Internet Services & Protocols

Size: px
Start display at page:

Download "Internet Services & Protocols"

Transcription

1 Department of Computer Science Institute for System Architecture, Chair for Computer Networks Internet Services & Protocols Content Distribution Dr.-Ing. Stephan Groß Room: INF

2 Outline Content Distribution & Content Networks What is it all about? Basic Concepts Categories of Content Distribution Web Caching Content Distribution Networks P2P Networks 2

3 Why do we need content distribution? Transmission delay because of small band network connections typical at the edges of a network ( the last mile ) Overcharged network connections Overcharged web server, flash crowd problem Overcharged backend (e.g. database) server Clients Transit ISP lokale ISP Solution: Content replication to one ore more servers Web-Server Clients DB-Server Web-Server 3

4 Introducing Content Distribution and Content Networks Content distribution = mechanisms for... (1)... replicating content on multiple servers in the Internet (2)... providing requesting end systems a means to determine the servers that can deliver the content the fastest Content networks = new virtual overlay to the OSI stack enable richer services that rely on underlying elements from all 7 layers of the stack. overlay services in content networks rely on layer 7 protocols such as HTTP or RTSP for transport 4

5 Basic Concepts Caching Replication Load Balancing When? On requests (reactive) Proactive On requests (reactive) Who? Browser, ISP Content Provider Content Provider, ISP Mechanisms HTTP header attributes like (in)transparent Complete vs. Partial Content/App logic URL-Rewriting HTTP-Redirect DNS Address Translation Cache-control, ifmodified-since, expires, max-age Applications Browser Mirror Server Server Cluster Proxy Content Delivery Content Delivery Network Network Content Delivery P2P Networks P2P Networks Network 5

6 Categories of Content Distribution Web Caching

7 Web Caching Basics Objective serving the client's request without asking the server again User configures browser all requests are first directed to the Web cache Web Caching Strategy: IF (requestedobject WebCache) THEN RETURN requestedobject ELSE BEGIN GET requestedobject FROM OriginServer WebCache += requestedobject RETURN requestedobject END 7

8 Clients requesting objects through a Web cache Origin Server A Requests server Origin Server B Caching proxy Client requests cache Client 1 Client 2 8

9 Web Caching Characteristics Cache has functions of client and server Content is replicated on demand as a function of user requests Modified content is identified through heuristics Caches are installed by independent administrative units (institutions, companies, ISPs) Caching reduces delays of answers as well as the use rate of the network, and internet access point Weak content provider also might provide efficient information 9

10 Web caching enhanced Cooperative Caching Hierarchic caches tune performance Cache configuring in institutions (e.g. Faculties, Campus) better cooperation with backbone ISP caches Hierarchic higher caches have higher user ratings more cache hits Internet Caching Protocol (ICP) RFC2186 Webserver Proxy... Backbone National ISP Cache cluster Caches are located in one LAN, an individual cache is replaced by a cluster, as a result of insufficient capacity Cache-selection by hash-routing CARP (Cache Array Routing Protocol) is used by caching products of Microsoft and Netscape 10

11 Categories of Content Distribution Content Distribution Networks

12 A new business model Acceleration of request initiated by content provider Content Provider like Yahoo are customers of CDN provider such as AKAMAI CDN provider installs a lot of CDN server in the Internet, e.g. in such called Internet Hosting Centers, provided by other companies (e.g. Worldcom) CDN Provider replicates customer's content to lots of its CDN server, distributed over the network CDN content will be updated if necessary Origin server in Europe CDN distribution node CDN Server in America CDN Server in Africa CDN Server in Asia 12

13 Example: CNN.COM index.html from JPEG-Picture from i.a.cnn.net DNS alias from a1921.aol.akamai.net 13

14 CDN Architecture Origin Server Content Distribution Monitoring and CDN Management Replica Management Accounting Surrogate Selection, Request Forwarding Clients 14

15 Origin Server Retrieving a specific object Distribution Monitoring and CDN Management Replicat Management Accounting Surrogate Selection, Request Forwarding HTTP request for 1 Origin Server DNS query for 2 End user 3 Clients CDN's authoritative DNS Server HTTP request for Nearby CDN Server Origin Server provides HTML-pages for download Replaces with CDN Provider provides gif files Uses its authoritative DNS Server to route redirect requests (distance, usage rate) 15

16 Origin Server Distribution Surrogate Selection Monitoring and CDN Management Replicat Management Accounting Surrogate Selection, Request Forwarding Which Surrogate to choose for answering the request? Set of Surrogates Clients Request Selection Criterias: Surrogate load and availability Round-Trip-Time and packet loss Distance between client and surrogate location Requested service/object (e.g. specialised surrogates for video streaming) Overall network performance Active techniques: Additional activity (measurement) during each request Scalability problems Passive techniques: Precalculated surrogate selection (Routing tables) 16

17 Origin Server Distribution Request Forwarding Monitoring and CDN Management Replicat Management Accounting Surrogate Selection, Request Forwarding How to forward a request to a chosen surrogate? Set of Surrogates Clients Request Utilizing load balancing methods Techniques Content-Modifikation (CNN.COM example) DNS (Smart Directory Server) Frontend Load-Balancer scalability problems CDN providers use their own proprietary solutions! Quality of proprietary algorithms define how successful a CDN provider will be on the market. 17

18 Origin Server Replica Management Distribution Monitoring and CDN Management Replicat Management Accounting Surrogate Selection, Request Forwarding Problem: Where to place a surrogate? Clients Criterias: Maximize quality for all clients Minimize investments in additional infrastructure Strategies: Equally balanced load on surrogates Direct connections to as many ISP networks as possible Analysis of access statistics 18

