the Doctoral Symposium at Middleware 2009 by Lucy Cherkasova of HP Research Labs

More information

Venugopal Ramasubramanian Emin Gün Sirer SIGCOMM 04

Venugopal Ramasubramanian Emin Gün Sirer SIGCOMM 04 The Design and Implementation of a Next Generation Name Service for the Internet Venugopal Ramasubramanian Emin Gün Sirer SIGCOMM 04 Presenter: Saurabh Kadekodi Agenda DNS overview Current DNS Problems

More information

End-user mapping: Next-Generation Request Routing for Content Delivery

End-user mapping: Next-Generation Request Routing for Content Delivery Introduction End-user mapping: Next-Generation Request Routing for Content Delivery Fangfei Chen, Ramesh K. Sitaraman, Marcelo Torres ACM SIGCOMM Computer Communication Review. Vol. 45. No. 4. ACM, 2015

More information

Information Network Systems The application layer. Stephan Sigg

Information Network Systems The application layer. Stephan Sigg Information Network Systems The application layer Stephan Sigg Tokyo, November 15, 2012 Introduction 04.10.2012 Introduction to the internet 11.10.2012 The link layer 18.10.2012 The network layer 25.10.2012

More information

DISTRIBUTED SYSTEMS [COMP9243] Lecture 9a: Naming WHAT IS NAMING? Name: Entity: Slide 3. Slide 1. Address: Identifier:

DISTRIBUTED SYSTEMS [COMP9243] Lecture 9a: Naming WHAT IS NAMING? Name: Entity: Slide 3. Slide 1. Address: Identifier: BASIC CONCEPTS DISTRIBUTED SYSTEMS [COMP9243] Name: String of bits or characters Refers to an entity Slide 1 Lecture 9a: Naming ➀ Basic Concepts ➁ Naming Services ➂ Attribute-based Naming (aka Directory

More information

Naming. Chapter 4. Naming (1) Name resolution allows a process to access a named entity. A naming system is necessary.

Naming. Chapter 4. Naming (1) Name resolution allows a process to access a named entity. A naming system is necessary. Naming Chapter 4 Naming (1) Name resolution allows a process to access a named entity. A naming system is necessary. In a distributed system the naming system is distributed. Naming (2) In a distributed

More information

CS155b: E-Commerce. Lecture 3: Jan 16, How Does the Internet Work? Acknowledgements: S. Bradner and R. Wang

CS155b: E-Commerce. Lecture 3: Jan 16, How Does the Internet Work? Acknowledgements: S. Bradner and R. Wang CS155b: E-Commerce Lecture 3: Jan 16, 2001 How Does the Internet Work? Acknowledgements: S. Bradner and R. Wang Internet Protocols Design Philosophy ordered set of goals 1. multiplexed utilization of existing

More information

The Design and Implementation of a Next Generation Name Service for the Internet (CoDoNS) Presented By: Kamalakar Kambhatla

The Design and Implementation of a Next Generation Name Service for the Internet (CoDoNS) Presented By: Kamalakar Kambhatla The Design and Implementation of a Next Generation Name Service for the Internet (CoDoNS) Venugopalan Ramasubramanian Emin Gün Sirer Presented By: Kamalakar Kambhatla * Slides adapted from the paper -

More information

Internet Technology 3/2/2016

Internet Technology 3/2/2016 Question 1 Defend or contradict this statement: for maximum efficiency, at the expense of reliability, an application should bypass TCP or UDP and use IP directly for communication. Internet Technology

More information

Chapter 3: Naming Page 38. Clients in most cases find the Jini lookup services in their scope by IP

Chapter 3: Naming Page 38. Clients in most cases find the Jini lookup services in their scope by IP Discovery Services - Jini Discovery services require more than search facilities: Discovery Clients in most cases find the Jini lookup services in their scope by IP multicast/broadcast Multicast UDP for

More information

DNS and HTTP. A High-Level Overview of how the Internet works

DNS and HTTP. A High-Level Overview of how the Internet works DNS and HTTP A High-Level Overview of how the Internet works Adam Portier Fall 2017 How do I Google? Smaller problems you need to solve 1. Where is Google? 2. How do I access the Google webpage? 3. How

More information

Computer Networks. Domain Name System. Jianping Pan Spring /25/17 CSC361 1

Computer Networks. Domain Name System. Jianping Pan Spring /25/17 CSC361 1 Computer Networks Domain Name System Jianping Pan Spring 2017 1/25/17 CSC361 1 Review: Web/HTTP Web URI/URL, HTML tags embedded/linked objects HTTP request and response persistence, statefulness web caching,

More information

Week-12 (Multimedia Networking)

Week-12 (Multimedia Networking) Computer Networks and Applications COMP 3331/COMP 9331 Week-12 (Multimedia Networking) 1 Multimedia: audio analog audio signal sampled at constant rate telephone: 8,000 samples/sec CD music: 44,100 samples/sec

