Presented here is a data acquisition

Size: px
Start display at page:

Download "Presented here is a data acquisition"

Transcription

1 Make Your Own USB Data Acquisition System sani theo Arun Dayal Udai and Sujit Kumar Presented here is a data acquisition (DAQ) system that can be used to interface six sensors and four digital-to-analogue channels. The acquired voltage levels can be displayed on a personal computer (PC). The DAQ device may be calibrated Fig. : Author s prototype for precision and benchmarked with various standards, and delivered as an inexpensive USB DAQ product for hobbyists and students. Irrespective of our stream of engineering or science, most of us do programming and data analysis on computers due to ease in data handling, storage and manipulation. This project may be helpful for those who want to develop an integrated system that consists of a DAQ and other system circuitry in a single unit. It would provide a greater insight to the design and development of a USB DAQ system itself! The article includes details of circuit designs, software development for user-interface using C# and Lab- View, printed circuit board (PCB) development and test results. It is assumed that the reader is familiar with basic C programming and AVR programming styles. However, best efforts have been made to make the contents logical enough to help even a beginner understand the project and tweak with the codes. DAQ systems A DAQ system acquires data from a sensor mounted on a physical system and brings it to your PC. Typically, the output from a sensor is available in the form of a voltage signal. For example, the output from a commonly used temperature sensor like LM35 is 0mV/ C under normal environmental conditions, which var- Test point Table II Test Points Details TP0 0V, GND TP 5V TP2 2.5V TP3 Low when S2 pressed Table I Specifications of the Developed DAQ Device Feature Specifications Remarks Digital inputs/outputs (I/Os) 6 reconfigurable I/Os, Maximum: 40 ma Each of the 6 pins can be configured as input or output Analogue inputs 6 (-bit resolution), Maximum: 5V Can be extended up to Analogue outputs 4 (-bit resolution), Maximum: 5V, 0.45 ma Can be increased by adjusting the op-amp gains and using an external supply Counters Any digital I/O can be used as counter To be implemented in PC software or by modifying the firmware (Maximum: 4 MHz using external interrupt on Port-D 0-3) Interface GUI may be developed using any programming Developed and tested with NI LabView and Microsoft Visual C# language with DLL interfacing Driver for programming Libusb.0 (Free) ( Installs automatically on installing ATMEL Flip programmer (free) Application programming ATUSBHID.DLL Free required for communication interface (API) driver Upgrade Open source firmware written using LUFA Board can be reused for multiple purposes Sampling frequency 9.6 kilo-samples-per-second with Generic One can use a different USB class with full-speed USB data transfer USB HID implementation rate of 2 Mbps Simply plug the device on the USB port and the software gets installed in Generic HID Class Electronics For You October

2 ies linearly with temperature. Hence you can calibrate the measured voltage to the temperature of the surroundings it is being interfaced with. Same is the case with a pressure sensor, LVDT, etc. You may also need to trigger a device from a PC with a voltage signal, or you may require a dynamically changing voltage level to drive a certain OUTPUT INPUT CON2 ANALOGUE C R R2 2 3 OUTA INA IC3 OPA2335 INA+ V+ OUTB 7 INB 6 R3 C2 C3 V+ OUTA R7 7 OUTB IC4 INA 2 R5 OPA INB INA+ 3 R C4 4 V INB+ 5 R4 5 R6 INB+ V 4 R R=47K C C4=00n 20 OUTC OUTB 9 OUTD OUTA VDD Vss A0 REF A WR IC2 TLC7226 AGND DGND NC TP2 IC5 LM DB0 DB DB2 DB7 DB6 DB5 7 9 R9 K C6 00n L 0u C7 00n C5 u 6V PE6 PE7 UVcc D D+ UGND UCAP VBUS PE3 PB0 PB PB2 PB3 PB4 PB5 PB6 AVcc 64 GND AREF 62 6 PF PF PF PF PF PF PF PF GND Vcc 52 5 PA PA PA2 49 IC AT90USB27 PB7 PE4 PE5 RESET Vcc GND XTAL2 XTAL PD0 PD PD2 PD3 PD4 PD5 PD6 PD7 PA3 4 PA4 47 PA5 46 PA6 45 PA7 44 PE2 43 PC7 42 PC6 4 PC5 40 PC4 39 PC3 3 PC2 37 PC 36 PC0 35 PE 34 PE0 33 DB3 S USER DB4 0 R2 470E LED S3 HWB R 4.7K R0.5K SJ = SHORTING JUMPER SJ R4 220E R3 220E TP S2 RESET TP3 R5 4.7K XTAL 6MHz C 22p C9 22p C0 0.47u CON3 USB CON5 ISP +5V DC EXT. + SUPPLY CON4 R6 60E LED2 POWER TP0 CON DIGITAL Fig. 2: Circuit of USB data acquisition system 0 October 203 Electronics For You

