Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search. Pawel Gawrychowski, Shay Mozes, Oren Weimann. Max?

Size: px
Start display at page:

Download "Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search. Pawel Gawrychowski, Shay Mozes, Oren Weimann. Max?"

Transcription

1 Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search Pawel Gawrychowski, Shay Mozes, Oren Weimann Max?

2 Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search

3 Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search M ik + M jl M il + M jk k l i j

4 Submatrix Maximum Queries in Partial Monge Matrices are Equivalent to Predecessor Search undefined

5 Submatrix Maximum Queries in Partial Monge Matrices are Equivalent to Predecessor Search M ik + M jl M il + M jk undefined

6 Submatrix Maximum Queries in Partial Monge Matrices are Equivalent to Predecessor Search M ik + M jl? M il + M jk undefined

7 Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search Max?

8 Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search

9 Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search O(n polylogn) space requires Ω(loglogn) query-time [Patrasçu, Thorup STOC 06] Given n integers in {1,2,, n 2 } 1 x 2 3 x x 9... x x n 2

10 Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search [Kaplan,Mozes, Nussbaum,Sharir SODA 12] [Gawrychowski, Mozes, W. ICALP 14] [Gawrychowski, Mozes, W. ICALP 15]

11 Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search n x n Monge: [Kaplan,Mozes, Nussbaum,Sharir SODA 12] [Gawrychowski, Mozes, W. ICALP 14] [Gawrychowski, Mozes, W. ICALP 15] Space O(n log n) O(n) O(n) Query O(log 2 n) O(log n) Θ(loglogn)

12 Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search n x n Monge: [Kaplan,Mozes, Nussbaum,Sharir SODA 12] [Gawrychowski, Mozes, W. ICALP 14] [Gawrychowski, Mozes, W. ICALP 15] Space O(n log n) O(n) O(n) Query O(log 2 n) O(log n) Θ(loglogn) n x n partial: Space O(n log n α(n)) O(n) O(n) Query O(log 2 n) O(log n α(n)) Θ(loglogn)

13 Application si Shortest [Kaplan,Mozes,Nussbaum,Sharir paths in planar SODA 12] graphs

14 Application I Shortest paths in planar graphs

15 Application I Shortest paths in planar graphs A piece

16 Application I Shortest paths in planar graphs i l j k j i l k M ik + M jl M il + M jk

17 Application II: Largest empty rectangle Input: a set of n points Query: find largest empty rectangle containing a point

18 Submatrix Maximum Queries Max?

19 Today: Subcolumn Maximum Queries Max

20 Even easier: entire-column ranges Max

21 Even easier: entire-column ranges The rows of the column maxima increase monotonically

22 Even easier: entire-column ranges The rows of the column maxima increase monotonically

23 Even easier: entire-column ranges Enough to compute list of breakpoints (predecessor search) O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987] The rows of the column maxima increase monotonically

24 Even easier: entire-column ranges Enough to compute list of breakpoints (predecessor search) O(n) time SMAWK [Shor,Moran,Aggarwal,Wilber,Klawe 1987] O(n α(n)) time for partial matrices [Klawe, Kleitman 1990] The rows of the column maxima increase monotonically

25 Subcolumn Maximum Queries Max

26 The tree of breakpoints [Kaplan,Mozes,Nussbaum,Sharir SODA 12] [Gawrychowski, Mozes, W. ICALP 14] Each node computes the breakpoints of its submatrix By merging the breakpoints of its two children (overall O(n log n) time and space)

27 The tree of breakpoints [Kaplan,Mozes,Nussbaum,Sharir SODA 12] [Gawrychowski, Mozes, W. ICALP 14] Each node computes the breakpoints of its submatrix By merging the breakpoints of its two children (overall O(n log n) time and space)

28 The tree of breakpoints [Kaplan,Mozes,Nussbaum,Sharir SODA 12] [Gawrychowski, Mozes, W. ICALP 14] Each node computes the breakpoints of its submatrix By merging the breakpoints of its two children (overall O(n log n) time and space)

29 The tree of breakpoints [Kaplan,Mozes,Nussbaum,Sharir SODA 12] [Gawrychowski, Mozes, W. ICALP 14] A subcolumn query j

30 The tree of breakpoints [Kaplan,Mozes,Nussbaum,Sharir SODA 12] [Gawrychowski, Mozes, W. ICALP 14] A subcolumn query is covered by O(log n) canonical nodes. In each canonical node, find predecessor(j) in its breakpoints. j O(log n loglog n) time O(log n) via fractional cascading