19 Origin Server Distribution Content Distribution (1) Set of content objects Monitoring and CDN Management Set of Surrogates Replicat Management Accounting Surrogate Selection, Request Forwarding Clients Where to place a content object? Goal: Maximize quality for all content users Strategies: Distribution on demand (pull based) versus distribution in advance (push based) Cooperation between surrogates: yes/no Static versus dynamic distribution Considering local or global informationen 19

20 Origin Server Content Distribution (2) Distribution Monitoring and CDN Management Replicat Management Accounting Surrogate Selection, Request Forwarding Problem: How to realize data consistency and data exchange between surrogates? Clients Data Consistency Periodical Synchronization: small time slot for inconsistencies Change notifications: very small time slot for inconsistencies Data Exchange Unidirectional: TCP connections or specialized optimizations (separate networks, parallel TCP connections) Multicast: on network or application layer (overlay) Broadcast: e.g. utilizing satellite transmissions 20

21 Summarizing Web Caching and CDN Solved problems so far: User's point of view Improved response delays (physical delay) TV like quality high fidelity (End-to-end bandwidth & packet loss) Content provider's point of view Economic scaling of providing service Instead using big server farms for distribution of information and replication the whole network is used Avoiding of connection bottlenecks in local networks Better quality for users Both approaches still follow the traditional client-server paradigm! 21

22 Categories of Content Distribution P2P Networks

23 P2P Networks Definition / Idea Share resources available at the edges of the Internet Resources are: overlay structure (1) Content (2) Storage (3) CPU, bandwidth etc. Peers work as server as well as client = Servent highly scalable Turning away from the ancient client-server paradigm 23

24 Comparing P2P with conventional networks Conventional Networks P2P Networks Rely on specific infrastructure offering transport services Centralized approach: content is stored and provided by some central server(s) Static network structure Form overlay structures focusing on content allocation and distribution Highly decentralized approach: locate desired content at some participating peer whose address is provided to the searching peer P2P networks are subject to frequent changes (peers leaving/arriving) We are focussing on technical aspects while neglecting the legal aspects of P2P networks. 24

25 Classification of P2P Networks Unstructured P2P Centralized P2P Structured P2P Pure P2P Hybrid P2P Distributed Hash Table Central Server for Coordination and Retrieval Example: Napster No central entities Any entity can be removed without loss of functionality Example: Gnutella Dynamic central entities Example: JXTA, Gnutella2, BitTorrent No central entities Connections in the overlay are fixed, i.e. placement of replicats is fixed Example: Chord 25

26 Centralized P2P (1) Connection to Napster Server: publish IP address and files, which can be shared (2) Request server for wanted object. Server returns a list of peers, which has object. (3) Selection of a peer (on the basis of estimated download time, available bandwidth resp. after pinging P2Pconnection to peer) and download D ir e c to r y S e r v e r 1 1 C lie n t C lie n t C lie n t 1 3 C lie n t C lie n t Example: Napster 26

27 Problems of a Central Directory Single-Point-of-Failure If the central directory server crashes, the entire P2P application crashes. Performance Bottleneck In large P2P systems with hundreds of thousands connected users, the central directory server has to cope huge amounts of data and thousands of queries per second. Copyright infringement and free speech Legal proceedings or censorship may result in shutting down the central directory server, thus deactivating the P2P network. The salient drawback of using a centralized directory server is that the P2P application is only partially decentralized. Traffic decentralized, management still centralized 27

28 Decentralized or Pure P2P No central entities at all Content-location directory distributed over the peers themselves Advantages: No single-point-of-failure No performance bottleneck No censorship possible Examples: Gnutella, Freenet 28

29 Gnutella is an open communication protocol for P2P file sharing Communication establishment over bootstrapping Hand-shake with an already known member (host cache) of the Gnutella network (preconfigured list in client software) Retrieve an actual list of active peers Establish connection to the neighborhood peers 29

30 Query Flooding Discovering new peers in Gnutella Send a broadcast ping Active peers answer with a pong Locating specific content in Gnutella Iterative search Send a Query msg to all neighbours IF neighbour N1 owns content THEN answer with QueryHit msg ELSE pass on Query msg to next peers Query msg contain TTL (max. 10 hops) Swarm download if more than one peer owns the requested content 30

31 The Problem with Query Flooding Kelsey Anderson: Analysis of the Traffic on the Gnutella Network. University of California, San Diego, CSE222 Final Project, March 2001 Big overhead, few results Scalability 31

32 Hybrid P2P Challenge: How to combine Efficiency of centralized approach with Robustness of decentralized approach Solution: Transparent separation between Super Nodes (SN) build a high-speed backbone for the P2P network Earn or loose their privileges due to their system ressources Keep track of all content offered by related ordinary nodes Ordinary Nodes (ON) Content Hash = Improved identifier for content Seamless retrieval from different peers Intelligent two-tier architecture enhances routing performance and scalability Examples: FastTrack, KaZaA 32

33 The KaZaA Architecture Supernodes know, and communicate with each other Each supernode is related to approx ordinary ones Peer Super node 33

34 Managing the KaZaA Overlay Network Joining the P2P network User gets list of super nodes when downloading the software Searching the list for operating super node, connection establishment Receiving an actual list of super nodes, ping to 5 of this nodes, choose super node with lowest RTT as superior node When super nodes leaves, peer gets new list and chooses new one Locating and retrieving specific content Peer sends search request to super node Returns list of results else send up request to neighbouring super nodes Each query is only directed to a subset of all super nodes Parallel downloads are possible due to unambiguous content hashes 34