3 drive system, e.g., a linear servo motor. You may also require to count an event which is signaled by a voltage pulse, such as in flywheel counters or robotic shaft encoders. Most of the commercially available DAQ systems come with all the above-mentioned features of counters, analogue inputs and outputs, digital inputs and outputs, etc. However, these systems are quite expensive and come with a paid driver for interfacing. Most of them can only be used with the proprietary software of the manufacturer. This project is intended for those who want to make their own system for data acquisition due to the limitation of their total project cost or installation where one cannot use commercially available DAQ (such as in a nuclear or defense installation). The author s prototype is shown in Fig.. Circuit and working Fig. 2 shows the circuit of USB data acquisition system. AT90USB27. The heart of the system is a 64-pin ATMEL USB chip AT90USB27, which is an -bit microcontroller that can do USB communication and take analogue input through its eight 0-bit analogue-todigital converters (ADCs). It has 4 programmable input/output pins. The microcontroller runs on a 6MHz clock and has 2 kb of flash memory. As the microcontroller does not have any digital-to-analogue converter (DAC) on its output pins, we required an external chip for this purpose. We used TLC7226 from Texas Instruments (TI), which is an -bit DAC with quad outputs. Before finalising the design, ensure that all the AVR hardware design considerations mentioned in ATMEL application note are met. You can easily get IC samples for academic and research purposes, which the manufacturers always support. TLC7226. This is a 20-pin dual-inline chip. You may refer to its datasheet from TI for more details. This IC is driven by a reference diode LM336 Parts List Semiconductors: IC - AT90USB27 microcontroller IC2 - TLC7226 quad DAC IC3, IC4 - OPA2335 op-amp IC5 - LM336 programmable shunt regulator LED, LED2-5mm LED Resistors (all /4-watt, ±5% carbon): R-R - 47-kilo-ohm R9 - -kilo-ohm R0 -.5-kilo-ohm R, R5-4.7-kilo-ohm R2-470-ohm R3, R4-220-ohm R6-60-ohm Capacitors: C-C4, C6, C7-00nF ceramic disk C5 - μf, 6V electrolytic C, C9-22pF ceramic disk C0-0.47μF ceramic disk Miscellaneous: L - 0μH inductor X TAL - 6MHz crystal oscillator S-s3 - Tactile switch CON, CON2 - -pin bergstrip male connector CON3 - USB type-b connector CON4-2-pin bergstrip connector CON5-6-pin ISP/ICSP male connector SJ - Shorting jumper connector to have a regulated voltage supply of 2.5V. So for an input ranging from 0 to 255 through parallel eight pins of the microcontroller, the output varies from 0 to 2.5V. As the output desired is 5V, we have used a voltage amplifier with gain set at 2. For voltage amplification we used quad op-amp OPA2335 from Texas Instruments, which has zero drift and low offset voltage of 5 μv. Power supply. The circuit is powered from the USB port, which provides a voltage output of up to 4.5V. If you need to connect the output pins to a load larger than that supported by your USB port (typically 500 ma per port), use an external power source of 5V and remove the USB power jumper (SJ) shown in Fig. 6. Connectors. Since the system requires interfacing with an external device for input and output, we have used connectors for various purposes. One -pin connector (CON2) is used for analogue inputs and outputs, while another -pin connector (CON) is used for digital inputs and outputs. There is also a 6-pin connector for ISP interfacing and a 2-pin shorting jumper construction connector for power supply from the USB port. Specifications of the developed DAQ device are listed in Table I. Construction Once done with the schematic of the project, you need to mount the components on the provided PCB. An actual-size, double-side, solder-side PCB track layout of USB data acquisition system is shown in Fig. 3 and component-side track layout in Fig. 4. The component layout is shown in Fig. 5. The author s assembled board with input and output pin details is shown in Fig. 6. The original board routing and layout design was done by the author on a four-layered board with inner layers supplying the power. Having continuous copper layers in the inner layers provided better stability to ADC and DAC systems. The board was built with a mix of surface-mount device (SMD) and through-hole technology (THT) components as we could not obtain small quantities of the discrete components in SMD packages. You can choose to use only SMD components to have a compact design. You can also try assembling the circuit on a doublelayered board to cut down the development cost. Firmware and software design The firmware was developed using open source library Lightweight USB Framework for AVR, commonly known as LUFA. It requires free compiler WinAVR GCC 200 to be installed in your PC. It is advised to install AVR Studio 4 before WinAVR as programming and compilation are easier in AVR Studio. Now load project file GenericHID.aps file (from or EFY DVD of this month s EFY Plus) into AVR Studio environment. Compile the code to generate the hex code. Burning the hex code. Microcontroller AT90USB27 comes with a preloaded bootloader program that can Electronics For You October 203

4 be used to burn a hex file through USB using ATMEL Flip software. Press S3 (HWB) button and S2 reset button simultaneously and then first release S2 while S3 is pressed. This will put the board into an inbuilt bootloader programming mode. In programming mode, the board can be seen in device manager of the PC. You can load the hex code into the MCU using ATMEL Flip programmer. But to make a generic code run with read and write support in flash memory, you need to erase the entire flash (default bootloader) and load a new bootloader called ATMEL USB DFU Bootloader from ATMEL s website. This also enables the microcontroller to run at its full speed of 6 MHz. You just need to make necessary changes in the fuses to make it run with external clock of 6 MHz (without CKDIV fuse enabled). Now burn the new bootloader using any ISP programmer by connecting the programmer to the ISP connector on the board. User-interface program. After as- Fig. 3: An actual-size, double-side, solder-side PCB track layout of USB data acquisition system Fig. 5: Component layout Digital Analogue V CC V CC Fig. 4: Component-side track layout Fig. 6: The author s assembled board with input and output pin details 2 October 203 Electronics For You

5 sembling the components on the PCB, you need to interface the board with the PC for data exchange. For that, you have software that communicates with the physical hardware through USB interface using its device driver dynamic link library (DLL). The graphical-user-interface (GUI) software was developed using Microsoft Visual C# 200.net and NI LabView Version.6 (200). The hardware developed has the firmware loaded onto the flash memory of the microcontroller on the DAQ board. To design the GUI program, first you need to know how the firmware in the board and the PC should communicate. Fig. 7: GUI for DAQ device communication using C# program Fig. : LabView VI for the DAQ device interface The firmware continuously sends and receives eight bytes of data to and from the PC. Ports C and D of the microcontroller are connected to CON digital I/O pins. The first two bytes from the PC contain data for data direction registers (DDRs), namely, DDRC and DDRD. The next two consecutive bytes, i.e., the third and the fourth bytes, contain the value that is to be written to each port. Each bit in the register DDRx and PORTx values corresponds to a physical pin of the microcontroller s ports C and D. For example, to set the fourth and sixth pins as outputs, you need to write to the DDRx register a value equivalent to the binary value To set the fourth pin high you need to write to the corresponding PORTx register a value of Writing at any other place in the PORTx register will enable the pull-up at the corresponding physical pin. The pins are input pins by default. The remaining four bytes are the values for DAC outputs. These are transferred to TLC7226 s parallel input pins via port A of the microcontroller. To write a value to the DAC output, select the DAC output by A0 (pin 7) and A (pin 6) of the chip TLC7226, make the selected pin active by lowering WR pin (pin 5) of the chip, write the value to data pins of TLC7226 (DB0 through DB7) and finally make WR pin high before exiting the write subroutine. The firmware sends in the first six bytes data collected from the analogue input pins of the microcontroller. The remaining two bytes sent by it contain the pin status of -bit wide port C and port D, respectively. If you are not using the digital input pins, the firmware can be modified to read all the available eight analogue inputs of the microcontroller. By receiving and sending ten bytes, the code can be extended to use all the analogue inputs without disturbing the digital inputs. However, this reduces the sampling speed. All the analogue inputs are sampled one by one and copied to the send buffer. It is advised to connect the unused analogue inputs to ground, to make the sampling stable. You are requested to go through the files board.c and GenericHID.c in LUFA022\Demos\ Device\LowLevel\GenericHID folder of the project for extensive reference. The codes are well remarked for future modifications. All the relevant source codes are included in this month s EFY DVD. As the microcontroller has its own timers, the code can be extended to have a fixed sampling speed for any real-time application. Filters can also be implemented in the firmware itself for noiseless sensing. Electronics For You October 203 3