31 Our Tree Each node stores breakpoints of every suffix/prefix of rows

32 Our Tree Each node stores breakpoints of every suffix/prefix of rows

33 Our Tree - Query A subcolumn query only two predecessor(j) searches j LCA

34 Our Tree - Construction

35 Our Tree - Construction

36 A subcolumn query Our Tree - Construction j LCA

37 Our Tree A subcolumn query = 2 x predecessor queries on a root-to-leaf path = 2 x weighted ancestor queries = O(1) predecessor queries in O(loglogn) time - Construction j LCA m size of this tree = m (each row adds one breakpoints and kills some others) size of all trees = O(nlogn) space

38 Improving the space from O(n log n) to O(n)

39 Improving the space Theorem [Gawrychowski, Mozes, W. ICALP 14] Given a logn-by-n Monge matrix, there is a O(logn) space data structure that answers entire-column queries in O(1) time. Mega Row entries fetched in O(1) time using the above Theorem. n logn Mega Row logn Mega Row logn Mega Row logn Mega Row

40 Given n integers in {1,2,, n 2 }: Lower Bound x x x x x x n 2 linear-time reduction n n Max? Two challenges: Matrix has to be Monge Implicit O(n polylog n) rep. fetching entries in O(1) time

41 Lower Bound n n n n n x x x x x x n 2 linear-time reduction

42 Lower Bound n n n n n x x x x x x n 2 linear-time reduction

43 Partial Monge matrices

44 Partial Monge matrices The rows of the column maxima increases monotonically

45 Partial Monge matrices

46 Partial Monge matrices Decomposition I: Reduction to staircase matrices

47 Partial Monge matrices Decomposition I: Reduction to staircase matrices Decomposition II: Cover staircase matrices by full matrices Much more

48 Open Problems

49 Open Problems Shortest paths in planar graphs 49

50 Open Problems Shortest paths in planar graphs m-by-n staircase 50

51 Open Problems Shortest paths in planar graphs m-by-n staircase O(log 2 n) O(log 2 n) O(log 2 n) In the beginning all rows are deactivated activate a row and add k to all its entries delete column report minimum active entry [Fakcharoenphol Rao, 2006] 51

52 Open Problems Shortest paths in planar graphs m-by-n staircase In the beginning all rows are deactivated O(log 2 n) activate a row and add k to all its entries O(log 2 n) delete column O(log 2 n) report minimum active entry [Fakcharoenphol Rao, 2006] Find the O(m) breakpoints in linear time 52

53 Open Problems Shortest paths in planar graphs m-by-n staircase In the beginning all rows are deactivated O(log 2 n) activate a row and add k to all its entries O(log 2 n) delete column O(log 2 n) report minimum active entry [Fakcharoenphol Rao, 2006] Find the O(m) breakpoints in linear time O((m+n)α(n))) [Klawe Kleitman, 1990] O(mlogn) [Gawrychowski, Mozes, W. ICALP 14] 53

54 Arigato!

Improved Submatrix Maximum Queries in Monge Matrices. Pawel Gawrychowski, Shay Mozes, Oren Weimann. Max?

Improved Submatrix Maximum Queries in Monge Matrices. Pawel Gawrychowski, Shay Mozes, Oren Weimann. Max? Improved Submatrix Maximum Queries in Monge Matrices Pawel Gawrychowski, Shay Mozes, Oren Weimann Max? Improved Submatrix Maximum Queries in Monge Matrices 1746-1818 Improved Submatrix Maximum Queries

More information

Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search

Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search Submatrix Maximum Queries in Monge Matrices are Equivalent to Predecessor Search Paweł Gawrychowski 1, Shay Mozes 2, and Oren Weimann 3 1 University of Warsaw, gawry@mimuw.edu.pl 2 IDC Herzliya, smozes@idc.ac.il

More information

Data structures for totally monotone matrices

Data structures for totally monotone matrices Data structures for totally monotone matrices Submatrix maximum queries in (inverse) Monge matrices Input: n x n (inverse) Monge matrix M represented implicitly (constant time oracle access) Output: data

More information

338 Copyright SIAM. Unauthorized reproduction of this article is prohibited.

338 Copyright SIAM. Unauthorized reproduction of this article is prohibited. Submatrix maximum queries in Monge matrices and Monge partial matrices, and their applications Downloaded 12/02/17 to 37.44.192.17. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