More information

CE693: Adv. Computer Networking

CE693: Adv. Computer Networking CE693: Adv. Computer Networking L-17 Naming Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are obtained from other

More information

Domain Name System (DNS)

Domain Name System (DNS) CPSC 360 - Network Programming Domain Name System (DNS) Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu April 15, 2005 http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

Assignment 5. Georgia Koloniari

Assignment 5. Georgia Koloniari Assignment 5 Georgia Koloniari 2. "Peer-to-Peer Computing" 1. What is the definition of a p2p system given by the authors in sec 1? Compare it with at least one of the definitions surveyed in the last

More information

ICS 351: Networking Protocols

ICS 351: Networking Protocols ICS 351: Networking Protocols IP packet forwarding application layer: DNS, HTTP transport layer: TCP and UDP network layer: IP, ICMP, ARP data-link layer: Ethernet, WiFi 1 Networking concepts each protocol

More information

CSE 124: IP ADDRESSES, NAMING, AND DNS. George Porter Oct 4, 2017

CSE 124: IP ADDRESSES, NAMING, AND DNS. George Porter Oct 4, 2017 CSE 124: IP ADDRESSES, NAMING, AND DNS George Porter Oct 4, 2017 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license

More information

Cloud DNS. High Performance under any traffic conditions from anywhere in the world. Reliable. Performance

Cloud DNS. High Performance under any traffic conditions from anywhere in the world. Reliable. Performance Cloud DNS High Performance under any traffic conditions from anywhere in the world Secure DNS System Reduce vulnerability to spoofing and distributed denial of service (DDoS) attacks Reliable Performance

More information

Internet Technology. 06. Exam 1 Review Paul Krzyzanowski. Rutgers University. Spring 2016

Internet Technology. 06. Exam 1 Review Paul Krzyzanowski. Rutgers University. Spring 2016 Internet Technology 06. Exam 1 Review Paul Krzyzanowski Rutgers University Spring 2016 March 2, 2016 2016 Paul Krzyzanowski 1 Question 1 Defend or contradict this statement: for maximum efficiency, at

More information

Distributed Operating Systems

Distributed Operating Systems Distributed Operating Systems Name no more precise Interesting/advanced Topics in Operating Systems scalability systems security modeling Some overlap with Distributed Systems (Prof Schill) In some cases

More information

Never Drop a Call With TecInfo SIP Proxy White Paper

Never Drop a Call With TecInfo SIP Proxy White Paper Innovative Solutions. Trusted Performance. Intelligently Engineered. Never Drop a Call With TecInfo SIP Proxy White Paper TecInfo SD-WAN product - PowerLink - enables real time traffic like VoIP, video

More information

Distributed System: Definition

Distributed System: Definition 2 / 25 Introduction Distributed System: Definition Definition A distributed system is a piece of software that ensures that: a collection of independent computers appears to its users as a single coherent

More information

Today: Naming. Example: File Names

Today: Naming. Example: File Names Today: Naming Names are used to share resources, uniquely identify entities and refer to locations Need to map from name to the entity it refers to E.g., Browser access to www.cnn.com Use name resolution

More information

Networking and Internetworking 1

Networking and Internetworking 1 Networking and Internetworking 1 Today l Networks and distributed systems l Internet architecture xkcd Networking issues for distributed systems Early networks were designed to meet relatively simple requirements

More information

Re-engineering the DNS One Resolver at a Time. Paul Wilson Director General APNIC channeling Geoff Huston Chief Scientist

Re-engineering the DNS One Resolver at a Time. Paul Wilson Director General APNIC channeling Geoff Huston Chief Scientist Re-engineering the DNS One Resolver at a Time Paul Wilson Director General APNIC channeling Geoff Huston Chief Scientist 1 In this presentation I ll talk about the DNS, and the root server infrastructure

More information

S Computer Networks - Spring What and why? Structure of DNS Management of Domain Names Name Service in Practice

S Computer Networks - Spring What and why? Structure of DNS Management of Domain Names Name Service in Practice Outline What and why? Structure of DNS Management of Domain Names Name Service in Practice 188lecture12.ppt Pirkko Kuusela, Markus Peuhkuri, Jouni Karvo 1 2 Need Network addresses are numbers Addresses

More information

CSC2231: DNS with DHTs

CSC2231: DNS with DHTs CSC2231: DNS with DHTs http://www.cs.toronto.edu/~stefan/courses/csc2231/05au Stefan Saroiu Department of Computer Science University of Toronto Administrivia Next lecture: P2P churn Understanding Availability

More information

CONTENT DISTRIBUTION. Oliver Michel University of Illinois at Urbana-Champaign. October 25th, 2011