6 Fig. 9: Plot of ADC input voltage read by the DAQ device shown in software vs value measured using multimeter Fig. 0: Plot of DAC output voltage set in software vs value measured using multimeter The software implements the AT- MEL application note on USB generic human interface device (HID). It uses functions findhiddevice, readdata, writedata and closedevice defined in ATUSBHID.DLL. As shown in the GUI screenshot, the software connects to the DAQ board through USB vendor ID for ATMEL (03EB in hexadecimal) and product ID for the microcontroller (204F in hexadecimal). An -byte send-buffer is prepared based on the settings of digital input/ output selections, their corresponding values and analogue output values. This is sent continuously through a timer event in C# routine, within an infinite loop in LabView scheme. Similarly, the incoming eight bytes are read to obtain the six -bit analogue input values corresponding to the voltage available at ADC pins and two -bit values for the input pin status. The graphical user interface (GUI) shows the various ADC inputs and DAC outputs. Fig. 7 shows the frontend GUI screenshot of C# program output. Fig. shows the block diagram for LabView VI, which generates a GUI analogous to that generated by the C# program. Additionally, it explores the digital input and output capability as well. LabView being a block-diagram-based programming language, it explains the functional implementation of the software very clearly. A 30-day evaluation version of the latest LabView version can be freely downloaded from the Internet. The C# program and the LabView VI are used only to demonstrate the correct functioning of the board. On similar lines, you can develop your own code in various other programming languages. (Note that LabView was not tested at EFY Lab.) Testing and test results Before getting started, using a multimeter you need to measure the USB voltage that your system is supplying. Save this value in the parameter V_Max_USB of the program. The developed prototype was tested with various sensors like potentiometer, LDR and analogue accelerometer. The sensed ADC output shown by the software was found to be closely matching with the physical measurements. Similarly, the DAC outputs were tested physically using a digital multimeter and found to be in agreement with the desired voltage values set in the software. Maximum variation from the actual value was found to be efy Note The source code of this project is included in this month s EFY DVD and is also available for free download on website. within ±0.02V. Apart from the ADC and DAC tests, the digital inputs and outputs were found to be responding properly to the software. Figs 9 and 0 show the plots for the ADC and DAC tests, respectively. With Generic HID mode of USB communication, the device runs at 9.6 kilo-samples per second, which is good enough to handle a situation where the inputs and outputs are dynamically varying. Though the developed DAQ device is quite basic compared to the existing technology, it can be very helpful for everyday use where one needs an inexpensive device with reasonably good reliability and precision. It has the potential to replace advanced DAQ devices like NI USB 600/6009 (which it closely resembles to) in smaller enterprises that don t have much stringent demands and certification requirements. Troubleshooting. If the software on your PC doesn t respond, first check the circuit for proper connections. You can also try closing the application and restarting it. If the problem persists, check voltages at various test points as per Table II. The author has uploaded on You- Tube videos of this DAQ device being tested using C# and LabView interface. You may watch the same for better understanding. Further application The board can be reprogrammed for different purposes with different customised programs for the connected I/Os. Arun Dayal Udai is an assistant professor at BIT, Mesra, Ranchi, currently pursuing Ph.D from IIT Delhi. He has keen interest in CAD, robotics and mechatronics, and has many papers published to his credit in national/international conferences. Sujit Kumar is a BE in electronics and communications engineering with interest in robotics and embedded systems. Currently, he is an operations officer at Indian Oil Corporation Ltd, Panipat, Haryana 4 October 203 Electronics For You

U6DIL. AVR USB Module. Rev. 1.1 Documentation Rev. 18. Reusch Elektronik Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch

U6DIL. AVR USB Module. Rev. 1.1 Documentation Rev. 18. Reusch Elektronik Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch AVR USB Module Documentation Rev. 18 2011, Dipl.-Ing. (FH) Rainer Reusch www.reusch-elektronik.de http://products.reworld.eu/u6dil.htm File: _Manual Created: 2011-02-22 Changed: 2011-03-31 Table of Contents

More information

U2DIL. AVR USB Module. Rev. 1.1 Documentation Rev. 37. Reusch Elektronik Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch

U2DIL. AVR USB Module. Rev. 1.1 Documentation Rev. 37. Reusch Elektronik Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch AVR USB Module Rev. 1.1 Documentation Rev. 37 Reusch Elektronik 2010 Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch www.reusch-elektronik.de http://products.reworld.eu/u2dil.htm File: _Manual Created:

More information

U4DIL. AVR USB Module. Rev. 1.1 Documentation Rev. 19. Reusch Elektronik Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch

U4DIL. AVR USB Module. Rev. 1.1 Documentation Rev. 19. Reusch Elektronik Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch AVR USB Module Documentation Rev. 19 2010, Dipl.-Ing. (FH) Rainer Reusch www.reusch-elektronik.de http://products.reworld.eu/u4dil.htm File: _Manual Created: 2010-02-10 Changed: 2010-09-07 Contents 1.

More information

Shack Clock kit. U3S Rev 2 PCB 1. Introduction

Shack Clock kit. U3S Rev 2 PCB 1. Introduction Shack Clock kit U3S Rev 2 PCB 1. Introduction Thank you for purchasing the QRP Labs Shack Clock kit. This clock uses the Ultimate3S QRSS/WSPR kit hardware, but a different firmware version. It can be used

More information

The Atmel ATmega328P Microcontroller

The Atmel ATmega328P Microcontroller Ming Hsieh Department of Electrical Engineering EE 459Lx - Embedded Systems Design Laboratory 1 Introduction The Atmel ATmega328P Microcontroller by Allan G. Weber This document is a short introduction

More information

PB-MC-AVR28 28 Pin AVR Full Size Development Board

PB-MC-AVR28 28 Pin AVR Full Size Development Board PB-MC-AVR28 28 Pin AVR Full Size Development Board PB-MC-AVR28-UG TABLE OF CONTENTS 1. OVERVIEW... 1 1.1. Introduction... 1 1.2. References... 1 1.2.1. Referenced Documents... 1 1.2.2. Acronyms and Abbreviations...

More information

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

AVR Intermediate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help AVR Intermediate Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

Arduino Uno. Arduino Uno R3 Front. Arduino Uno R2 Front

Arduino Uno. Arduino Uno R3 Front. Arduino Uno R2 Front Arduino Uno Arduino Uno R3 Front Arduino Uno R2 Front Arduino Uno SMD Arduino Uno R3 Back Arduino Uno Front Arduino Uno Back Overview The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet).