35 The Lookup Problem Probably the most important aspect of P2P networks Where to store, and how to find a certain data item in a distributed system without any centralized control or coordination? Klaus Wehrle, Stefan Götz, and Simon Rieche: Distributed Hash Tables. In: P2P Systems and Applications, R. Steinmetz and K. Wehrle (Eds.), LNCS 3485, pp , Springer Verlag,

36 Structured P2P The Academic Approach In unstructured P2P networks Content is duplicated randomly on peering nodes Centralized approach: Relocation of content easy but does not scale well Fully decentralized approach: Relocation of content easy but wasteful There is no guarantee for a result when searching since the lifetime of request messages is restricted to a limited number of hops Central servers suffer from a linear complexity for storage Flooding-based require costly breadth-first search which leads to scalability problems in terms of communication overhead In structured P2P networks Content location follows specific patterns no flooding needed Distributed Hash Tables (DHT) = central mechanism for indexing and searching content Afford guaranties when searching for an object Examples: Chord, Pastry, Kademlia (part of BitTorrent and emule) mainly differ in routing 36

37 Introducing Distributed Hash Tables (DHT) Provide a global view of data distributed among many nodes, independent of their actual location Location of data depends on the current DHT state, not on the data Klaus Wehrle, Stefan Götz, and Simon Rieche: Distributed Hash Tables. In: P2P Systems and Applications, R. Steinmetz and K. Wehrle (Eds.), LNCS 3485, pp , Springer Verlag,

38 Characteristics of Distributed Hash Tables Each DHT node manages a small number (O(log N), with N=number of nodes) of references to other nodes. Mapping nodes and data items into common address space Node-ID=DHT(Node name) and Key=DHT(Data name), respectively Queries are routed via a small number of nodes to the target node Data items can be located by routing via O(log N) hops Initial node of a lookup request may be any node of the DHT Equally distributing identifiers of nodes and data items Load for retrieving items should be balanced equally among all nodes No node plays a distinct role within the system No hot spots or bottlenecks Departure or elimination of a node has no impact on functionality Robustness against random failures and attacks A distributed index provides a definitive answer about results. If a data item is stored in the system, the DHT guarantees that the data is found. 38

39 The Chord Protocol Routing (for N peer nodes): Each peer stores information about O(log2(N)) other peers Finger table of peer n: Entry at row i points to the first peer s whose ID is at least 2i-1 larger than n: s = successor (n+2i-1) Storing: Data item key hosted by node with ID key Node is responsible for all keys that precede its ID Lookup: Iterative: search next peer in finger table with Node-ID Key and ask for successor(key) -> closest predecessor Terminate, when successor(key) found O(log2N) iterations necessary 39

40 Finger table ID=1 Chord Routing i ID + 2i-1 successor Target ID=0 1 7 Finger table ID=3 2 N=7 6 i ID + 2i-1 successor Target Active Node Rule: On node n, table entry at row i identifies the first node that succeeds n by at least 2i-1. 40

41 Chord Storing 6,7 ID= ,4,5 2 N= ,2 Keys responsible for 4 0 Active Node Nodes are arranged in ring structure ordered by the node id Function Node = successor(k): Key k will be assigned to the first peer with a node id > k 41

42 Finger table ID=1 Chord Lookup Example: lookup peer responsible for key 7 7 i ID + 2i-1 successor Target ID= N=7 6 3 Finger table ID=6 i ID + 2i-1 successor Target 5 4 O(log N) iterations necessary 42

43 Performance Comparison Search Effort Storage Cost per Node Klaus Wehrle, Stefan Götz, and Simon Rieche: Distributed Hash Tables. In: P2P Systems and Applications, R. Steinmetz and K. Wehrle (Eds.), LNCS 3485, pp , Springer Verlag,

44 Conclusion Motivation: Enhance service quality for content users Web Caching Widely used in the Internet Mainly locally used: User, ISP, Content Provider Does not solve the flash crowd problem Content Distribution Networks Global infrastructure for content distribution Successful business model: AKAMAI P2P Networks No infrastructure investments necessary Widely used in the Internet, significant part of network traffic Several techniques depending on the specific use case Next lecture: Multimedia Applications, VoIP 44

Telematics Chapter 9: Peer-to-Peer Networks

Telematics Chapter 9: Peer-to-Peer Networks Telematics Chapter 9: Peer-to-Peer Networks Beispielbild User watching video clip Server with video clips Application Layer Presentation Layer Application Layer Presentation Layer Session Layer Session

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. File Sharing

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. File Sharing Department of Computer Science Institute for System Architecture, Chair for Computer Networks File Sharing What is file sharing? File sharing is the practice of making files available for other users to

More information

Overview Computer Networking Lecture 16: Delivering Content: Peer to Peer and CDNs Peter Steenkiste

Overview Computer Networking Lecture 16: Delivering Content: Peer to Peer and CDNs Peter Steenkiste Overview 5-44 5-44 Computer Networking 5-64 Lecture 6: Delivering Content: Peer to Peer and CDNs Peter Steenkiste Web Consistent hashing Peer-to-peer Motivation Architectures Discussion CDN Video Fall

More information

Flooded Queries (Gnutella) Centralized Lookup (Napster) Routed Queries (Freenet, Chord, etc.) Overview N 2 N 1 N 3 N 4 N 8 N 9 N N 7 N 6 N 9

Flooded Queries (Gnutella) Centralized Lookup (Napster) Routed Queries (Freenet, Chord, etc.) Overview N 2 N 1 N 3 N 4 N 8 N 9 N N 7 N 6 N 9 Peer-to-Peer Networks -: Computer Networking L-: PP Typically each member stores/provides access to content Has quickly grown in popularity Bulk of traffic from/to CMU is Kazaa! Basically a replication

