Maximizing Network Lifetime of WirelessHART Networks under Graph Routing

Size: px
Start display at page:

Download "Maximizing Network Lifetime of WirelessHART Networks under Graph Routing"

Transcription

1 Maximizing Network Lifetime of WirelessHART Networks under Graph Routing Chengjie Wu, Dolvara Gunatilaka, Abusayeed Saifullah*, Mo Sha^, Paras Tiwari, Chenyang Lu, Yixin Chen Cyber-Physical Systems Lab, Washington University in St. Louis Missouri University of Science & Technology * Binghamton University ^

2 Wireless for Process Automa1on Emerson 5.9+ billion hours operating experience 26,200+ wireless field networks $ million by 2020 [Market and Market] Offshore Onshore Courtesy: Emerson Process Management Killer App of IoT! 2

3 Industrial Wireless Challenges Ø Reliability Sensor Ø Real-time Ø Control performance Actuator sensor data Ø Energy efficiency: need long battery life in harsh environments! control command Controller 3

4 WirelessHART Ø Industrial reliability q Multi-channel TDMA MAC q Over IEEE PHY q Redundant routes Ø Centralized network manager q collects topology information q generates routes and transmission schedule q disseminates to field devices q re-computes routes when topology changes Industrial wireless standard for process monitoring and control 4

5 Graph Rou1ng Ø Handle link and node failures through path diversity Ø Graph route of a flow q a primary path q a backup path for each node on the primary path s 5 w 7 1, 2 u 3, 4 v 5, 6 d x 4 5 y z primary path backup path Ø Transmissions per hop q Two transmissions on the primary link dedicated TDMA slots q One transmission on the backup link shared CSMA/CA slot 5

6 Energy Cost of Reliability Ø Graph routing improves reliability at cost of energy Ø Measurement: +57% reliability at 1.7 energy compared to single-path source routing [EWSN'15] Graph routing: 88% Source routing: 31% 6

7 Challenges Ø Maximize network lifetime under graph routing q Industry demands multi-year battery life q Efficient routing in response to wireless dynamics Ø Unique challenges for WirelessHART networks q Centralized multi-path graph routing q Transmissions in dedicated and shared slots 7

8 Contribu1ons Ø Problem: network lifetime maximization under graph routing q Network lifetime = time till first node runs out of battery q NP hard Ø Three approaches q Optimal integer programming q Linear relaxation of the integer programming q Efficient greedy heuristic Ø Implementation on a WirelessHART testbed 8

9 Analyzing Power Consump1on Ø Model based on WirelessHART standard Ø 1-2 transmissions on primary path Ø 3 rd transmission on back path q Small probability, but receiver must turn on and listen. Ø Load: power consumption / battery capacity s 5 w 7 1, 2 u 3, 4 v 5, 6 d x 4 5 y z primary path backup path 9

10 Integer Programming Ø Objective: max min node lifetime à min max load Ø Graph route as constraints q An incoming primary link à an outgoing primary link q An incoming primary link à an outgoing backup link q An incoming backup link à an outgoing backup link s 5 w 7 1, 2 u 3, 4 v 5, 6 d x 4 5 y z primary path backup path Ø Optimal solution Ø High computational cost à cannot scale to large networks 10

11 Linear Programming Relaxa1on 1. Relax binary decision variables to real numbers 2. Linear Programming à real number solutions 3. Round real numbers to integer solutions based on threshold 4. Incrementally find the largest threshold with valid routes Ø Implemented in GNU Linear Programming Kit (GLPK) Ø Near optimal solution with affordable computational cost. 11

12 Greedy Heuris1cs Ø Compute routes for flows in the rate monotonic order Ø For each flow: find the graph route with minimum load q Load per node = power consumption / battery capacity q Incrementally add nodes with the smallest load to primary path and update neighbors load q Then select backup path with minimum load d Ø Iterate until no further improvement b c Ø Polynomial complexity s f e 12

13 Evalua1on Ø Implemented on a WirelessHART testbed (69 TelosB motes) q WirelessHART stack (multi-channel TDMA + routing) q Network manager (scheduler + routing) Ø Simulations based on testbed topology WUSTL wireless sensor-actuator network testbed 13

14 Compare to Op1mal (Small Network) Lifetime normalized to optimal solution from Integer Programming 10 nodes, 20 links GH & LP within 80% of optimal SP: Shortest Path RRC [Han 2011] GH: Greedy Heuristic LP: Linear Programming 14

15 Network Life1me (Testbed Topology) LP and GH lead to longer network lifetime 15

16 Execu1on Time (Testbed Topology) GH needs less time than LP 16

17 Conclusion Ø Industrial wireless networks is a killer app for IoT q Driven by industrial standards such as WirelessHART q Deployments rolling out world wide Ø Graph routing enhances reliability at high energy cost à energy efficiency is critical! Ø Three approaches to maximize network lifetime q Integer Programming: optimal q Linear Programming Relaxation: faster q Greedy Heuristic: fastest solution for run-time adaptation Ø Implemented with WirelessHART on testbed 17