More information

8051 Intermidiate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

8051 Intermidiate Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 8051 Intermidiate Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

LBAT90USB162 Atmel. LBAT90USB162 Development Board User s Manual

LBAT90USB162 Atmel. LBAT90USB162 Development Board User s Manual LBAT90USB162 Atmel AT90USB162 Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the LBAT90USB162 Atmel AT90USB162 development board. This board is designed to give quick and cost-effective

More information

DBAT90USB162 Atmel. DBAT90USB162 Enhanced Development Board User s Manual

DBAT90USB162 Atmel. DBAT90USB162 Enhanced Development Board User s Manual DBAT90USB162 Atmel AT90USB162 Enhanced Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the DBAT90USB162 Atmel AT90USB162 enhanced development board. This board is designed to give

More information

PB-MC-AVR28 28 Pin AVR Full Size Development Board

PB-MC-AVR28 28 Pin AVR Full Size Development Board PB-MC-AVR28 28 Pin AVR Full Size Development Board PB-MC-AVR28-UG TABLE OF CONTENTS 1. OVERVIEW... 1 1.1. Introduction... 1 1.2. References... 1 1.2.1. Board Versions... 1 1.2.2. Referenced Documents...

More information

The Atmel ATmega168A Microcontroller

The Atmel ATmega168A Microcontroller Ming Hsieh Department of Electrical Engineering EE 459Lx - Embedded Systems Design Laboratory The Atmel ATmega168A Microcontroller by Allan G. Weber 1 Introduction The Atmel ATmega168A is one member of

More information

Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX

Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX Mega128-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN 46268 (317) 471-1577 (317) 471-1580 FAX http://www.prllc.com GENERAL The Mega128-Development board is designed for

More information

Hardware Manual. Crumb128. Rapid Prototyping Module with the Atmega128 AVR Microcontroller

Hardware Manual. Crumb128. Rapid Prototyping Module with the Atmega128 AVR Microcontroller Hardware Manual Crumb128 Rapid Prototyping Module with the Atmega128 AVR Microcontroller Version 1.1 Copyright 2004 Dr. Erik Lins, Development and Distribution of Hardware and Software. All right reserved.

More information

PART 1 : MR-162. PART 2 : CPU Board. PART 3 : Software Tools. PART 4 : Compile and Download. 1. Introduction 2. Features

PART 1 : MR-162. PART 2 : CPU Board. PART 3 : Software Tools. PART 4 : Compile and Download. 1. Introduction 2. Features MR-162 User Manual C O N T E N T S PART 1 : MR-162 1. Introduction 2. Features PART 2 : CPU Board 1. Placement Diagram (Silkscreen) 2. Circuit Diagram 3. Parts List PART 3 : Software Tools 1. AVR Development

More information

SBAT90USB162 Atmel. SBAT90USB162 Development Board User s Manual

SBAT90USB162 Atmel. SBAT90USB162 Development Board User s Manual SBAT90USB162 Atmel AT90USB162 Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the SBAT90USB162 Atmel AT90USB162 development board. This board is designed to give a quick and cost-effective

More information

B1DIL. AVR32 USB Module. Rev. 1.0 Documentation Rev. 4. Reusch Elektronik Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch

B1DIL. AVR32 USB Module. Rev. 1.0 Documentation Rev. 4. Reusch Elektronik Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch AVR32 USB Module Rev. 1.0 Documentation Rev. 4 Reusch Elektronik 2011 Reusch Elektronik, Dipl.-Ing. (FH) Rainer Reusch www.reusch-elektronik.de http://products.reworld.eu/b1dil.htm File: _Manual Created:

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Digilent Cerebot Board Reference Manual Revision: 11/17/2005 www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Digilent Cerebot Board is a useful tool for

More information

Goal: We want to build an autonomous vehicle (robot)

Goal: We want to build an autonomous vehicle (robot) Goal: We want to build an autonomous vehicle (robot) This means it will have to think for itself, its going to need a brain Our robot s brain will be a tiny computer called a microcontroller Specifically

More information

Figure 1.1: Some embedded device. In this course we shall learn microcontroller and FPGA based embedded system.

Figure 1.1: Some embedded device. In this course we shall learn microcontroller and FPGA based embedded system. Course Code: EEE 4846 International Islamic University Chittagong (IIUC) Department of Electrical and Electronic Engineering (EEE) Course Title: Embedded System Sessional Exp. 1: Familiarization with necessary

More information

Alessandra de Vitis. Arduino

Alessandra de Vitis. Arduino Alessandra de Vitis Arduino Arduino types Alessandra de Vitis 2 Interfacing Interfacing represents the link between devices that operate with different physical quantities. Interface board or simply or

More information

ARDUINO MEGA 2560 REV3 Code: A000067

ARDUINO MEGA 2560 REV3 Code: A000067 ARDUINO MEGA 2560 REV3 Code: A000067 The MEGA 2560 is designed for more complex projects. With 54 digital I/O pins, 16 analog inputs and a larger space for your sketch it is the recommended board for 3D

More information

Keywords Digital IC tester, Microcontroller AT89S52

Keywords Digital IC tester, Microcontroller AT89S52 Volume 6, Issue 1, January 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Digital Integrated

More information

solutions for teaching and learning

solutions for teaching and learning RKP18Motor Component List and Instructions PCB layout Constructed PCB Schematic Diagram RKP18Motor Project PCB Page 1 Description The RKP18Motor project PCB has been designed to use PIC microcontrollers

More information

ARDUINO UNO REV3 SMD Code: A The board everybody gets started with, based on the ATmega328 (SMD).