CONTENT DISTRIBUTION. Oliver Michel University of Illinois at Urbana-Champaign. October 25th, 2011 CONTENT DISTRIBUTION Oliver Michel University of Illinois at Urbana-Champaign October 25th, 2011 OVERVIEW 1. Why use advanced techniques for content distribution on the internet? 2. CoralCDN 3. Identifying

More information

DNS/DNSSEC Workshop. In Collaboration with APNIC and HKIRC Hong Kong. Champika Wijayatunga Regional Security Engagement Manager Asia Pacific

DNS/DNSSEC Workshop. In Collaboration with APNIC and HKIRC Hong Kong. Champika Wijayatunga Regional Security Engagement Manager Asia Pacific DNS/DNSSEC Workshop In Collaboration with APNIC and HKIRC Hong Kong Champika Wijayatunga Regional Security Engagement Manager Asia Pacific 22-24 January 2018 1 Agenda 1 2 3 Introduction to DNS DNS Features

More information

APNIC elearning: DNS Concepts

APNIC elearning: DNS Concepts APNIC elearning: DNS Concepts 27 MAY 2015 11:00 AM AEST Brisbane (UTC+10) Issue Date: Revision: Introduction Presenter Sheryl Hermoso Training Officer sheryl@apnic.net Specialties: Network Security IPv6

More information

Load Balancing Technology White Paper

Load Balancing Technology White Paper Load Balancing Technology White Paper Keywords: Server, gateway, link, load balancing, SLB, LLB Abstract: This document describes the background, implementation, and operating mechanism of the load balancing

More information

Session 2. Background. Lecture Objectives

Session 2. Background. Lecture Objectives Session 2 Background 1 Lecture Objectives Understand how an Internet resource is accessed Understand the high level structure of the Internet cloud Understand the high level structure of the TCP/IP protocols

More information

THE AUTHORITATIVE GUIDE TO DNS TERMINOLOGY

THE AUTHORITATIVE GUIDE TO DNS TERMINOLOGY Ebook: THE AUTHORITATIVE GUIDE TO DNS TERMINOLOGY From A Record & DNS to Zones 603 668 4998 Your Master List of Key DNS Terms As more users and more online services (sites, microservices, connected things,

More information

Domain Name System (DNS) Session-1: Fundamentals. Joe Abley AfNOG Workshop, AIS 2017, Nairobi

Domain Name System (DNS) Session-1: Fundamentals. Joe Abley AfNOG Workshop, AIS 2017, Nairobi Domain Name System (DNS) Session-1: Fundamentals Joe Abley AfNOG Workshop, AIS 2017, Nairobi Computers use IP addresses. Why do we need names? Names are easier for people to remember Computers may be moved

More information

Communications Software. CSE 123b. CSE 123b. Spring Lecture 11: Domain Name System (DNS) Stefan Savage. Some pictures courtesy David Wetherall

Communications Software. CSE 123b. CSE 123b. Spring Lecture 11: Domain Name System (DNS) Stefan Savage. Some pictures courtesy David Wetherall CSE 123b CSE 123b Communications Software Spring 2003 Lecture 11: Domain Name System (DNS) Stefan Savage Some pictures courtesy David Wetherall & Srini Seshan Where we ve been & where we re going Low-level

More information

CSE 123b Communications Software. Overview for today. Names and Addresses. Goals for a naming system. Internet Hostnames

CSE 123b Communications Software. Overview for today. Names and Addresses. Goals for a naming system. Internet Hostnames CSE 123b Communications Software Spring 2003 Lecture 11: Domain Name System (DNS) Stefan Savage Where we ve been & where we re going Low-level networking (so far) Internetworking architecture Packet Forwarding

More information

A Tale of Three CDNs

A Tale of Three CDNs A Tale of Three CDNs An Active Measurement Study of Hulu and Its CDNs Vijay K Adhikari 1, Yang Guo 2, Fang Hao 2, Volker Hilt 2, and Zhi-Li Zhang 1 1 University of Minnesota - Twin Cities 2 Bell Labs,

More information

HTTP and Web Content Delivery

HTTP and Web Content Delivery HTTP and Web Content Delivery COS 461: Computer Networks Spring 2011 Mike Freedman hgp://www.cs.princeton.edu/courses/archive/spring11/cos461/ 2 Outline Layering HTTP HTTP conneclon management and caching

More information

The DNS of Things. A. 2001:19b8:10 1:2::f5f5:1d Q. WHERE IS Peter Silva Sr. Technical Marketing

The DNS of Things. A. 2001:19b8:10 1:2::f5f5:1d Q. WHERE IS  Peter Silva Sr. Technical Marketing The DNS of Things Peter Silva Sr. Technical Marketing Manager @psilvas Q. WHERE IS WWW.F5.COM? A. 2001:19b8:10 1:2::f5f5:1d Advanced threats Software defined everything SDDC/Cloud Internet of Things Mobility

More information