18 Reading Ø C. Wu, D. Gunatilaka, A. Saifullah, M. Sha, P.B. Tiwari, C. Lu and Y. Chen, Maximizing Network Lifetime of WirelessHART Networks under Graph Routing, IEEE International Conference on Internet-of-Things Design and Implementation (IoTDI'16), April

Maximizing Network Lifetime of WirelessHART Networks under Graph Routing

Maximizing Network Lifetime of WirelessHART Networks under Graph Routing 2016 IEEE First International Conference on Internet-of-Things Design and Implementation Maximizing Network Lifetime of WirelessHART Networks under Graph Routing Chengjie Wu, Dolvara Gunatilaka, Abusayeed

More information

Maximizing Network Lifetime of WirelessHART Networks under Graph Routing

Maximizing Network Lifetime of WirelessHART Networks under Graph Routing Maximizing Network Lifetime of WirelessHART Networks under Graph Routing Chengjie Wu, Dolvara Gunatilaka, Abusayeed Saifullah, Mo Sha, Paras Babu Tiwari, Chenyang Lu, Yixin Chen Department of Computer

More information

Real-Time Internet of Things

Real-Time Internet of Things Real-Time Internet of Things Chenyang Lu Cyber-Physical Systems Laboratory h7p://www.cse.wustl.edu/~lu/ Internet of Things Ø Convergence of q Miniaturized devices: integrate processor, sensors and radios.

More information

Conflict-Aware Real-Time Routing for Industrial Wireless Sensor-Actuator Networks

Conflict-Aware Real-Time Routing for Industrial Wireless Sensor-Actuator Networks Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2-2-9-29 Conflict-Aware Real-Time

More information

Real-Time and Energy-Efficient Routing for Industrial Wireless Sensor-Actuator Networks

Real-Time and Energy-Efficient Routing for Industrial Wireless Sensor-Actuator Networks Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Winter 12-15-2014 Real-Time and Energy-Efficient

More information

ABUSAYEED SAIFULLAH. Phone: (313) Fax: (313)

ABUSAYEED SAIFULLAH. Phone: (313) Fax: (313) ABUSAYEED SAIFULLAH 5057 Woodward Ave. Suite 14110.2 Department of Computer Science Wayne State University Detroit, MI 48202 Phone: (313) 577-2831 Fax: (313) 577-6868 Email: saifullah@wayne.edu www.cs.wayne.edu/saifullah

More information

Critique #2. Ø Due on 2/13 (Tuesday)

Critique #2. Ø Due on 2/13 (Tuesday) Critique #2 Ø M. Sha, G. Hackmann and C. Lu, Real-world Empirical Studies on Multi- Channel Reliability and Spectrum Usage for Home-Area Sensor Networks, IEEE Transactions on Network and Service Management,

More information

Interference-Aware Real-Time Flow Scheduling for Wireless Sensor Networks

Interference-Aware Real-Time Flow Scheduling for Wireless Sensor Networks Interference-Aware Real-Time Flow Scheduling for Wireless Sensor Networks Octav Chipara, Chengjie Wu, Chenyang Lu, William Griswold University of California, San Diego Washington University in St. Louis

More information

Near Optimal Rate Selection for Wireless Control Systems

Near Optimal Rate Selection for Wireless Control Systems xx Near Optimal Rate Selection for Wireless Control Systems Abusayeed Saifullah, Chengjie Wu, Paras Babu Tiwari, You Xu, Yong Fu, Chenyang Lu, and Yixin Chen, Washington University in St. Louis With the

More information

Principles of Wireless Sensor Networks

Principles of Wireless Sensor Networks Principles of Wireless Sensor Networks www.kth.se/student/program-kurser/kurshemsidor/kurshemsidor/control/el2745 Lecture 6 Stockholm, February 6, 2012 Carlo Fischione Royal Institute of Technology - KTH

More information

Distributed Graph Routing for WirelessHART Networks

Distributed Graph Routing for WirelessHART Networks Graph Routing for WirelessHART Networks Venkata P Modekurthy Department of Computer Science Wayne State University Detroit, MI, USA Abusayeed Saifullah Department of Computer Science Wayne State University

More information

696 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 3, JUNE Mo Sha, Member, IEEE, Dolvara Gunatilaka, Chengjie Wu, and Chenyang Lu, Fellow, IEEE

696 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 3, JUNE Mo Sha, Member, IEEE, Dolvara Gunatilaka, Chengjie Wu, and Chenyang Lu, Fellow, IEEE 696 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 3, JUNE 2017 Empirical Study and Enhancements of Industrial Wireless Sensor Actuator Network Protocols Mo Sha, Member, IEEE, Dolvara Gunatilaka, Chengjie

More information

Outline. Multi-Channel Reliability and Spectrum Usage in Real Homes Empirical Studies for Home-Area Sensor Networks. Smart Grid

Outline. Multi-Channel Reliability and Spectrum Usage in Real Homes Empirical Studies for Home-Area Sensor Networks. Smart Grid Multi-Channel Reliability and Spectrum Usage in Real Homes Empirical Studies for Home-Area Sensor Networks Experimental methodology Empirical study in homes Spectrum study of existing wireless signals