ARDUINO UNO REV3 SMD Code: A The board everybody gets started with, based on the ATmega328 (SMD). ARDUINO UNO REV3 SMD Code: A000073 The board everybody gets started with, based on the ATmega328 (SMD). The Arduino Uno SMD R3 is a microcontroller board based on the ATmega328. It has 14 digital input/output

More information

CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6

CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6 CONTENTS BIGAVR2 KEY FEATURES 4 CONNECTING THE SYSTEM 5 INTRODUCTION 6 Switches 7 Jumpers 8 MCU Sockets 9 Power Supply 11 On-board USB 2.0 Programmer 12 Oscillator 14 LEDs 15 Reset Circuit 17 Push-buttons

More information

Bolt 18F2550 System Hardware Manual

Bolt 18F2550 System Hardware Manual 1 Bolt 18F2550 System Hardware Manual Index : 1. Overview 2. Technical specifications 3. Definition of pins in 18F2550 4. Block diagram 5. FLASH memory Bootloader programmer 6. Digital ports 6.1 Leds and

More information

Table of Contents. Introductory Material

Table of Contents. Introductory Material Table of Contents Introductory Material 0.1 Equipment Intoduction 1 breadboard area stimulator board 2 The Board of Education The TDS 340 oscilloscope 0.2 Getting Started with the Micro-controller The

More information

PART 1 : MR-16. PART 2 : CPU Board. PART 3 : Software Tools. PART 4 : Compile and Download. 1. Introduction 2. Features

PART 1 : MR-16. PART 2 : CPU Board. PART 3 : Software Tools. PART 4 : Compile and Download. 1. Introduction 2. Features MR-6 User Manual C O N T E N T S PART : MR-6. Introduction. Features PART : CPU Board. Placement Diagram (Silkscreen). Circuit Diagram 3. Parts List PART 3 : Software Tools. AVR Development Program Installation.

More information

AVRminiV3.1 Manual. 1. AVRminiV3.1 Overview. 2. AVRminiV3.1 Features and Specifications Standard Features: 2.2. Optional Features:

AVRminiV3.1 Manual. 1. AVRminiV3.1 Overview. 2. AVRminiV3.1 Features and Specifications Standard Features: 2.2. Optional Features: AVRminiV3. Manual. AVRminiV3. Overview The AVRminiV3. board is a low-cost versatile development board for Atmel AVR processors. The AVRminiV3. supports all AVR processors in 40-pin and 64-pin packages

More information

Various power connectors. 3.3V regulator. 64K Flash (Internal) 2K EEPROM (Internal) 4K SRAM (Internal) JA Mem Adr/ Data. Doc: page 1 of 9

Various power connectors. 3.3V regulator. 64K Flash (Internal) 2K EEPROM (Internal) 4K SRAM (Internal) JA Mem Adr/ Data. Doc: page 1 of 9 Cerebot II Board Reference Manual Revision: September 14, 2007 Note: This document applies to REV B of the board. www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview

More information

ARDUINO MEGA ADK REV3 Code: A000069

ARDUINO MEGA ADK REV3 Code: A000069 ARDUINO MEGA ADK REV3 Code: A000069 OVERVIEW The Arduino MEGA ADK is a microcontroller board based on the ATmega2560. It has a USB host interface to connect with Android based phones, based on the MAX3421e

More information

Arduino ADK Rev.3 Board A000069

Arduino ADK Rev.3 Board A000069 Arduino ADK Rev.3 Board A000069 Overview The Arduino ADK is a microcontroller board based on the ATmega2560 (datasheet). It has a USB host interface to connect with Android based phones, based on the MAX3421e

More information

Shack Clock kit PCB Revision: QCU Rev 1 or QCU Rev 3

Shack Clock kit PCB Revision: QCU Rev 1 or QCU Rev 3 1. Introduction Shack Clock kit PCB Revision: QCU Rev 1 or QCU Rev 3 Thank you for purchasing this QRP Labs Shack Clock kit. The kit uses the same PCB and bag of components as some other QRP Labs kits.

More information

Embedded programming, AVR intro

Embedded programming, AVR intro Applied mechatronics, Lab project Embedded programming, AVR intro Sven Gestegård Robertz Department of Computer Science, Lund University 2017 Outline 1 Low-level programming Bitwise operators Masking and

More information

M32 Development Board

M32 Development Board M32 Development Board User Guide Document Control Information This Document Release Date: 12th March 2006 This Document Version: 1.0 Document History Author Release Date Reference Release Notes JSL 23rd

More information

February 28,

February 28, February 28, 2014 1 http://www.mattairtech.com/ Table of Contents Overview...3 Introduction...3 Features...4 Hardware...5 Main Header Pins...5 ISP Header Pins...6 Solder Jumpers...6 Onboard 3.3V, 250mA

More information

REQUIRED MATERIALS Epiphany-DAQ board Wire Jumpers Switch LED Resistors Breadboard Multimeter (if needed)

REQUIRED MATERIALS Epiphany-DAQ board Wire Jumpers Switch LED Resistors Breadboard Multimeter (if needed) Page 1/6 Lab 1: Intro to Microcontroller Development, 06-Jan-16 OBJECTIVES This lab will introduce you to the concept of developing with a microcontroller while focusing on the use of General Purpose Input/Output

More information

Mega128-Net Mega128-Net Mega128 AVR Boot Loader Mega128-Net

Mega128-Net Mega128-Net Mega128 AVR Boot Loader Mega128-Net Mega128-Net Development Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN 46268 (317) 471-1577 (317) 471-1580 FAX http://www.prllc.com GENERAL The Mega128-Net development board is designed

More information

PROGRAMMABLE POWER SUPPLY

PROGRAMMABLE POWER SUPPLY PROGRAMMABLE POWER SUPPLY MATTHIEU L. KIELA HARDWARE DESCRIPTION APRIL 25, 2006 WESTERN WASHINGTON UNIVERSITY ELECTRONICS ENGINEERING TECHNOLOGY ETEC 474, PROFESSOR MORTON INTRODUCTION In laboratory and

More information

S USB-PC Connection (Cable Not Included) S USB Powered (No External Power Supply Required) S Real-Time Data Acquisition Through the USB

S USB-PC Connection (Cable Not Included) S USB Powered (No External Power Supply Required) S Real-Time Data Acquisition Through the USB 19-5610; Rev 1; 8/11 MAXADClite Evaluation Kit General Description The MAXADClite evaluation kit (EV kit) evaluates the MAX11645, Maxim's smallest, very-low-power, 12-bit, 2-channel analog-to-digital converter

More information

PART 1 : MR Introduction 2. Features. PART 2 : CPU Board 1. Placement Diagram (Silkscreen) 2. Circuit Diagram 3.

PART 1 : MR Introduction 2. Features. PART 2 : CPU Board 1. Placement Diagram (Silkscreen) 2. Circuit Diagram 3. MR-4433 User Manual CONTENTS PART : MR-4433. Introduction. Features PART : CPU Board. Placement Diagram (Silkscreen). Circuit Diagram 3. Parts List PART 3 : Software Tools. AVR Development Program Installation.