More information

Scalable overlay Networks

Scalable overlay Networks overlay Networks Dr. Samu Varjonen 1 Lectures MO 15.01. C122 Introduction. Exercises. Motivation. TH 18.01. DK117 Unstructured networks I MO 22.01. C122 Unstructured networks II TH 25.01. DK117 Bittorrent

More information

Web caches (proxy server) Applications (part 3) Applications (part 3) Caching example (1) More about Web caching

Web caches (proxy server) Applications (part 3) Applications (part 3) Caching example (1) More about Web caching By the end of this lecture, you should be able to. Explain the idea of edge delivery Explain the operation of CDNs Explain the operation of P2P file sharing systems such as Napster and Gnutella Web caches

More information

CS 640 Introduction to Computer Networks. Today s lecture. What is P2P? Lecture30. Peer to peer applications

CS 640 Introduction to Computer Networks. Today s lecture. What is P2P? Lecture30. Peer to peer applications Introduction to Computer Networks Lecture30 Today s lecture Peer to peer applications Napster Gnutella KaZaA Chord What is P2P? Significant autonomy from central servers Exploits resources at the edges

More information

Peer-to-Peer (P2P) Systems

Peer-to-Peer (P2P) Systems Peer-to-Peer (P2P) Systems What Does Peer-to-Peer Mean? A generic name for systems in which peers communicate directly and not through a server Characteristics: decentralized self-organizing distributed

More information

DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES

DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Outline System Architectural Design Issues Centralized Architectures Application

More information

Peer-to-Peer Internet Applications: A Review

Peer-to-Peer Internet Applications: A Review Peer-to-Peer Internet Applications: A Review Davide Quaglia 01/14/10 Introduction Key points Lookup task Outline Centralized (Napster) Query flooding (Gnutella) Distributed Hash Table (Chord) Simulation

More information

CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4. Xiaowei Yang

CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4. Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4 Xiaowei Yang xwy@cs.duke.edu Overview Problem Evolving solutions IP multicast Proxy caching Content distribution networks

More information

Content Overlays. Nick Feamster CS 7260 March 12, 2007

Content Overlays. Nick Feamster CS 7260 March 12, 2007 Content Overlays Nick Feamster CS 7260 March 12, 2007 Content Overlays Distributed content storage and retrieval Two primary approaches: Structured overlay Unstructured overlay Today s paper: Chord Not

More information

Telecommunication Services Engineering Lab. Roch H. Glitho

Telecommunication Services Engineering Lab. Roch H. Glitho 1 Support Infrastructure Support infrastructure for application layer Why? Re-usability across application layer protocols Modularity (i.e. separation between application layer protocol specification /

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [P2P SYSTEMS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Byzantine failures vs malicious nodes

More information

Peer-to-Peer Systems. Chapter General Characteristics

Peer-to-Peer Systems. Chapter General Characteristics Chapter 2 Peer-to-Peer Systems Abstract In this chapter, a basic overview is given of P2P systems, architectures, and search strategies in P2P systems. More specific concepts that are outlined include

More information

416 Distributed Systems. March 23, 2018 CDNs

416 Distributed Systems. March 23, 2018 CDNs 416 Distributed Systems March 23, 2018 CDNs Outline DNS Design (317) Content Distribution Networks 2 Typical Workload (Web Pages) Multiple (typically small) objects per page File sizes are heavy-tailed

More information

Introduction to P2P Computing

Introduction to P2P Computing Introduction to P2P Computing Nicola Dragoni Embedded Systems Engineering DTU Compute 1. Introduction A. Peer-to-Peer vs. Client/Server B. Overlay Networks 2. Common Topologies 3. Data Location 4. Gnutella

More information

Today s class. CSE 123b Communications Software. Telnet. Network File System (NFS) Quick descriptions of some other sample applications

Today s class. CSE 123b Communications Software. Telnet. Network File System (NFS) Quick descriptions of some other sample applications CSE 123b Communications Software Spring 2004 Today s class Quick examples of other application protocols Mail, telnet, NFS Content Distribution Networks (CDN) Lecture 12: Content Distribution Networks

More information

EE 122: Peer-to-Peer (P2P) Networks. Ion Stoica November 27, 2002

EE 122: Peer-to-Peer (P2P) Networks. Ion Stoica November 27, 2002 EE 122: Peer-to-Peer (P2P) Networks Ion Stoica November 27, 22 How Did it Start? A killer application: Naptser - Free music over the Internet Key idea: share the storage and bandwidth of individual (home)

More information

Overlay and P2P Networks. Unstructured networks. Prof. Sasu Tarkoma

Overlay and P2P Networks. Unstructured networks. Prof. Sasu Tarkoma Overlay and P2P Networks Unstructured networks Prof. Sasu Tarkoma 20.1.2014 Contents P2P index revisited Unstructured networks Gnutella Bloom filters BitTorrent Freenet Summary of unstructured networks

More information

CSE 123b Communications Software

CSE 123b Communications Software CSE 123b Communications Software Spring 2002 Lecture 13: Content Distribution Networks (plus some other applications) Stefan Savage Some slides courtesy Srini Seshan Today s class Quick examples of other

More information

CSE 124: CONTENT-DISTRIBUTION NETWORKS. George Porter December 4, 2017

CSE 124: CONTENT-DISTRIBUTION NETWORKS. George Porter December 4, 2017 CSE 124: CONTENT-DISTRIBUTION NETWORKS George Porter December 4, 2017 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons

More information

*Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen)

*Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen) Distributed Hash Tables (DHT) Jukka K. Nurminen *Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen) The Architectures of st and nd Gen. PP Client-Server Peer-to-Peer.