More information

Shortest Paths in Planar Graphs with Real Lengths in O(nlog 2 n/loglogn) Time

Shortest Paths in Planar Graphs with Real Lengths in O(nlog 2 n/loglogn) Time Shortest Paths in Planar Graphs with Real Lengths in O(nlog 2 n/loglogn) Time Shay Mozes 1 and Christian Wulff-Nilsen 2 1 Department of Computer Science, Brown University, Providence, RI 02912, USA shay@cs.brown.edu

More information

Dispersion on Trees. Paweł Gawrychowski 1, Nadav Krasnopolsky 2, Shay Mozes 3, and Oren Weimann 4. 1 Introduction. Abstract

Dispersion on Trees. Paweł Gawrychowski 1, Nadav Krasnopolsky 2, Shay Mozes 3, and Oren Weimann 4. 1 Introduction. Abstract Dispersion on Trees Paweł Gawrychowski 1, Nadav Krasnopolsky 2, Shay Mozes 3, and Oren Weimann 4 1 University of Haifa, Israel 2 University of Haifa, Israel 3 IDC Herzliya, Israel 4 University of Haifa,

More information

Longest Common Extensions in Trees

Longest Common Extensions in Trees Longest Common Extensions in Trees Philip Bille 1, Pawe l Gawrychowski 2, Inge Li Gørtz 1, Gad M. Landau 3,4, and Oren Weimann 3 1 DTU Informatics, Denmark. phbi@dtu.dk, inge@dtu.dk 2 University of Warsaw,

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

Computational Geometry

Computational Geometry Range trees Range queries Database queries salary G. Ometer born: Aug 16, 1954 salary: $3,500 A database query may ask for all employees with age between a 1 and a 2, and salary between s 1 and s 2 19,500,000

More information

Lower Bound on Comparison-based Sorting

Lower Bound on Comparison-based Sorting Lower Bound on Comparison-based Sorting Different sorting algorithms may have different time complexity, how to know whether the running time of an algorithm is best possible? We know of several sorting

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

Succinct Representation of Separable Graphs

Succinct Representation of Separable Graphs Succinct Representation of Separable Graphs Arash Farzan Max-Planck-Institute for Computer Science Guy E. Blelloch Computer Science Department, Carnegie Mellon University Overview Preliminaries: - succinctness

More information

Balanced Binary Search Trees. Victor Gao

Balanced Binary Search Trees. Victor Gao Balanced Binary Search Trees Victor Gao OUTLINE Binary Heap Revisited BST Revisited Balanced Binary Search Trees Rotation Treap Splay Tree BINARY HEAP: REVIEW A binary heap is a complete binary tree such

More information

Single source shortest paths in H-minor free graphs

Single source shortest paths in H-minor free graphs Single source shortest paths in H-minor free graphs Raphael Yuster Abstract We present an algorithm for the Single Source Shortest Paths (SSSP) problem in directed H- minor free graphs. For every fixed

More information

Lecture 22 November 19, 2015

Lecture 22 November 19, 2015 CS 229r: Algorithms for ig Data Fall 2015 Prof. Jelani Nelson Lecture 22 November 19, 2015 Scribe: Johnny Ho 1 Overview Today we re starting a completely new topic, which is the external memory model,

More information

Trapezoidal Maps. Notes taken from CG lecture notes of Mount (pages 60 69) Course page has a copy

Trapezoidal Maps. Notes taken from CG lecture notes of Mount (pages 60 69) Course page has a copy Trapezoidal Maps Notes taken from CG lecture notes of Mount (pages 60 69) Course page has a copy Trapezoidal Maps S={s 1,s 2,..., s n } is the set of line segments segments don t intersect, but can touch

More information

Dynamic Generators of Topologically Embedded Graphs David Eppstein

Dynamic Generators of Topologically Embedded Graphs David Eppstein Dynamic Generators of Topologically Embedded Graphs David Eppstein Univ. of California, Irvine School of Information and Computer Science Outline New results and related work Review of topological graph

More information

Planar Point Location in Sublogarithmic Time

Planar Point Location in Sublogarithmic Time Planar Point Location in Sublogarithmic Time Mihai Pătraşcu (MIT) Point Location in o(log n) Time, Voronoi Diagrams in o(n log n) Time, and Other Transdichotomous Results in Computational Geometry Timothy

More information

Range Reporting. Range Reporting. Range Reporting Problem. Applications

Range Reporting. Range Reporting. Range Reporting Problem. Applications Philip Bille Problem problem. Preprocess at set of points P R 2 to support report(x1, y1, x2, y2): Return the set of points in R P, where R is rectangle given by (x1, y1) and (x2, y2). Applications Relational