More information

Getting Started with STK200 Dragon

Getting Started with STK200 Dragon Getting Started with STK200 Dragon Introduction This guide is designed to get you up and running with main software and hardware. As you work through it, there could be lots of details you do not understand,

More information

Doc: page 1 of 6

Doc: page 1 of 6 Nanocon Reference Manual Revision: February 9, 2009 Note: This document applies to REV A-B of the board. 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Nanocon board is

More information

Freeduino USB 1.0. Arduino Compatible Development Board Starter Guide. 1. Overview

Freeduino USB 1.0. Arduino Compatible Development Board Starter Guide. 1. Overview Freeduino USB 1.0 Arduino Compatible Development Board Starter Guide 1. Overview 1 Arduino is an open source embedded development platform consisting of a simple development board based on Atmel s AVR

More information

ARDUINO UNO REV3 Code: A000066

ARDUINO UNO REV3 Code: A000066 ARDUINO UNO REV3 Code: A000066 The UNO is the best board to get started with electronics and coding. If this is your first experience tinkering with the platform, the UNO is the most robust board you can

More information

2 in 1. BigAVR User s Manual AVR. MikroElektronika. Software and Hardware solutions for Embedded World

2 in 1. BigAVR User s Manual AVR. MikroElektronika. Software and Hardware solutions for Embedded World SOFTWARE AND HARDWARE SOLUTIONS FOR THE EMBEDDED WORLD - Books - Compilers User s Manual 2 in 1 USB 2.0 IN-CIRCUIT PROGRAMMER ATMEL AVR DEVELOPMENT BOARD With useful implemented peripherals, plentiful

More information

DEV16T. LCD Daughter board

DEV16T. LCD Daughter board LCD Daughter board Table of Contents 1 Introduction...2 2 Features...3 3 Expansion Connectors...4 3.1 Daughter Board Connectors...4 4 LCD Display...5 5 Input Buttons S1 to S4...5 6 Buzzer...5 7 Connector

More information

8051 Basic Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help

8051 Basic Development Board. Product Manual. Contents. 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 8051 Basic Development Board Product Manual Contents 1) Overview 2) Features 3) Using the board 4) Troubleshooting and getting help 1. Overview 2. Features The board is built on a high quality FR-4(1.6

More information

EMBEDDED SYSTEMS COURSE CURRICULUM

EMBEDDED SYSTEMS COURSE CURRICULUM On a Mission to Transform Talent EMBEDDED SYSTEMS COURSE CURRICULUM Table of Contents Module 1: Basic Electronics and PCB Software Overview (Duration: 1 Week)...2 Module 2: Embedded C Programming (Duration:

More information

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 6

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 6 Mechatronics and Measurement Lecturer:Dung-An Wang Lecture 6 Lecture outline Reading:Ch7 of text Today s lecture: Microcontroller 2 7.1 MICROPROCESSORS Hardware solution: consists of a selection of specific

More information

FUNCTIONAL BLOCK DIAGRAM DIGITAL POWER SUPPLY +5V +3.3V EXT. EXTERNAL ANALOG POWER SUPPLY V LOGIC V DD V SS SPI INTERFACE RDY RESET AD5292 GND

FUNCTIONAL BLOCK DIAGRAM DIGITAL POWER SUPPLY +5V +3.3V EXT. EXTERNAL ANALOG POWER SUPPLY V LOGIC V DD V SS SPI INTERFACE RDY RESET AD5292 GND Evaluation Board for the 10-Bit, Serial Input, High Voltage Digital Potentiometer EVAL-AD5292EBZ FEATURES Full-featured evaluation board for the AD5292 Wiper buffer 4-wire ohm measurement capability Various

More information

Four-Channel Universal Analog Input Using the MAX11270

Four-Channel Universal Analog Input Using the MAX11270 Four-Channel Universal Analog Input Using the MAX70 MAXREFDES5 Introduction The MAXREFDES5 is a four-channel universal analog input that measures voltage or current signals. Each channel can be configured

More information

Section 1 Introduction

Section 1 Introduction Section 1 Introduction The ATmegaICE is a real time In-Circuit Emulator (ICE) for all ATmega devices. It can be upgraded to support future ATmega parts. It is controlled by AVR Studio, which is a professional

More information

DSP Filter System. Author: Nels Pearson Org Date: July 5, 2007 Rev Date: July 6, Doc Number: AIGO-009

DSP Filter System. Author: Nels Pearson Org Date: July 5, 2007 Rev Date: July 6, Doc Number: AIGO-009 DSP Filter System Author: Nels Pearson Org Date: July 5, 2007 Rev Date: July 6, 2007 Doc Number: AIGO-009 2-13 Table of Contents Introduction...3 Overview...3 A2D Input Filter Board...4 Overview...4 Input

More information

EMB128. ere co., ltd.

EMB128. ere co., ltd. ATMEGA128 Embedded Board Main Features Atmega128 8-bit RISC CPU (AVR family) Serial EEPROM (I2C), 24LC256 Real Time Clock, DS1307 3V lithium battery keeping time and date 2 channels RS485 2 channels RS232

More information

Introduction to 8051 microcontrollers

Introduction to 8051 microcontrollers Introduction to 8051 microcontrollers Posted on May 7, 2008, by Ibrahim KAMAL, in Micro-controllers, tagged This tutorial is specially tailored to electronics and robotics hobbyists that have already realized

More information

MegaAVR-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX

MegaAVR-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN (317) (317) FAX MegaAVR-DEVelopment Board Progressive Resources LLC 4105 Vincennes Road Indianapolis, IN 46268 (317) 471-1577 (317) 471-1580 FAX http://www.prllc.com GENERAL The MegaAVR-Development board is designed for

More information

Building RoboPIC 18F4550

Building RoboPIC 18F4550 RoboPIC 8F4550 Copyright 206 William Henning Building RoboPIC 8F4550 Copyright 206 William Henning RoboPIC 8F4550 build manual v0.90 The most up to date documentation will always be available at: http://www.mikronauts.com/robot-controllers/robopic-8f4550/

More information

+Denotes lead-free/rohs-compliant. J5 1 J10 J13 4 J17 1 L1 1 L2 1 L4 L7 4

+Denotes lead-free/rohs-compliant. J5 1 J10 J13 4 J17 1 L1 1 L2 1 L4 L7 4 19-4156; Rev 0; 5/08 E V A L U A T I O N K I T A V A I L A B L E General Description The MAX3674 evaluation kit (EV kit) is a fully assembled and tested demonstration board that simplifies evaluation of

More information

Atmel AVR datasheet. Matrix Multimedia Atmel AVR Board EB Contents

Atmel AVR datasheet. Matrix Multimedia Atmel AVR Board EB Contents Atmel AVR datasheet Contents 1. About this document 2. General information 3. Board overview 4. Getting Started 5. Block schematic and description Appendix A. Circuit diagram B. Compatible AVR device C.