More information

Real-Time Scheduling for WirelessHART Networks

Real-Time Scheduling for WirelessHART Networks Real-Time Scheduling for WirelessHART Networks Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen Department of Computer Science and Engineering Washington University in St. Louis {saifullaha, yx2,

More information

Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems

Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) Summer 9-1-2014 Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems Abusayeed

More information

Principles of Wireless Sensor Networks

Principles of Wireless Sensor Networks Principles of Wireless Sensor Networks https://www.kth.se/social/course/el2745/ Lecture 6 Routing Carlo Fischione Associate Professor of Sensor Networks e-mail:carlofi@kth.se http://www.ee.kth.se/ carlofi/

More information

ptunes: Run*me Parameter Adapta*on for Low- power MAC Protocols

ptunes: Run*me Parameter Adapta*on for Low- power MAC Protocols ptunes: Run*me Parameter Adapta*on for Low- power MAC Protocols Marco Zimmerling, Federico Ferrari, Luca Mo.ola *, Thiemo Voigt *, Lothar Thiele Computer Engineering and Networks Lab, ETH Zurich * Swedish

More information

WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control

WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control WirelessHART: Applying Wireless Technology in Real-Time Industrial Process Control Jianping Song, Song Han, Al Mok University of Texas at Austin Deji Chen, Mike Lucas, Mark Nixon Emerson Process Management

More information

Thermal Modeling for a HVAC Controlled Real- life Auditorium

Thermal Modeling for a HVAC Controlled Real- life Auditorium Thermal Modeling for a HVAC Controlled Real- life Auditorium Yong Fu, Mo Sha, Chengjie Wu, Andrew Ku7a, Anna Leavey, Chenyang Lu, Humberto Gonzalez, Weining Wang, Bill Drake, Yixin Chen, PraGm Biswas Washington

More information

PRIORITY-BASED BROADCASTING OF SENSITIVE DATA IN ERROR-PRONE WIRELESS NETWORKS

PRIORITY-BASED BROADCASTING OF SENSITIVE DATA IN ERROR-PRONE WIRELESS NETWORKS PRIORITY-BASED BROADCASTING OF SENSITIVE DATA IN ERROR-PRONE WIRELESS NETWORKS Pouya Ostovari, Jie Wu, and Ying Dai Center for Networked Computing http://www.cnc.temple.edu Agenda 2 Introduction Motivation

More information

Towards a Real Time Communica3on Framework for Wireless Sensor Networks

Towards a Real Time Communica3on Framework for Wireless Sensor Networks Towards a Real Time Communica3on Framework for Wireless Sensor Networks Chenyang Lu Department of Computer Science and Engineering Applica3on challenges High data rate Low latency Priori;za;on Predictability

More information

WSN NETWORK ARCHITECTURES AND PROTOCOL STACK

WSN NETWORK ARCHITECTURES AND PROTOCOL STACK WSN NETWORK ARCHITECTURES AND PROTOCOL STACK Sensing is a technique used to gather information about a physical object or process, including the occurrence of events (i.e., changes in state such as a drop

More information

Node activity scheduling in wireless sensor networks

Node activity scheduling in wireless sensor networks 1 Node activity scheduling in wireless sensor networks Saoucene Mahfoudh, Pascale Minet 1 Outline 2 1. Introduction: Maximize network lifetime 2. The node coloring problem Constraints Complexity 3. Three-hop

More information

Extensions at Broadcast Growth Codes

Extensions at Broadcast Growth Codes Extensions at Broadcast Growth Codes 14.09.2018 Fachgespräch Sensornetze 2018 Braunschweig Isabel Madeleine Runge Chair of Computer Engineering University of Würzburg Agenda 1.Introduction: Reliable Data

More information

Principles of Wireless Sensor Networks. Routing, Zigbee, and RPL

Principles of Wireless Sensor Networks. Routing, Zigbee, and RPL http://www.ee.kth.se/~carlofi/teaching/pwsn-2011/wsn_course.shtml Lecture 8 Stockholm, November 11, 2011 Routing, Zigbee, and RPL Royal Institute of Technology - KTH Stockholm, Sweden e-mail: carlofi@kth.se

More information

End-to-end Real-time Guarantees in Wireless Cyber-physical Systems

End-to-end Real-time Guarantees in Wireless Cyber-physical Systems End-to-end Real-time Guarantees in Wireless Cyber-physical Systems Romain Jacob Marco Zimmerling Pengcheng Huang Jan Beutel Lothar Thiele RTSS 16 - IoT and Networking Session December 1, 2016 Predictability

More information

Parameter Self-Configuration and Self-Adaptation in Industrial Wireless Sensor-Actuator Networks

Parameter Self-Configuration and Self-Adaptation in Industrial Wireless Sensor-Actuator Networks Parameter Self-Configuration and Self-Adaptation in Industrial Wireless Sensor-Actuator Networks Junyang Shi, Mo Sha Department of Computer Science State University of New York at Binghamton {jshi28, msha}@binghamton.edu

More information

DiGS: Distributed Graph Routing and Scheduling for Industrial Wireless Sensor-Actuator Networks