More information

Distributed Systems. 21. Content Delivery Networks (CDN) Paul Krzyzanowski. Rutgers University. Fall 2018

Distributed Systems. 21. Content Delivery Networks (CDN) Paul Krzyzanowski. Rutgers University. Fall 2018 Distributed Systems 21. Content Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2018 1 2 Motivation Serving web content from one location presents problems Scalability Reliability Performance

More information

Peer-to-Peer Networks

Peer-to-Peer Networks Peer-to-Peer Networks 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia Quiz #1 is next week

More information

Unit 8 Peer-to-Peer Networking

Unit 8 Peer-to-Peer Networking Unit 8 Peer-to-Peer Networking P2P Systems Use the vast resources of machines at the edge of the Internet to build a network that allows resource sharing without any central authority. Client/Server System

More information

Introduction to Peer-to-Peer Systems

Introduction to Peer-to-Peer Systems Introduction Introduction to Peer-to-Peer Systems Peer-to-peer (PP) systems have become extremely popular and contribute to vast amounts of Internet traffic PP basic definition: A PP system is a distributed

More information

Lecture 21 P2P. Napster. Centralized Index. Napster. Gnutella. Peer-to-Peer Model March 16, Overview:

Lecture 21 P2P. Napster. Centralized Index. Napster. Gnutella. Peer-to-Peer Model March 16, Overview: PP Lecture 1 Peer-to-Peer Model March 16, 005 Overview: centralized database: Napster query flooding: Gnutella intelligent query flooding: KaZaA swarming: BitTorrent unstructured overlay routing: Freenet

More information

*Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen)

*Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen) Distributed Hash Tables (DHT) Jukka K. Nurminen *Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen) The Architectures of st and nd Gen. PP Client-Server Peer-to-Peer.

More information

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE for for March 10, 2006 Agenda for Peer-to-Peer Sytems Initial approaches to Their Limitations CAN - Applications of CAN Design Details Benefits for Distributed and a decentralized architecture No centralized

More information

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today Network Science: Peer-to-Peer Systems Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Introduction Peer-to-peer (PP) systems have become

More information

CS November 2018

CS November 2018 Distributed Systems 21. Delivery Networks (CDN) Paul Krzyzanowski Rutgers University Fall 2018 1 2 Motivation Serving web content from one location presents problems Scalability Reliability Performance

More information

Distributed Hash Tables (DHT)

Distributed Hash Tables (DHT) Distributed Hash Tables (DHT) Jukka K. Nurminen Aalto University *Adapted from slides provided by Stefan Götz and Klaus Wehrle (University of Tübingen) The Architectures of st and nd Gen. PP Client-Server

More information

Overlay networks. To do. Overlay networks. P2P evolution DHTs in general, Chord and Kademlia. Turtles all the way down. q q q

Overlay networks. To do. Overlay networks. P2P evolution DHTs in general, Chord and Kademlia. Turtles all the way down. q q q Overlay networks To do q q q Overlay networks P2P evolution DHTs in general, Chord and Kademlia Turtles all the way down Overlay networks virtual networks Different applications with a wide range of needs

More information

L3S Research Center, University of Hannover

L3S Research Center, University of Hannover , University of Hannover Structured Peer-to to-peer Networks Wolf-Tilo Balke and Wolf Siberski 3..6 *Original slides provided by K. Wehrle, S. Götz, S. Rieche (University of Tübingen) Peer-to-Peer Systems

More information

Making Gnutella-like P2P Systems Scalable

Making Gnutella-like P2P Systems Scalable Making Gnutella-like P2P Systems Scalable Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker Presented by: Herman Li Mar 2, 2005 Outline What are peer-to-peer (P2P) systems? Early P2P systems

More information

Overlay and P2P Networks. Unstructured networks. Prof. Sasu Tarkoma

Overlay and P2P Networks. Unstructured networks. Prof. Sasu Tarkoma Overlay and P2P Networks Unstructured networks Prof. Sasu Tarkoma 19.1.2015 Contents Unstructured networks Last week Napster Skype This week: Gnutella BitTorrent P2P Index It is crucial to be able to find

More information

CONTENT-DISTRIBUTION NETWORKS

CONTENT-DISTRIBUTION NETWORKS CONTENT-DISTRIBUTION NETWORKS George Porter June 1, 2018 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license These

More information

Overlay and P2P Networks. Unstructured networks. PhD. Samu Varjonen

Overlay and P2P Networks. Unstructured networks. PhD. Samu Varjonen Overlay and P2P Networks Unstructured networks PhD. Samu Varjonen 25.1.2016 Contents Unstructured networks Last week Napster Skype This week: Gnutella BitTorrent P2P Index It is crucial to be able to find

More information

Searching for Shared Resources: DHT in General

Searching for Shared Resources: DHT in General 1 ELT-53206 Peer-to-Peer Networks Searching for Shared Resources: DHT in General Mathieu Devos Tampere University of Technology Department of Electronics and Communications Engineering Based on the original

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks P2P Systems Jianping Pan Summer 2007 5/30/07 csc485b/586b/seng480b 1 C/S vs P2P Client-server server is well-known server may become a bottleneck Peer-to-peer everyone is a (potential)

More information

Chapter 2: Application layer

Chapter 2: Application layer Chapter 2: Application layer 2. Principles of network applications app architectures app requirements 2.2 Web and HTTP 2.4 Electronic Mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 Socket programming

More information

Internet Technology. 06. Exam 1 Review Paul Krzyzanowski. Rutgers University. Spring 2016

Internet Technology. 06. Exam 1 Review Paul Krzyzanowski. Rutgers University. Spring 2016 Internet Technology 06. Exam 1 Review Paul Krzyzanowski Rutgers University Spring 2016 March 2, 2016 2016 Paul Krzyzanowski 1 Question 1 Defend or contradict this statement: for maximum efficiency, at