More information

Breeze Board. Type B. User Manual.

Breeze Board. Type B. User Manual. Breeze Board Type B User Manual www.dizzy.co.za Contents Introduction... 3 Overview Top... 4 Overview Bottom... 5 Getting Started (USB Bootloader)... 6 Power Circuitry... 7 USB... 8 Microcontroller...

More information

QUASAR PROJECT KIT # ATMEL AVR PROGRAMMER

QUASAR PROJECT KIT # ATMEL AVR PROGRAMMER This kit is a simple but powerful programmer for the Atmel AT90Sxxxx ( AVR ) family of microcontrollers. The Atmel AVR devices are a low-power CMOS 8-bit microcontroller using a RISC architecture. By executing

More information

AN-719 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA Tel: 781/ Fax: 781/

AN-719 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA Tel: 781/ Fax: 781/ APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com ADuC7024 Evaluation Board Reference Guide MicroConverter ADuC7024 Development

More information

STK User Guide

STK User Guide STK500... User Guide Table of Contents Section 1 Introduction... 1-1 1.1 Starter Kit Features...1-1 1.2 Device Support...1-2 Section 2 Getting Started... 2-1 2.1 Unpacking the System...2-1 2.2 System

More information

AVR- M16 development board Users Manual

AVR- M16 development board Users Manual AVR- M16 development board Users Manual All boards produced by Olimex are ROHS compliant Rev. C, January 2005 Copyright(c) 2009, OLIMEX Ltd, All rights reserved Page1 INTRODUCTION AVR-M16 is header board

More information

SensorXplorer TM Installation Guide

SensorXplorer TM Installation Guide VISHAY SEMICONDUCTORS www.vishay.com Optical Sensors By Samy Ahmed OVERVIEW The SensorXplorer TM is a demonstration kit designed to help evaluate Vishay s digital sensors featured on Vishay s sensor boards.

More information

Microcontroller Based Data Acquisition System

Microcontroller Based Data Acquisition System Microcontroller Based Data Acquisition System Sayantan Dutta Department of Applied Electronics and Instrumentation Engineering, University Institute of Technology, Burdwan University Rishabh Das Department

More information

SimPLC. User Manual.

SimPLC. User Manual. SimPLC User Manual www.dizzy.co.za Contents Introduction... 4 Overview Top... 5 Power Circuitry... 6 Microcontroller... 7 Real-Time Calendar and Clock (RTCC)... 7 Reset Button... 7 Oscillator Socket...

More information

solutions for teaching and learning

solutions for teaching and learning RKOneAnalogue Component List and Instructions PCB layout Constructed PCB Schematic Diagram RKOneAnalogue Software Development PCB Page 1 Description The RKOneAnalogue software development PCB has been

More information

MAX197 Evaluation Kit. Evaluates: MAX197/MAX199. Features

MAX197 Evaluation Kit. Evaluates: MAX197/MAX199. Features 9-0398; Rev ; 7/95 MAX97 Evaluation Kit General Description The MAX97 evaluation system (EV system) is a complete, low-cost, 8-channel data-acquisition system consisting of a MAX97 evaluation kit (EV kit)

More information

CEIBO FE-5111 Development System

CEIBO FE-5111 Development System CEIBO FE-5111 Development System Development System for Atmel W&M T89C5111 Microcontrollers FEATURES Emulates Atmel W&M T89C5111 4K Code Memory Real-Time Emulation and Trace Frequency up to 33MHz/5V ISP

More information

Cerebot Nano Reference Manual. Overview. Revised April 15, 2016 This manual applies to the Cerebot Nano rev. A

Cerebot Nano Reference Manual. Overview. Revised April 15, 2016 This manual applies to the Cerebot Nano rev. A 1300 Henley Court Pullman, WA 99163 509.334.6306 www.digilentinc.com Cerebot Nano Reference Manual Revised April 15, 2016 This manual applies to the Cerebot Nano rev. A Overview The Cerebot Nano is the

More information

ACU6. Technical Reference Manual. Specifications Interfacing Dimensions. Document topics. ANSARI Controller Unit Type 6 technical reference manual

ACU6. Technical Reference Manual. Specifications Interfacing Dimensions. Document topics. ANSARI Controller Unit Type 6 technical reference manual ACU6 Technical Reference Manual ANSARI Controller Unit Type 6 technical reference manual Document topics Specifications Interfacing Dimensions Document Version: 1.03 13. January 2013 By ANSARI GmbH Friedrich-Ebert-Damm

More information

BUILDING YOUR KIT. For the Toadstool Mega328.

BUILDING YOUR KIT. For the Toadstool Mega328. BUILDING YOUR KIT For the Toadstool Mega328 www.crash-bang.com @crashbang_proto This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Congratulations! You re

More information

STK User Guide

STK User Guide STK500... User Guide Table of Contents Section 1 Introduction... 1-1 1.1 Starter Kit Features...1-1 1.2 Device Support...1-2 Section 2 Getting Started... 2-1 2.1 Unpacking the System...2-1 2.2 System Requirements...2-1

More information

Breeze Board. Type A. User Manual.

Breeze Board. Type A. User Manual. Breeze Board Type A User Manual www.dizzy.co.za Contents Introduction... 3 Overview Top... 4 Overview Bottom... 5 Getting Started (Amicus Compiler)... 6 Power Circuitry... 7 USB... 8 Microcontroller...

More information

CSE 466 Exam 1 Winter, 2010

CSE 466 Exam 1 Winter, 2010 This take-home exam has 100 points and is due at the beginning of class on Friday, Feb. 13. (!!!) Please submit printed output if possible. Otherwise, write legibly. Both the Word document and the PDF

More information

Building and using JasperMIDI

Building and using JasperMIDI Building and using JasperMIDI Table of Contents Introduction... Bill Of Materials... 2 Building Choices... 3 Construction... 4 Installing in a Jasper enclosure... 5 Standalone use... 6 Using JasperMIDI...