DiGS: Distributed Graph Routing and Scheduling for Industrial Wireless Sensor-Actuator Networks DiGS: Distributed Graph Routing and Scheduling for Industrial Wireless Sensor-Actuator Networks Junyang Shi, Mo Sha Department of Computer Science State University of New York at Binghamton {jshi28, msha}@binghamton.edu

More information

Introduction to Networked Embedded Systems and Course Description. Song Han Office: ITEB 355

Introduction to Networked Embedded Systems and Course Description. Song Han Office: ITEB 355 Introduction to Networked Embedded Systems and Course Description Song Han song.han@uconn.edu Office: ITEB 355 Instructor: Song Han Self-Introduction Instructor email: song.han@uconn.edu Office: ITEB 355

More information

The Internet of Things. Thomas Watteyne Senior Networking Design Engineer Linear Technology, Dust Networks product group

The Internet of Things. Thomas Watteyne Senior Networking Design Engineer Linear Technology, Dust Networks product group 1 The Internet of Things Thomas Watteyne Senior Networking Design Engineer Linear Technology, Dust Networks product group Important! ٧ DREAM seminar 8 April 2014, UC Berkeley Low-Power Wireless Mesh Networks

More information

Self-Adapting MAC Layer for Wireless Sensor Networks

Self-Adapting MAC Layer for Wireless Sensor Networks Self-Adapting MAC Layer for Wireless Sensor Networks Mo Sha, Rahav Dor, Gregory Hackmann, Chenyang Lu Cyber-Physical Systems Laboratory Washington University in St. Louis Tae-Suk Kim, Taerim Park Samsung

More information

Routing protocols in WSN

Routing protocols in WSN Routing protocols in WSN 1.1 WSN Routing Scheme Data collected by sensor nodes in a WSN is typically propagated toward a base station (gateway) that links the WSN with other networks where the data can

More information

Link Estimation and Tree Routing

Link Estimation and Tree Routing Network Embedded Systems Sensor Networks Link Estimation and Tree Routing 1 Marcus Chang, mchang@cs.jhu.edu Slides: Andreas Terzis Outline Link quality estimation Examples of link metrics Four-Bit Wireless

More information

IPv6 Stack. 6LoWPAN makes this possible. IPv6 over Low-Power wireless Area Networks (IEEE )

IPv6 Stack. 6LoWPAN makes this possible. IPv6 over Low-Power wireless Area Networks (IEEE ) Reference: 6LoWPAN: The Wireless Embedded Internet, Shelby & Bormann What is 6LoWPAN? 6LoWPAN makes this possible - Low-power RF + IPv6 = The Wireless Embedded Internet IPv6 over Low-Power wireless Area

More information

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 3, MARCH

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 3, MARCH IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 3, MARCH 2016 1907 Joint Flow Routing and DoF Allocation in Multihop MIMO Networks Xiaoqi Qin, Student Member, IEEE, Xu Yuan, Student Member,

More information

Application Provisioning in Fog Computingenabled Internet-of-Things: A Network Perspective

Application Provisioning in Fog Computingenabled Internet-of-Things: A Network Perspective Application Provisioning in Fog Computingenabled Internet-of-Things: A Network Perspective Ruozhou Yu, Guoliang Xue, and Xiang Zhang Arizona State University Outlines Background and Motivation System Modeling

More information

The Emergence of Networking Abstractions and Techniques in TinyOS

The Emergence of Networking Abstractions and Techniques in TinyOS The Emergence of Networking Abstractions and Techniques in TinyOS CS295-1 Paper Presentation Mert Akdere 10.12.2005 Outline Problem Statement & Motivation Background Information TinyOS HW Platforms Sample

More information

WP-PD Wirepas Mesh Overview

WP-PD Wirepas Mesh Overview WP-PD-123 - Wirepas Mesh Overview Product Description Version: v1.0a Wirepas Mesh is a de-centralized radio communications protocol for devices. The Wirepas Mesh protocol software can be used in any device,

More information

Robust Data Dissemination in Sensor Networks

Robust Data Dissemination in Sensor Networks Robust Data Dissemination in Sensor Networks Saurabh Bagchi Assistant Professor School of Electrical & Computer Engineering Purdue University Joint Work with: Gunjan Khanna, Yu-Sung Wu, Yen-Shiang Shue,

More information

Sensor Network Protocols

Sensor Network Protocols EE360: Lecture 15 Outline Sensor Network Protocols Announcements 2nd paper summary due March 7 Reschedule Wed lecture: 11-12:15? 12-1:15? 5-6:15? Project poster session March 15 5:30pm? Next HW posted

More information

Implementation of Gradient Routing in WSNs

Implementation of Gradient Routing in WSNs Implementation of Gradient Routing in WSNs Thomas Watteyne, Kris Pister, Dominique Barthel, Mischa Dohler, Isabelle Auge-Blum BSAC, UC Berkeley, USA Orange Labs, Meylan, France CTTC, Castelldefels, Barcelona,