More information

Internet Technology 3/2/2016

Internet Technology 3/2/2016 Question 1 Defend or contradict this statement: for maximum efficiency, at the expense of reliability, an application should bypass TCP or UDP and use IP directly for communication. Internet Technology

More information

Last Class: Consistency Models. Today: Implementation Issues

Last Class: Consistency Models. Today: Implementation Issues Last Class: Consistency Models Need for replication Data-centric consistency Strict, linearizable, sequential, causal, FIFO Lecture 15, page 1 Today: Implementation Issues Replica placement Use web caching

More information

Content Search. Unstructured P2P

Content Search. Unstructured P2P Content Search Unstructured P2P Prof. Jukka K. Nurminen Data Communications Software (DCS) Lab, Department of Computer Science and Engineering, Aalto University *Partly adapted from original slides provided

More information

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University CPSC 4/5 PP Lookup Service Ennan Zhai Computer Science Department Yale University Recall: Lec- Network basics: - OSI model and how Internet works - Socket APIs red PP network (Gnutella, KaZaA, etc.) UseNet

More information

Peer to Peer Networks

Peer to Peer Networks Sungkyunkwan University Peer to Peer Networks Prepared by T. Le-Duc and H. Choo Copyright 2000-2017 Networking Laboratory Presentation Outline 2.1 Introduction 2.2 Client-Server Paradigm 2.3 Peer-To-Peer

More information

Searching for Shared Resources: DHT in General

Searching for Shared Resources: DHT in General 1 ELT-53207 P2P & IoT Systems Searching for Shared Resources: DHT in General Mathieu Devos Tampere University of Technology Department of Electronics and Communications Engineering Based on the original

More information

Introduction to Peer-to-Peer Networks

Introduction to Peer-to-Peer Networks Introduction to Peer-to-Peer Networks The Story of Peer-to-Peer The Nature of Peer-to-Peer: Generals & Paradigms Unstructured Peer-to-Peer Systems Sample Applications 1 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

More information

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley

More information

Distributed Knowledge Organization and Peer-to-Peer Networks

Distributed Knowledge Organization and Peer-to-Peer Networks Knowledge Organization and Peer-to-Peer Networks Klaus Wehrle Group Chair of Computer Science IV RWTH Aachen University http://ds.cs.rwth-aachen.de 1 Organization of Information Essential challenge in?

More information

Files/News/Software Distribution on Demand. Replicated Internet Sites. Means of Content Distribution. Computer Networks 11/9/2009

Files/News/Software Distribution on Demand. Replicated Internet Sites. Means of Content Distribution. Computer Networks 11/9/2009 Content Distribution Kai Shen Files/News/Software Distribution on Demand Content distribution: Popular web directory sites like Yahoo; Breaking news from CNN; Online software downloads from Linux kernel

More information

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations.

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations. Goals CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University of California, Berkeley

More information

CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing. March 8, 2016 Prof. George Porter

CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing. March 8, 2016 Prof. George Porter CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing March 8, 2016 rof. George orter Outline Today: eer-to-peer networking Distributed hash tables Consistent hashing

More information

Distributed Systems. 17. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems. 17. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 17. Distributed Lookup Paul Krzyzanowski Rutgers University Fall 2016 1 Distributed Lookup Look up (key, value) Cooperating set of nodes Ideally: No central coordinator Some nodes can

More information

Motivation for peer-to-peer

Motivation for peer-to-peer Peer-to-peer systems INF 5040 autumn 2015 lecturer: Roman Vitenberg INF5040, Frank Eliassen & Roman Vitenberg 1 Motivation for peer-to-peer Ø Inherent restrictions of the standard client/ server model

More information

INF5070 media storage and distribution systems. to-peer Systems 10/

INF5070 media storage and distribution systems. to-peer Systems 10/ INF5070 Media Storage and Distribution Systems: Peer-to to-peer Systems 10/11 2003 Client-Server! Traditional distributed computing! Successful architecture, and will continue to be so (adding proxy servers)!

More information

Advanced Distributed Systems. Peer to peer systems. Reference. Reference. What is P2P? Unstructured P2P Systems Structured P2P Systems

Advanced Distributed Systems. Peer to peer systems. Reference. Reference. What is P2P? Unstructured P2P Systems Structured P2P Systems Advanced Distributed Systems Peer to peer systems Karl M. Göschka Karl.Goeschka@tuwien.ac.at http://www.infosys.tuwien.ac.at/teaching/courses/ AdvancedDistributedSystems/ What is P2P Unstructured P2P Systems

More information

Today: World Wide Web! Traditional Web-Based Systems!

Today: World Wide Web! Traditional Web-Based Systems! Today: World Wide Web! WWW principles Case Study: web caching as an illustrative example Invalidate versus updates Push versus Pull Cooperation between replicas Lecture 22, page 1 Traditional Web-Based

More information

Overlay and P2P Networks. Introduction and unstructured networks. Prof. Sasu Tarkoma

Overlay and P2P Networks. Introduction and unstructured networks. Prof. Sasu Tarkoma Overlay and P2P Networks Introduction and unstructured networks Prof. Sasu Tarkoma 14.1.2013 Contents Overlay networks and intro to networking Unstructured networks Overlay Networks An overlay network

More information

Lecture 8: Application Layer P2P Applications and DHTs

Lecture 8: Application Layer P2P Applications and DHTs Lecture 8: Application Layer P2P Applications and DHTs COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

15-744: Computer Networking P2P/DHT

15-744: Computer Networking P2P/DHT 15-744: Computer Networking P2P/DHT Overview P2P Lookup Overview Centralized/Flooded Lookups Routed Lookups Chord Comparison of DHTs 2 Peer-to-Peer Networks Typically each member stores/provides access