More information

Doc: page 1 of 8

Doc: page 1 of 8 Minicon Reference Manual Revision: February 9, 2009 Note: This document applies to REV C of the board. 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Minicon board is a

More information

SECURE DIGITAL ACCESS SYSTEM USING IBUTTON

SECURE DIGITAL ACCESS SYSTEM USING IBUTTON SECURE DIGITAL ACCESS SYSTEM USING IBUTTON Access control forms a vital link in a security chain. Here we describe a secure digital access system using ibutton that allows only authorised persons to access

More information

Figure 1. JTAGAVRU1 application The JTAGAVRU1 is supported by AVR Studio. Updated versions of AVR Studio is found on

Figure 1. JTAGAVRU1 application The JTAGAVRU1 is supported by AVR Studio. Updated versions of AVR Studio is found on JTAG AVR Emulator through USB Main Features AVR Studio Compatible Supports AVR Devices with JTAG Interface Emulates Digital and Analog On-Chip Functions Data and Program Memory Breakpoints Supports Assembler

More information

Embedded Systems and Software

Embedded Systems and Software Embedded Systems and Software Lecture 12 Some Hardware Considerations Hardware Considerations Slide 1 Logic States Digital signals may be in one of three states State 1: High, or 1. Using positive logic

More information

Modtronix Engineering Modular Electronic Solutions SBC28DC. Single board computer for 28 pin DIP PICs

Modtronix Engineering Modular Electronic Solutions SBC28DC. Single board computer for 28 pin DIP PICs Modtronix Engineering Modular Electronic Solutions Single board computer for 28 pin DIP PICs Table of Contents 1 Introduction...2 2 Features...4 3 Expansion Connectors...5 3.1 Daughter Board Connectors...5

More information

OBSTACLE AVOIDANCE ROBOT

OBSTACLE AVOIDANCE ROBOT e-issn 2455 1392 Volume 3 Issue 4, April 2017 pp. 85 89 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com OBSTACLE AVOIDANCE ROBOT Sanjay Jaiswal 1, Saurabh Kumar Singh 2, Rahul Kumar 3 1,2,3

More information

SBC65EC. Ethernet enabled Single Board Computer

SBC65EC. Ethernet enabled Single Board Computer Ethernet enabled Single Board Computer Table of Contents 1 Introduction...2 2 Features...3 3 Daughter Board Connectors...4 3.1 As a Daughter Board...5 3.2 Expansion boards...5 4 Interfaces...5 4.1 Ethernet...5

More information

Revision: 05/05/ E Main Suite D Pullman, WA (509) Voice and Fax. Various power connectors. 3.3V regulator

Revision: 05/05/ E Main Suite D Pullman, WA (509) Voice and Fax. Various power connectors. 3.3V regulator Digilent Cerebot Plus Board Reference Manual Revision: 05/05/2008 www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Digilent Cerebot Plus Board is a useful

More information

IMU Axis Gyro Evaluation Board Application Note

IMU Axis Gyro Evaluation Board Application Note IMU-3000 3-Axis Gyro Evaluation Board Application Note A printed copy of this document is NOT UNDER REVISION CONTROL unless it is dated and stamped in red ink as, REVISION CONTROLLED COPY. InvenSense,

More information

Design and construction of ENP for Car : a novel Embedded System

Design and construction of ENP for Car : a novel Embedded System Design and construction of ENP for Car : a novel Embedded System D.G.VYAS I/C Head(coordinator) and Assistant Professor, Dept. of Physics, Hemchandracharya North Gujarat University, Patan, Gujarat, India

More information

keyestudio Keyestudio MEGA 2560 R3 Board

keyestudio Keyestudio MEGA 2560 R3 Board Keyestudio MEGA 2560 R3 Board Introduction: Keyestudio Mega 2560 R3 is a microcontroller board based on the ATMEGA2560-16AU, fully compatible with ARDUINO MEGA 2560 REV3. It has 54 digital input/output

More information

RKP08 Component List and Instructions

RKP08 Component List and Instructions RKP08 Component List and Instructions PCB layout Constructed PCB RKP08 Scematic RKP08 Project PCB Page 1 Description The RKP08 project PCB has been designed to use PIC microcontrollers such as the Genie

More information

MR-Servo8 User Manual

MR-Servo8 User Manual MR-Servo8 User Manual C O N T E N T S PART : MR-Servo8. Introduction. Features 3. Control PART : CPU Board. Placement Diagram (Silkscreen). Circuit Diagram 3. Parts List PART 3 : Software Tools. AVR Development

More information

2 in 1. EasyAVR4 User s Manual AVR. MikroElektronika. Software and Hardware solutions for Embedded World

2 in 1. EasyAVR4 User s Manual AVR. MikroElektronika. Software and Hardware solutions for Embedded World SOFTWARE AND HARDWARE SOLUTIONS FOR THE EMBEDDED WORLD - Books - Compilers User s Manual 2 in 1 2.0 IN-CIRCUIT PROGRAMMER ATMEL AVR DEVELOPMENT BOARD With useful implemented peripherals, plentiful practical

More information

Evaluation Board for the AD7709, 16-Bit, Sigma Delta ADC with Current Sources EVAL-AD7709-EB

Evaluation Board for the AD7709, 16-Bit, Sigma Delta ADC with Current Sources EVAL-AD7709-EB a Evaluation Board for the AD7709, 16-Bit, Sigma Delta ADC with Current Sources EVAL-AD7709-EB FEATURES Full-Featured Evaluation Board for the AD7709 On-Board Reference and Digital Buffers Various Linking

More information

Figure 1-1 ISPAVRU1 application

Figure 1-1 ISPAVRU1 application ISP AVR Programmer through USB Main Features AVR Studio Interface (AVR Studio 4.12 or later) Supports all AVR Device with ISP interface, refer to AVR Studio Programs both Flash and EEPROM Supports Fuse

More information

USB 1608G Series USB Multifunction Devices

USB 1608G Series USB Multifunction Devices USB Multifunction Devices Features 16-bit high-speed USB devices Acquisition rates ranging from 250 ks/s to 500 ks/s differential (DIFF) or 16 singleended (SE) analog inputs (softwareselectable) Up to

More information

ATmega48/88/168 Development Board

ATmega48/88/168 Development Board ATmega// Development Board This is versatile development board for AVR microcontrollers ATmega//. It is good for testing and debugging embedded programs. It has many built-in peripheries connected to microcontroller

More information

Doc: page 1 of 6

Doc: page 1 of 6 Cerebot Nano Reference Manual Revision: February 6, 2009 Note: This document applies to REV A of the board. www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview

More information

Locktronics PICmicro getting started guide

Locktronics PICmicro getting started guide Page 2 getting started guide What you need to follow this course 2 Using the built-in programs 3 Create your own programs 4 Using Flowcode - your first program 5 A second program 7 A third program 8 Other

More information