More information

Column Generation Method for an Agent Scheduling Problem

Column Generation Method for an Agent Scheduling Problem Column Generation Method for an Agent Scheduling Problem Balázs Dezső Alpár Jüttner Péter Kovács Dept. of Algorithms and Their Applications, and Dept. of Operations Research Eötvös Loránd University, Budapest,

More information

By Nick Giannaris. ZigBee

By Nick Giannaris. ZigBee By Nick Giannaris ZigBee Personal Area Network (PAN) A computer network used for communication among devices in a close proximity. Wireless Personal Area Network (WPAN) A wireless personal area network

More information

Load Balanced Link Reversal Routing in Mobile Wireless Ad Hoc Networks

Load Balanced Link Reversal Routing in Mobile Wireless Ad Hoc Networks Load Balanced Link Reversal Routing in Mobile Wireless Ad Hoc Networks Nabhendra Bisnik, Alhussein Abouzeid ECSE Department RPI Costas Busch CSCI Department RPI Mobile Wireless Networks Wireless nodes

More information

Ad Hoc Networks: Issues and Routing

Ad Hoc Networks: Issues and Routing Ad Hoc Networks: Issues and Routing Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Wireless Sensor Networks

Wireless Sensor Networks Wireless Sensor Networks School of Computer Science and Technology Beijing University of Posts and Telecommunications Luo, Hong Luoh@bupt.edu.cn Content Introduction to Wireless Sensor networks (WSNs)

More information

WSN Routing Protocols

WSN Routing Protocols WSN Routing Protocols 1 Routing Challenges and Design Issues in WSNs 2 Overview The design of routing protocols in WSNs is influenced by many challenging factors. These factors must be overcome before

More information

Novel Cluster Based Routing Protocol in Wireless Sensor Networks

Novel Cluster Based Routing Protocol in Wireless Sensor Networks ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 32 Novel Cluster Based Routing Protocol in Wireless Sensor Networks Bager Zarei 1, Mohammad Zeynali 2 and Vahid Majid Nezhad 3 1 Department of Computer

More information

Real-Time and Low-Power Wireless Communication with Sensors and Actuators

Real-Time and Low-Power Wireless Communication with Sensors and Actuators THE KNOWLEDGE FOUNDATION S SENSORS GLOBAL SUMMIT 2015 November 10-11, 2015 San Diego Marriott La Jolla La Jolla, CA Real-Time and Low-Power Wireless Communication with Sensors and Actuators Behnam Dezfouli

More information

Wireless Sensor Networks Real- Time Systems

Wireless Sensor Networks Real- Time Systems Wireless Sensor Networks Real- Time Systems Chenyang Lu Computer Science and Engineering h5p://www.cse.wustl.edu/~lu/ Wireless Sensor Network Processor + Sensors/Actuators + Wireless Interface Miniature

More information

Performance Comparison of Energy Efficient Clustering Protocol in Heterogeneous Wireless Sensor Network

Performance Comparison of Energy Efficient Clustering Protocol in Heterogeneous Wireless Sensor Network Performance Comparison of Energy Efficient Clustering Protocol in Heterogeneous Wireless Sensor Network Priyanka.B.Patil 1 Student,Department of Electronics &Telecommunication D.Y. Patil College of Engineering

More information

A Column Generation based Heuristic for Maximum Lifetime Coverage in Wireless Sensor Networks

A Column Generation based Heuristic for Maximum Lifetime Coverage in Wireless Sensor Networks A Column Generation based Heuristic for Maximum Lifetime Coverage in Wireless Sensor Networks Karine Deschinkel LIFC Laboratory, Université de Franche-Comté Belfort, France Email: karine.deschinkel@univ-fcomte.fr

More information

Voice Over Sensor Networks

Voice Over Sensor Networks Voice Over Sensor Networks Rahul Mangharam 1 Anthony Rowe 1 Raj Rajkumar 1 Ryohei Suzuki 2 1 Dept. of Electrical & Computer Engineering 2 Ubiquitous Networking Lab Carnegie Mellon University, U.S.A. {rahulm,agr,raj}@ece.cmu.edu

More information

Minimum Power Configuration in Wireless Sensor Networks

Minimum Power Configuration in Wireless Sensor Networks Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-004-83 004-1-0 Minimum Power

More information

Energy-efficient routing algorithms for Wireless Sensor Networks

Energy-efficient routing algorithms for Wireless Sensor Networks Energy-efficient routing algorithms for Wireless Sensor Networks Chao Peng Graduate School of Information Science Japan Advanced Institute of Science and Technology March 8, 2007 Presentation Flow Introduction

More information

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013 ISSN:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013 ISSN: Fast Data Collection with Reduced Interference and Increased Life Time in Wireless Sensor Networks Jayachandran.J 1 and Ramalakshmi.R 2 1 M.Tech Network Engineering, Kalasalingam University, Krishnan koil.