More information

Overlay networks. Today. l Overlays networks l P2P evolution l Pastry as a routing overlay example

Overlay networks. Today. l Overlays networks l P2P evolution l Pastry as a routing overlay example Overlay networks Today l Overlays networks l P2P evolution l Pastry as a routing overlay eample Network virtualization and overlays " Different applications with a range of demands/needs network virtualization

More information

Page 1. How Did it Start?" Model" Main Challenge" CS162 Operating Systems and Systems Programming Lecture 24. Peer-to-Peer Networks"

Page 1. How Did it Start? Model Main Challenge CS162 Operating Systems and Systems Programming Lecture 24. Peer-to-Peer Networks How Did it Start?" CS162 Operating Systems and Systems Programming Lecture 24 Peer-to-Peer Networks" A killer application: Napster (1999) Free music over the Internet Key idea: share the storage and bandwidth

More information

CS November 2017

CS November 2017 Distributed Systems 21. Delivery Networks () Paul Krzyzanowski Rutgers University Fall 2017 1 2 Motivation Serving web content from one location presents problems Scalability Reliability Performance Flash

More information

Peer-to-Peer Protocols and Systems. TA: David Murray Spring /19/2006

Peer-to-Peer Protocols and Systems. TA: David Murray Spring /19/2006 Peer-to-Peer Protocols and Systems TA: David Murray 15-441 Spring 2006 4/19/2006 P2P - Outline What is P2P? P2P System Types 1) File-sharing 2) File distribution 3) Streaming Uses & Challenges 2 Problem:

More information

INF5071 Performance in distributed systems: Distribution Part III

INF5071 Performance in distributed systems: Distribution Part III INF5071 Performance in distributed systems: Distribution Part III 5 November 2010 Client-Server Traditional distributed computing Successful architecture, and will continue to be so (adding proxy servers)

More information

Architectures for Distributed Systems

Architectures for Distributed Systems Distributed Systems and Middleware 2013 2: Architectures Architectures for Distributed Systems Components A distributed system consists of components Each component has well-defined interface, can be replaced

More information

6. Peer-to-peer (P2P) networks I.

6. Peer-to-peer (P2P) networks I. 6. Peer-to-peer (P2P) networks I. PA159: Net-Centric Computing I. Eva Hladká Faculty of Informatics Masaryk University Autumn 2010 Eva Hladká (FI MU) 6. P2P networks I. Autumn 2010 1 / 46 Lecture Overview

More information

416 Distributed Systems. Mar 3, Peer-to-Peer Part 2

416 Distributed Systems. Mar 3, Peer-to-Peer Part 2 416 Distributed Systems Mar 3, Peer-to-Peer Part 2 Scaling Problem Millions of clients server and network meltdown 2 P2P System Leverage the resources of client machines (peers) Traditional: Computation,

More information

Peer to Peer Systems and Probabilistic Protocols

Peer to Peer Systems and Probabilistic Protocols Distributed Systems 600.437 Peer to Peer Systems & Probabilistic Protocols Department of Computer Science The Johns Hopkins University 1 Peer to Peer Systems and Probabilistic Protocols Lecture 11 Good

More information

Peer-to-peer systems and overlay networks

Peer-to-peer systems and overlay networks Complex Adaptive Systems C.d.L. Informatica Università di Bologna Peer-to-peer systems and overlay networks Fabio Picconi Dipartimento di Scienze dell Informazione 1 Outline Introduction to P2P systems

More information

L3S Research Center, University of Hannover

L3S Research Center, University of Hannover , University of Hannover Dynamics of Wolf-Tilo Balke and Wolf Siberski 21.11.2007 *Original slides provided by S. Rieche, H. Niedermayer, S. Götz, K. Wehrle (University of Tübingen) and A. Datta, K. Aberer

More information

Peer to Peer Networks

Peer to Peer Networks Sungkyunkwan University Peer to Peer Networks Prepared by T. Le-Duc and H. Choo Copyright 2000-2018 Networking Laboratory P2P Applications Traditional P2P applications: for file sharing BitTorrent, Emule

More information

Addressed Issue. P2P What are we looking at? What is Peer-to-Peer? What can databases do for P2P? What can databases do for P2P?

Addressed Issue. P2P What are we looking at? What is Peer-to-Peer? What can databases do for P2P? What can databases do for P2P? Peer-to-Peer Data Management - Part 1- Alex Coman acoman@cs.ualberta.ca Addressed Issue [1] Placement and retrieval of data [2] Server architectures for hybrid P2P [3] Improve search in pure P2P systems

More information

Slides for Chapter 10: Peer-to-Peer Systems

Slides for Chapter 10: Peer-to-Peer Systems Slides for Chapter 10: Peer-to-Peer Systems From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Overview of Chapter Introduction Napster

More information

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals.

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals. Overlay Networks: Motivations CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University

More information

An Expresway over Chord in Peer-to-Peer Systems

An Expresway over Chord in Peer-to-Peer Systems An Expresway over Chord in Peer-to-Peer Systems Hathai Tanta-ngai Technical Report CS-2005-19 October 18, 2005 Faculty of Computer Science 6050 University Ave., Halifax, Nova Scotia, B3H 1W5, Canada An

More information

Chapter 10: Peer-to-Peer Systems

Chapter 10: Peer-to-Peer Systems Chapter 10: Peer-to-Peer Systems From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 4, Addison-Wesley 2005 Introduction To enable the sharing of data and resources

More information

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 Lecture 6: Overlay Networks CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 1 Overlay networks: Motivations Protocol changes in the network happen very slowly Why? Internet is shared

More information

Ossification of the Internet

Ossification of the Internet Ossification of the Internet The Internet evolved as an experimental packet-switched network Today, many aspects appear to be set in stone - Witness difficulty in getting IP multicast deployed - Major

More information

CMSC 332 Computer Networks P2P and Sockets

CMSC 332 Computer Networks P2P and Sockets CMSC 332 Computer Networks P2P and Sockets Professor Szajda Announcements Programming Assignment 1 is due Thursday Where are we? What sorts of problems are we having? 2 Recap SMTP is the language that

More information

Internet Protocol Stack! Principles of Network Applications! Some Network Apps" (and Their Protocols)! Application-Layer Protocols! Our goals:!