More information

arxiv: v1 [cs.ds] 4 Jul 2018

arxiv: v1 [cs.ds] 4 Jul 2018 Near-Optimal Distance Emulator for Planar Graphs Hsien-Chih Chang Paweł Gawrychowski Shay Mozes Oren Weimann Abstract arxiv:1807.01478v1 [cs.ds] 4 Jul 2018 Given a graph G and a set of terminals T, a distance

More information

Near-Optimal Distance Emulator for Planar Graphs

Near-Optimal Distance Emulator for Planar Graphs Near-Optimal Distance Emulator for Planar Graphs Hsien-Chih Chang 1 University of Illinois at Urbana-Champaign, USA hchang17@illinois.edu Paweł Gawrychowski University of Wrocław, Poland gawry@cs.uni.wroc.pl

More information

Range Reporting. Range reporting problem 1D range reporting Range trees 2D range reporting Range trees Predecessor in nested sets kd trees

Range Reporting. Range reporting problem 1D range reporting Range trees 2D range reporting Range trees Predecessor in nested sets kd trees Range Reporting Range reporting problem 1D range reporting Range trees 2D range reporting Range trees Predecessor in nested sets kd trees Philip Bille Range Reporting Range reporting problem 1D range reporting

More information

arxiv: v1 [cs.ds] 5 Nov 2018

arxiv: v1 [cs.ds] 5 Nov 2018 Almost Optimal Distance Oracles for Planar Graphs Panagiotis Charalampopoulos 1,2, Pawe l Gawrychowski 3, Shay Mozes 2, and Oren Weimann 4 arxiv:1811.01551v1 [cs.ds] 5 Nov 2018 1 Department of Informatics,

More information

Encoding Data Structures

Encoding Data Structures Encoding Data Structures Rajeev Raman University of Leicester ERATO-ALSIP special seminar RMQ problem Given a static array A[1..n], pre-process A to answer queries: RMQ(l, r) : return max l i r A[i]. 47

More information

Linear-Space Data Structures for Range Minority Query in Arrays

Linear-Space Data Structures for Range Minority Query in Arrays Linear-Space Data Structures for Range Minority Query in Arrays Timothy M. Chan 1, Stephane Durocher 2, Matthew Skala 2, and Bryan T. Wilkinson 1 1 Cheriton School of Computer Science, University of Waterloo,

More information

Computational Geometry

Computational Geometry Orthogonal Range Searching omputational Geometry hapter 5 Range Searching Problem: Given a set of n points in R d, preprocess them such that reporting or counting the k points inside a d-dimensional axis-parallel

More information

CSE 530A. B+ Trees. Washington University Fall 2013

CSE 530A. B+ Trees. Washington University Fall 2013 CSE 530A B+ Trees Washington University Fall 2013 B Trees A B tree is an ordered (non-binary) tree where the internal nodes can have a varying number of child nodes (within some range) B Trees When a key

More information

(2,4) Trees. 2/22/2006 (2,4) Trees 1

(2,4) Trees. 2/22/2006 (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2/22/2006 (2,4) Trees 1 Outline and Reading Multi-way search tree ( 10.4.1) Definition Search (2,4) tree ( 10.4.2) Definition Search Insertion Deletion Comparison of dictionary

More information

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Part 2 1 3 Maximum Selection Problem : Given n numbers, x 1, x 2,, x

More information

) $ f ( n) " %( g( n)

) $ f ( n)  %( g( n) CSE 0 Name Test Spring 008 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to compute the sum of the n elements of an integer array is: # A.

More information

Question 7.11 Show how heapsort processes the input:

Question 7.11 Show how heapsort processes the input: Question 7.11 Show how heapsort processes the input: 142, 543, 123, 65, 453, 879, 572, 434, 111, 242, 811, 102. Solution. Step 1 Build the heap. 1.1 Place all the data into a complete binary tree in the

More information

Deterministic Rectangle Enclosure and Offline Dominance Reporting on the RAM

Deterministic Rectangle Enclosure and Offline Dominance Reporting on the RAM Deterministic Rectangle Enclosure and Offline Dominance Reporting on the RAM Peyman Afshani 1, Timothy M. Chan 2, and Konstantinos Tsakalidis 3 1 MADALGO, Department of Computer Science, Aarhus University,