More information

Mobile Agent Driven Time Synchronized Energy Efficient WSN

Mobile Agent Driven Time Synchronized Energy Efficient WSN Mobile Agent Driven Time Synchronized Energy Efficient WSN Sharanu 1, Padmapriya Patil 2 1 M.Tech, Department of Electronics and Communication Engineering, Poojya Doddappa Appa College of Engineering,

More information

Sl.No Project Title Year

Sl.No Project Title Year Sl.No Project Title Year WSN(Wireless Sensor ) 1 Distributed Topology Control With Lifetime Extension Based on Non-Cooperative Game for Wireless Sensor 2 Intercept Behavior Analysis of Industrial Wireless

More information

Utility-Based Data-Gathering in Wireless Sensor Networks with Unstable Links

Utility-Based Data-Gathering in Wireless Sensor Networks with Unstable Links Utility-Based Data-Gathering in Wireless Sensor Networks with Unstable Links Mingming Lu and Jie Wu Department of Computer Science and Engineering Florida Atlantic University Boca Raton, FL 33431 Abstract.

More information

Chapter 11 Chapter 6

Chapter 11 Chapter 6 Routing Protocols References H. Karl and A. Willing. Protocols and Architectures for Wireless Sensor Networks. John Wiley & Sons, 2005. (Chapter 11) K. Sohraby, D. Minoli, and T. Znati. Wireless Sensor

More information

References. Forwarding. Introduction...

References. Forwarding. Introduction... References Routing Protocols H. Karl and A. Willing. Protocols and Architectures for Wireless Sensor Networks. John Wiley & Sons, 005. (Chapter 11) K. Sohraby, D. Minoli, and T. Znati. Wireless Sensor

More information

Virtual Network Embedding with Substrate Support for Parallelization

Virtual Network Embedding with Substrate Support for Parallelization Virtual Network Embedding with Substrate Support for Parallelization Sheng Zhang, Nanjing University, P.R. China Jie Wu, Temple University, USA Sanglu Lu, Nanjing University, P.R. China Presenter: Pouya

More information

Fault-Tolerant and Secure Data Transmission Using Random Linear Network Coding

Fault-Tolerant and Secure Data Transmission Using Random Linear Network Coding Fault-Tolerant and Secure Data Transmission Using Random Linear Network Coding Pouya Ostovari and Jie Wu Computer & Information Sciences Temple University Center for Networked Computing http://www.cnc.temple.edu

More information

Dual Power Management for Network Connectivity in Wireless Sensor Networks

Dual Power Management for Network Connectivity in Wireless Sensor Networks Dual Power Management for Network Connectivity in Wireless Sensor Networks Yanxia Rong, Hongsik Choi and Hyeong-Ah Choi Department of Computer Science George Washington University Washington DC Department

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

Modèles pour le calcul du délai pire-cas de communication dans les réseaux IoT industriels

Modèles pour le calcul du délai pire-cas de communication dans les réseaux IoT industriels Modèles pour le calcul du délai pire-cas de communication dans les réseaux IoT industriels Katia Jaffrès-Runser, IRIT, Toulouse INP - ENSEEIHT Travaux menés avec - Qi Wang, Chinese Academy of Sciences,

More information

Toward Wireless Clinical Monitoring

Toward Wireless Clinical Monitoring Toward Wireless Clinical Monitoring Chenyang Lu Department of Computer Science and Engineering Outline Clinical event detec9on Wireless clinical monitoring for general hospital units Wireless structural

More information

Rab Nawaz Jadoon DCS. Assistant Professor. Department of Computer Science. COMSATS Institute of Information Technology. Mobile Communication

Rab Nawaz Jadoon DCS. Assistant Professor. Department of Computer Science. COMSATS Institute of Information Technology. Mobile Communication Rab Nawaz Jadoon DCS Assistant Professor COMSATS IIT, Abbottabad Pakistan COMSATS Institute of Information Technology Mobile Communication WSN Wireless sensor networks consist of large number of sensor

More information

Efficient and Balanced Routing in Energy-Constrained Wireless Sensor Networks for Data Collection

Efficient and Balanced Routing in Energy-Constrained Wireless Sensor Networks for Data Collection Efficient and Balanced Routing in Energy-Constrained Wireless Sensor Networks for Data Collection Miguel Navarro and Yao Liang Department of Computer and Information Science Indiana University Purdue University,

More information

Topology and Power Control

Topology and Power Control Topology and Power Control Octav Chipara Motivation Energy and capacity are limited resources in wireless sensor networks Answer: Topology and Power Control maintain a topology with certain properties

More information

Zephyr: Efficient Incremental Reprogramming of Sensor Nodes using Function Call Indirections and Difference Computation

Zephyr: Efficient Incremental Reprogramming of Sensor Nodes using Function Call Indirections and Difference Computation Zephyr: Efficient Incremental Reprogramming of Sensor Nodes using Function Call Indirections and Difference Computation Rajesh Krishna Panta Saurabh Bagchi Samuel P. Midkiff Dependable Computing Systems

More information

An Adaptive MAC Protocol for Efficient Group Communications in Sensor Networks

An Adaptive MAC Protocol for Efficient Group Communications in Sensor Networks An Adaptive MAC Protocol for Efficient Group Communications in Sensor Networks Turkmen Canli, Zhihui Chen, Ashfaq Khokhar University of Illinois at Chicago Ajay Gupta Western Michigan University Abstract-This