Internet Protocol Stack! Principles of Network Applications! Some Network Apps (and Their Protocols)! Application-Layer Protocols! Our goals:! Internet Protocol Stack! Principles of Network Applications! application: supporting network applications!! HTTP,, FTP, etc.! transport: endhost-endhost data transfer!! TCP, UDP! network: routing of datagrams

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 9: Peer-to-Peer Systems Previous Topics Data Database design Queries Query processing Localization Operators Optimization Transactions

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. Caching, Content Distribution and Load Balancing

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. Caching, Content Distribution and Load Balancing Department of Computer Science Institute for System Architecture, Chair for Computer Networks Caching, Content Distribution and Load Balancing Motivation Which optimization means do exist? Where should

More information

Content Distribution. Today. l Challenges of content delivery l Content distribution networks l CDN through an example

Content Distribution. Today. l Challenges of content delivery l Content distribution networks l CDN through an example Content Distribution Today l Challenges of content delivery l Content distribution networks l CDN through an example Trends and application need " Some clear trends Growing number of and faster networks

More information

A Survey of Peer-to-Peer Content Distribution Technologies

A Survey of Peer-to-Peer Content Distribution Technologies A Survey of Peer-to-Peer Content Distribution Technologies Stephanos Androutsellis-Theotokis and Diomidis Spinellis ACM Computing Surveys, December 2004 Presenter: Seung-hwan Baek Ja-eun Choi Outline Overview

More information

Peer-to-Peer Applications Reading: 9.4

Peer-to-Peer Applications Reading: 9.4 Peer-to-Peer Applications Reading: 9.4 Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources,

More information

EE 122: Peer-to-Peer Networks

EE 122: Peer-to-Peer Networks EE 122: Peer-to-Peer Networks Ion Stoica (and Brighten Godfrey) TAs: Lucian Popa, David Zats and Ganesh Ananthanarayanan http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer

More information

A Scalable Content- Addressable Network

A Scalable Content- Addressable Network A Scalable Content- Addressable Network In Proceedings of ACM SIGCOMM 2001 S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker Presented by L.G. Alex Sung 9th March 2005 for CS856 1 Outline CAN basics

More information

Server Selection Mechanism. Server Selection Policy. Content Distribution Network. Content Distribution Networks. Proactive content replication

Server Selection Mechanism. Server Selection Policy. Content Distribution Network. Content Distribution Networks. Proactive content replication Content Distribution Network Content Distribution Networks COS : Advanced Computer Systems Lecture Mike Freedman Proactive content replication Content provider (e.g., CNN) contracts with a CDN CDN replicates

More information

Scalable overlay Networks

Scalable overlay Networks overlay Networks Dr. Samu Varjonen 1 Contents Course overview Lectures Assignments/Exercises 2 Course Overview Overlay networks and peer-to-peer technologies have become key components for building large

More information

Distributed Systems Principles and Paradigms. Chapter 12: Distributed Web-Based Systems

Distributed Systems Principles and Paradigms. Chapter 12: Distributed Web-Based Systems Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science steen@cs.vu.nl Chapter 12: Distributed -Based Systems Version: December 10, 2012 Distributed -Based Systems

More information

CS 43: Computer Networks. 14: DHTs and CDNs October 3, 2018

CS 43: Computer Networks. 14: DHTs and CDNs October 3, 2018 CS 43: Computer Networks 14: DHTs and CDNs October 3, 2018 If Alice wants to stream Mad Men over a highspeed Internet connection her browser may choose a video rate A. in the range of Mbps. B. in the range

More information

Naming in Distributed Systems

Naming in Distributed Systems Naming in Distributed Systems Dr. Yong Guan Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Outline for Today s Talk Overview: Names, Identifiers,

More information

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University CPSC / PP Lookup Service Ennan Zhai Computer Science Department Yale University Recall: Lec- Network basics: - OSI model and how Internet works - Socket APIs red PP network (Gnutella, KaZaA, etc.) UseNet

More information

Peer-to-peer computing research a fad?

Peer-to-peer computing research a fad? Peer-to-peer computing research a fad? Frans Kaashoek kaashoek@lcs.mit.edu NSF Project IRIS http://www.project-iris.net Berkeley, ICSI, MIT, NYU, Rice What is a P2P system? Node Node Node Internet Node

More information

Using peer to peer. Marco Danelutto Dept. Computer Science University of Pisa

Using peer to peer. Marco Danelutto Dept. Computer Science University of Pisa Using peer to peer Marco Danelutto Dept. Computer Science University of Pisa Master Degree (Laurea Magistrale) in Computer Science and Networking Academic Year 2009-2010 Rationale Two common paradigms

More information

Scaling Problem Computer Networking. Lecture 23: Peer-Peer Systems. Fall P2P System. Why p2p?

Scaling Problem Computer Networking. Lecture 23: Peer-Peer Systems. Fall P2P System. Why p2p? Scaling Problem 15-441 Computer Networking Millions of clients server and network meltdown Lecture 23: Peer-Peer Systems Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 2 P2P System Why p2p?

More information