More information

Properties of red-black trees

Properties of red-black trees Red-Black Trees Introduction We have seen that a binary search tree is a useful tool. I.e., if its height is h, then we can implement any basic operation on it in O(h) units of time. The problem: given

More information

Near-Optimal Compression for the Planar Graph Metric

Near-Optimal Compression for the Planar Graph Metric Near-Optimal Compression for the Planar Graph Metric Amir Abboud Paweł Gawrychowski Shay Mozes Oren Weimann Abstract The Planar Graph Metric Compression Problem is to compactly encode the distances among

More information

1 The range query problem

1 The range query problem CS268: Geometric Algorithms Handout #12 Design and Analysis Original Handout #12 Stanford University Thursday, 19 May 1994 Original Lecture #12: Thursday, May 19, 1994 Topics: Range Searching with Partition

More information

Linear-Space Data Structures for Range Frequency Queries on Arrays and Trees

Linear-Space Data Structures for Range Frequency Queries on Arrays and Trees Noname manuscript No. (will be inserted by the editor) Linear-Space Data Structures for Range Frequency Queries on Arrays and Trees Stephane Durocher Rahul Shah Matthew Skala Sharma V. Thankachan the date

More information

Lecture 5 February 26, 2007

Lecture 5 February 26, 2007 6.851: Advanced Data Structures Spring 2007 Prof. Erik Demaine Lecture 5 February 26, 2007 Scribe: Katherine Lai 1 Overview In the last lecture we discussed the link-cut tree: a dynamic tree that achieves

More information

Lecture 8 13 March, 2012

Lecture 8 13 March, 2012 6.851: Advanced Data Structures Spring 2012 Prof. Erik Demaine Lecture 8 13 March, 2012 1 From Last Lectures... In the previous lecture, we discussed the External Memory and Cache Oblivious memory models.

More information

6.851: Advanced Data Structures Spring Prof. Erik Demaine Scribes: Josh Alman (2012), Vlad Firoiu (2012), Di Liu (2012) TB Schardl (2010)

6.851: Advanced Data Structures Spring Prof. Erik Demaine Scribes: Josh Alman (2012), Vlad Firoiu (2012), Di Liu (2012) TB Schardl (2010) 6.851: Advanced Data Structures Spring 2012 Prof. Erik Demaine Scribes: Josh Alman (2012), Vlad Firoiu (2012), Di Liu (2012) TB Schardl (2010) Lecture 20 May 3, 2012 1 Overview Last lecture we covered

More information

Distributed Relationship Schemes for Trees

Distributed Relationship Schemes for Trees Distributed Relationship Schemes for Trees Cyril Gavoille Arnaud Labourel University of Bordeaux, France December 17-21, 2007, Sendai Distributed bounded distance oracle Problem Assign a piece of information

More information

Clustering of Proteins

Clustering of Proteins Melroy Saldanha saldanha@stanford.edu CS 273 Project Report Clustering of Proteins Introduction Numerous genome-sequencing projects have led to a huge growth in the size of protein databases. Manual annotation

More information

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2004 Goodrich, Tamassia (2,4) Trees 1 Multi-Way Search Tree A multi-way search tree is an ordered tree such that Each internal node has at least two children and stores d -1 key-element

More information

An NC Algorithm for Sorting Real Numbers

An NC Algorithm for Sorting Real Numbers EPiC Series in Computing Volume 58, 2019, Pages 93 98 Proceedings of 34th International Conference on Computers and Their Applications An NC Algorithm for Sorting Real Numbers in O( nlogn loglogn ) Operations

More information

Data Structures. Motivation

Data Structures. Motivation Data Structures B Trees Motivation When data is too large to fit in main memory, it expands to the disk. Disk access is highly expensive compared to a typical computer instruction The number of disk accesses

More information

HEAP. Michael Tsai 2017/4/25

HEAP. Michael Tsai 2017/4/25 HEAP Michael Tsai 2017/4/25 2 Array Representation of Tree Tree 2 4 1 (a) Array 1 2 3 4 5 6 7 8 9 10 16 14 10 8 7 9 3 Parent(i) 1 return i/2 Left(i) 1 return 2i Right(i) 1 return 2i +1 1 2 3 4 5 6 7 8

More information

Expected Time in Linear Space

Expected Time in Linear Space Optimizing Integer Sorting in O(n log log n) Expected Time in Linear Space Ajit Singh M. E. (Computer Science and Engineering) Department of computer Science and Engineering, Thapar University, Patiala