More information

Multi-channel TDMA Scheduling in Wireless Sensor Networks

Multi-channel TDMA Scheduling in Wireless Sensor Networks Multi-channel TDMA Scheduling in Wireless Sensor Networks Ozge Uyanik and Ibrahim Korpeoglu Bilkent University Department of Computer Engineering 06800, Ankara, Turkey {ouyanik,korpe}@cs.bilkent.edu.tr

More information

Congestion Control Technique with Safety Transmission of Messages in Vehicular Ad Hoc Network

Congestion Control Technique with Safety Transmission of Messages in Vehicular Ad Hoc Network Congestion Control Technique with Safety Transmission of Messages in Vehicular Ad Hoc Network Bhagyashri P. Deshpande 1, Dr.A.S.Alvi 2 1 M.E(CSE) PRMIT&R, Badnera, Amravati 2 Professor,Dept. of CSE PRMIT&R,Badnera,

More information

Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees

Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees Pouya Ostovari Department of Computer and Information Siences Temple University Philadelphia, Pennsylvania, USA Email: ostovari@temple.edu

More information

Message acknowledgement and an optional beacon. Channel Access is via Carrier Sense Multiple Access with

Message acknowledgement and an optional beacon. Channel Access is via Carrier Sense Multiple Access with ZigBee IEEE 802.15.4 Emerging standard for low-power wireless monitoring and control Scale to many devices Long lifetime is important (contrast to Bluetooth) 10-75m range typical Designed for industrial

More information

Motivation and Basics Flat networks Hierarchy by dominating sets Hierarchy by clustering Adaptive node activity. Topology Control

Motivation and Basics Flat networks Hierarchy by dominating sets Hierarchy by clustering Adaptive node activity. Topology Control Topology Control Andreas Wolf (0325330) 17.01.2007 1 Motivation and Basics 2 Flat networks 3 Hierarchy by dominating sets 4 Hierarchy by clustering 5 Adaptive node activity Options for topology control

More information

Wireless Routing and Control: a Cyber-Physical Case Study

Wireless Routing and Control: a Cyber-Physical Case Study Wireless Routing and Control: a Cyber-Physical Case Study Bo Li 1, Yehan Ma 1, Tyler Westenbroek 2, Chengjie Wu 1, Humberto Gonzalez 2, Chenyang Lu 1 1 Department of Computer Science & Engineering, Washington

More information

TOSSIM simulation of wireless sensor network serving as hardware platform for Hopfield neural net configured for max independent set

TOSSIM simulation of wireless sensor network serving as hardware platform for Hopfield neural net configured for max independent set Available online at www.sciencedirect.com Procedia Computer Science 6 (2011) 408 412 Complex Adaptive Systems, Volume 1 Cihan H. Dagli, Editor in Chief Conference Organized by Missouri University of Science

More information

G. Raju *1, V. Ramesh 2

G. Raju *1, V. Ramesh 2 International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2017 IJSRCSEIT Volume 2 Issue 1 ISSN : 2456-3307 Fast Data Collection in Tree Based Wireless Sensor

More information

Low Power Hitch-hiking Broadcast in Ad Hoc Wireless Networks

Low Power Hitch-hiking Broadcast in Ad Hoc Wireless Networks Low Power Hitch-hiking Broadcast in Ad Hoc Wireless Networks Mihaela Cardei, Jie Wu, and Shuhui Yang Department of Computer Science and Engineering Florida Atlantic University Boca Raton, FL 33431 {mihaela,jie}@cse.fau.edu,

More information

Scheduling of Multiple Applications in Wireless Sensor Networks Using Knowledge of Applications and Network

Scheduling of Multiple Applications in Wireless Sensor Networks Using Knowledge of Applications and Network International Journal of Information and Computer Science (IJICS) Volume 5, 2016 doi: 10.14355/ijics.2016.05.002 www.iji-cs.org Scheduling of Multiple Applications in Wireless Sensor Networks Using Knowledge

More information

Intel Research mote. Ralph Kling Intel Corporation Research Santa Clara, CA

Intel Research mote. Ralph Kling Intel Corporation Research Santa Clara, CA Intel Research mote Ralph Kling Intel Corporation Research Santa Clara, CA Overview Intel mote project goals Project status and direction Intel mote hardware Intel mote software Summary and outlook Intel

More information

Work Stealing for Interac1ve Services to Meet Target Latency

Work Stealing for Interac1ve Services to Meet Target Latency Work Stealing for Interac1ve Services to Meet Target Latency Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He, I-Ting Angelina Lee, Chenyang Lu, Kathryn S. McKinley Washington University in St. Louis

More information

CS612 Algorithms for Electronic Design Automation

CS612 Algorithms for Electronic Design Automation CS612 Algorithms for Electronic Design Automation Lecture 8 Network Flow Based Modeling 1 Flow Network Definition Given a directed graph G = (V, E): Each edge (u, v) has capacity c(u,v) 0 Each edge (u,

More information

A Differential Coding-Based Scheduling Framework for Wireless Multimedia Sensor Networks

A Differential Coding-Based Scheduling Framework for Wireless Multimedia Sensor Networks 684 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 3, APRIL 2013 A Differential Coding-Based Scheduling Framework for Wireless Multimedia Sensor Networks Pu Wang, Student Member, IEEE, Rui Dai, Member,