More information

Range Searching and Windowing

Range Searching and Windowing CS 6463 -- Fall 2010 Range Searching and Windowing Carola Wenk 1 Orthogonal range searching Input: n points in d dimensions E.g., representing a database of n records each with d numeric fields Query:

More information

Leftist Heaps and Skew Heaps. (Leftist Heaps and Skew Heaps) Data Structures and Programming Spring / 41

Leftist Heaps and Skew Heaps. (Leftist Heaps and Skew Heaps) Data Structures and Programming Spring / 41 Leftist Heaps and Skew Heaps (Leftist Heaps and Skew Heaps) Data Structures and Programming Spring 2018 1 / 41 Leftist Heaps A binary heap provides O(log n) inserts and O(log n) deletes but suffers from

More information

The Encoding Complexity of Two Dimensional Range Minimum Data Structures

The Encoding Complexity of Two Dimensional Range Minimum Data Structures The Encoding Complexity of Two Dimensional Range Minimum Data tructures Gerth tølting Brodal 1, Andrej Brodnik 2,3, and Pooya Davoodi 4 1 MADALGO, Department of Computer cience, Aarhus University, Denmark.

More information

( D. Θ n. ( ) f n ( ) D. Ο%

( D. Θ n. ( ) f n ( ) D. Ο% CSE 0 Name Test Spring 0 Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to run the code below is in: for i=n; i>=; i--) for j=; j

More information

DATA STRUCTURE : A MCQ QUESTION SET Code : RBMCQ0305

DATA STRUCTURE : A MCQ QUESTION SET Code : RBMCQ0305 Q.1 If h is any hashing function and is used to hash n keys in to a table of size m, where n

More information

Near-optimal fully-dynamic graph connectivity

Near-optimal fully-dynamic graph connectivity Near-optimal fully-dynamic graph connectivity Mikkel Thorup AT&T Labs--Research, Shannon Laboratory 180 Park Avenue, Florham Park, NJ 07932 mthorup @ research.att.edu ABSTRACT In this paper we present

More information

ICS 691: Advanced Data Structures Spring Lecture 8

ICS 691: Advanced Data Structures Spring Lecture 8 ICS 691: Advanced Data Structures Spring 2016 Prof. odari Sitchinava Lecture 8 Scribe: Ben Karsin 1 Overview In the last lecture we continued looking at arborally satisfied sets and their equivalence to

More information

Path Minima Queries in Dynamic Weighted Trees

Path Minima Queries in Dynamic Weighted Trees Path Minima Queries in Dynamic Weighted Trees Gerth Stølting Brodal 1, Pooya Davoodi 1, S. Srinivasa Rao 2 1 MADALGO, Department of Computer Science, Aarhus University. E-mail: {gerth,pdavoodi}@cs.au.dk

More information

Computational Geometry

Computational Geometry Range searching and kd-trees 1 Database queries 1D range trees Databases Databases store records or objects Personnel database: Each employee has a name, id code, date of birth, function, salary, start

More information

( ) n 3. n 2 ( ) D. Ο

( ) n 3. n 2 ( ) D. Ο CSE 0 Name Test Summer 0 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply two n n matrices is: A. Θ( n) B. Θ( max( m,n, p) ) C.

More information

Orthogonal range searching. Orthogonal range search

Orthogonal range searching. Orthogonal range search CG Lecture Orthogonal range searching Orthogonal range search. Problem definition and motiation. Space decomposition: techniques and trade-offs 3. Space decomposition schemes: Grids: uniform, non-hierarchical

More information

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair {machado,tron}@visgraf.impa.br Theoretical Models Random Access Machine Memory: Infinite Array. Access

More information

1 Non greedy algorithms (which we should have covered

1 Non greedy algorithms (which we should have covered 1 Non greedy algorithms (which we should have covered earlier) 1.1 Floyd Warshall algorithm This algorithm solves the all-pairs shortest paths problem, which is a problem where we want to find the shortest

More information

On Minimizing Crossings in Storyline Visualizations

On Minimizing Crossings in Storyline Visualizations On Minimizing Crossings in Storyline Visualizations Irina Kostitsyna Martin No llenburg Valentin Polishchuk Andre Schulz Darren Strash www.xkcd.com, CC BY-NC 2.5 Kostitsyna, No llenburg, V.and Polishchuk,

More information

Randomized incremental construction. Trapezoidal decomposition: Special sampling idea: Sample all except one item

Randomized incremental construction. Trapezoidal decomposition: Special sampling idea: Sample all except one item Randomized incremental construction Special sampling idea: Sample all except one item hope final addition makes small or no change Method: process items in order average case analysis randomize order to

More information

Minimum sum multicoloring on the edges of trees

Minimum sum multicoloring on the edges of trees Minimum sum multicoloring on the edges of trees Dániel Marx a,1 a Department of Computer Science and Information Theory, Budapest University of Technology and Economics, H-1521 Budapest, Hungary. Abstract

More information

An Improved Query Time for Succinct Dynamic Dictionary Matching

An Improved Query Time for Succinct Dynamic Dictionary Matching An Improved Query Time for Succinct Dynamic Dictionary Matching Guy Feigenblat 12 Ely Porat 1 Ariel Shiftan 1 1 Bar-Ilan University 2 IBM Research Haifa labs Agenda An Improved Query Time for Succinct

More information

Level-Balanced B-Trees

Level-Balanced B-Trees Gerth Stølting rodal RICS University of Aarhus Pankaj K. Agarwal Lars Arge Jeffrey S. Vitter Center for Geometric Computing Duke University January 1999 1 -Trees ayer, McCreight 1972 Level 2 Level 1 Leaves

More information

Lecture 6 Sequences II. Parallel and Sequential Data Structures and Algorithms, (Fall 2013) Lectured by Danny Sleator 12 September 2013

Lecture 6 Sequences II. Parallel and Sequential Data Structures and Algorithms, (Fall 2013) Lectured by Danny Sleator 12 September 2013 Lecture 6 Sequences II Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2013) Lectured by Danny Sleator 12 September 2013 Material in this lecture: Today s lecture is about reduction.

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Frédéric Giroire FG Simplex 1/11 Motivation Goal: Find good solutions for difficult problems (NP-hard). Be able to quantify the goodness of the given solution. Presentation of

More information

arxiv: v2 [cs.cg] 22 Dec 2015

arxiv: v2 [cs.cg] 22 Dec 2015 All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs Glencora Borradaile David Eppstein Amir Nayyeri Christian Wulff-Nilsen arxiv:1411.7055v2 [cs.cg] 22 Dec 2015 Abstract For an undirected

More information

Heaps Outline and Required Reading: Heaps ( 7.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic

Heaps Outline and Required Reading: Heaps ( 7.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic 1 Heaps Outline and Required Reading: Heaps (.3) COSC 2011, Fall 2003, Section A Instructor: N. Vlajic Heap ADT 2 Heap binary tree (T) that stores a collection of keys at its internal nodes and satisfies

More information

( ) ( ) C. " 1 n. ( ) $ f n. ( ) B. " log( n! ) ( ) and that you already know ( ) ( ) " % g( n) ( ) " #&

( ) ( ) C.  1 n. ( ) $ f n. ( ) B.  log( n! ) ( ) and that you already know ( ) ( )  % g( n) ( )  #& CSE 0 Name Test Summer 008 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time for the following code is in which set? for (i=0; i

More information

Improved Algorithms for Min Cuts and Max Flows in Undirected Planar Graphs

Improved Algorithms for Min Cuts and Max Flows in Undirected Planar Graphs Improved Algorithms for Min Cuts and Max Flows in Undirected Planar Graphs Giuseppe F. Italiano Università di Roma Tor Vergata Joint work with Yahav Nussbaum, Piotr Sankowski and Christian Wulff-Nilsen

More information

Ferianakademie 2010 Course 2: Distance Problems: Theory and Praxis. Distance Labelings. Stepahn M. Günther. September 23, 2010

Ferianakademie 2010 Course 2: Distance Problems: Theory and Praxis. Distance Labelings. Stepahn M. Günther. September 23, 2010 Ferianakademie 00 Course : Distance Problems: Theory and Praxis Distance Labelings Stepahn M. Günther September, 00 Abstract Distance labels allow to infer the shortest distance between any two vertices

More information

Midterm solutions. n f 3 (n) = 3

Midterm solutions. n f 3 (n) = 3 Introduction to Computer Science 1, SE361 DGIST April 20, 2016 Professors Min-Soo Kim and Taesup Moon Midterm solutions Midterm solutions The midterm is a 1.5 hour exam (4:30pm 6:00pm). This is a closed

More information

Data Structures for Range Minimum Queries in Multidimensional Arrays

Data Structures for Range Minimum Queries in Multidimensional Arrays Data Structures for Range Minimum Queries in Multidimensional Arrays Hao Yuan Mikhail J. Atallah Purdue University January 17, 2010 Yuan & Atallah (PURDUE) Multidimensional RMQ January 17, 2010 1 / 28