More information

The Impact of Clustering on the Average Path Length in Wireless Sensor Networks

The Impact of Clustering on the Average Path Length in Wireless Sensor Networks The Impact of Clustering on the Average Path Length in Wireless Sensor Networks Azrina Abd Aziz Y. Ahmet Şekercioğlu Department of Electrical and Computer Systems Engineering, Monash University, Australia

More information

ARCH: Practical Channel Hopping for Reliable Home-Area Sensor Networks

ARCH: Practical Channel Hopping for Reliable Home-Area Sensor Networks ARCH: Practical Channel Hopping for Reliable Home-Area Sensor Networks Mo Sha, Gregory Hackmann, Chenyang Lu Department of Computer Science and Engineering Washington University in St. Louis St. Louis,

More information

A Localized Algorithm for Reducing the Size of Dominating Set in Mobile Ad Hoc Networks

A Localized Algorithm for Reducing the Size of Dominating Set in Mobile Ad Hoc Networks A Localized Algorithm for Reducing the Size of Dominating Set in Mobile Ad Hoc Networks Yamin Li and Shietung Peng Department of Computer Science Hosei University Tokyo 18-858 Japan {yamin, speng}@k.hosei.ac.jp

More information

Announcements. Late homework policy

Announcements. Late homework policy Announcements Late homework policy n Updated on course website n Up to 1 HW can be late for up to 5 days without penalty n After that, late HW accepted and graded with discount of 10%/day for up to 5 days

More information

End-To-End Delay Optimization in Wireless Sensor Network (WSN)

End-To-End Delay Optimization in Wireless Sensor Network (WSN) Shweta K. Kanhere 1, Mahesh Goudar 2, Vijay M. Wadhai 3 1,2 Dept. of Electronics Engineering Maharashtra Academy of Engineering, Alandi (D), Pune, India 3 MITCOE Pune, India E-mail: shweta.kanhere@gmail.com,

More information

Wireless Sensor Networks

Wireless Sensor Networks Wireless Sensor Networks c.buratti@unibo.it +39 051 20 93147 Office Hours: Tuesday 3 5 pm @ Main Building, second floor Credits: 6 Ouline 1. WS(A)Ns Introduction 2. Applications 3. Energy Efficiency Section

More information

An Approximation Algorithm for Connected Dominating Set in Ad Hoc Networks

An Approximation Algorithm for Connected Dominating Set in Ad Hoc Networks An Approximation Algorithm for Connected Dominating Set in Ad Hoc Networks Xiuzhen Cheng, Min Ding Department of Computer Science The George Washington University Washington, DC 20052, USA {cheng,minding}@gwu.edu

More information

An Enhanced General Self-Organized Tree-Based Energy- Balance Routing Protocol (EGSTEB) for Wireless Sensor Network

An Enhanced General Self-Organized Tree-Based Energy- Balance Routing Protocol (EGSTEB) for Wireless Sensor Network www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 239-7242 Volume 4 Issue 8 Aug 205, Page No. 3640-3643 An Enhanced General Self-Organized Tree-Based Energy- Balance Routing

More information

QoS Challenges and QoS-Aware MAC Protocols in Wireless Sensor Networks

QoS Challenges and QoS-Aware MAC Protocols in Wireless Sensor Networks QoS Challenges and QoS-Aware MAC Protocols in Wireless Sensor Networks S. Shiney Lillia PG Student, Department of Computer Science and Engineering, National Institute of Technology Puducherry, Puducherry,

More information

Center for Networked Computing

Center for Networked Computing Concept of Mobile Cloud Computing (MCC): - Offload the computation complexity task from mobile devices to the cloud - Combination of cloud computing, mobile computing, and wireless networks to bring rich

More information

Network Design for QoS under IEEE ( Zigbee ) CSMA/CA for Internet of Things Applications

Network Design for QoS under IEEE ( Zigbee ) CSMA/CA for Internet of Things Applications Network Design for QoS under IEEE 802.15.4 ( Zigbee ) CSMA/CA for Internet of Things Applications EECS Symposium Abhijit Bhattacharya Advisor: Prof. Anurag Kumar Dept. of ECE, IISc, Bangalore April 28,

More information

An Industrial Employee Development Application Protocol Using Wireless Sensor Networks

An Industrial Employee Development Application Protocol Using Wireless Sensor Networks RESEARCH ARTICLE An Industrial Employee Development Application Protocol Using Wireless Sensor Networks 1 N.Roja Ramani, 2 A.Stenila 1,2 Asst.professor, Dept.of.Computer Application, Annai Vailankanni

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

EEROSN Technique with Linear Integrated Program an Improved Study on Intermittently Connected Networks

EEROSN Technique with Linear Integrated Program an Improved Study on Intermittently Connected Networks EEROSN Technique with Linear Integrated Program an Improved Study on Intermittently Connected Networks B.Shaji, K.L.Nisha Associate Professor-MACET, Assistant Professor ACEW Abstract Wireless sensor networks

More information