More information

arxiv: v1 [cs.ds] 1 Sep 2015

arxiv: v1 [cs.ds] 1 Sep 2015 On Minimizing Crossings in Storyline Visualizations Irina Kostitsyna 1, Martin Nöllenburg 2, Valentin Polishchuk 3, André Schulz 4, and Darren Strash 5 arxiv:1509.00442v1 [cs.ds] 1 Sep 2015 1 Dept. of

More information

3 Competitive Dynamic BSTs (January 31 and February 2)

3 Competitive Dynamic BSTs (January 31 and February 2) 3 Competitive Dynamic BSTs (January 31 and February ) In their original paper on splay trees [3], Danny Sleator and Bob Tarjan conjectured that the cost of sequence of searches in a splay tree is within

More information

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes Greedy Algorithms CLRS Chapters 16.1 16.3 Introduction to greedy algorithms Activity-selection problem Design of data-compression (Huffman) codes (Minimum spanning tree problem) (Shortest-path problem)

More information

Short Labels by Traversal and Jumping

Short Labels by Traversal and Jumping Electronic Notes in Discrete Mathematics 28 (2007) 153 160 www.elsevier.com/locate/endm Short Labels by Traversal and Jumping Nicolas Bonichon, Cyril Gavoille, and Arnaud Labourel 1,2 LaBRI University

More information

Algorithms and Theory of Computation. Lecture 7: Priority Queue

Algorithms and Theory of Computation. Lecture 7: Priority Queue Algorithms and Theory of Computation Lecture 7: Priority Queue Xiaohui Bei MAS 714 September 5, 2017 Nanyang Technological University MAS 714 September 5, 2017 1 / 15 Priority Queues Priority Queues Store

More information

CS102 Binary Search Trees

CS102 Binary Search Trees CS102 Binary Search Trees Prof Tejada 1 To speed up insertion, removal and search, modify the idea of a Binary Tree to create a Binary Search Tree (BST) Binary Search Trees Binary Search Trees have one

More information

Recent Developments in Hardness in P

Recent Developments in Hardness in P Recent Developments in Hardness in P Amir Abboud Stanford University Dec 11, 2016 Today s Headlines The k-clique subclass con:nues to grow. Hardness in P a@acks planar graphs. Formula-SAT and LCS, closer

More information

Phylogenetic Trees Lecture 12. Section 7.4, in Durbin et al., 6.5 in Setubal et al. Shlomo Moran, Ilan Gronau

Phylogenetic Trees Lecture 12. Section 7.4, in Durbin et al., 6.5 in Setubal et al. Shlomo Moran, Ilan Gronau Phylogenetic Trees Lecture 12 Section 7.4, in Durbin et al., 6.5 in Setubal et al. Shlomo Moran, Ilan Gronau. Maximum Parsimony. Last week we presented Fitch algorithm for (unweighted) Maximum Parsimony:

More information

Balanced Box-Decomposition trees for Approximate nearest-neighbor. Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry

Balanced Box-Decomposition trees for Approximate nearest-neighbor. Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry Balanced Box-Decomposition trees for Approximate nearest-neighbor 11 Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry Nearest Neighbor A set S of n points is given in some metric

More information

The priority is indicated by a number, the lower the number - the higher the priority.

The priority is indicated by a number, the lower the number - the higher the priority. CmSc 250 Intro to Algorithms Priority Queues 1. Introduction Usage of queues: in resource management: several users waiting for one and the same resource. Priority queues: some users have priority over

More information

Analysis of Algorithms

Analysis of Algorithms Analysis of Algorithms Concept Exam Code: 16 All questions are weighted equally. Assume worst case behavior and sufficiently large input sizes unless otherwise specified. Strong induction Consider this

More information

Suffix trees and applications. String Algorithms

Suffix trees and applications. String Algorithms Suffix trees and applications String Algorithms Tries a trie is a data structure for storing and retrieval of strings. Tries a trie is a data structure for storing and retrieval of strings. x 1 = a b x

More information

FUNCTIONALLY OBLIVIOUS (AND SUCCINCT) Edward Kmett

FUNCTIONALLY OBLIVIOUS (AND SUCCINCT) Edward Kmett FUNCTIONALLY OBLIVIOUS (AND SUCCINCT) Edward Kmett BUILDING BETTER TOOLS Cache-Oblivious Algorithms Succinct Data Structures RAM MODEL Almost everything you do in Haskell assumes this model Good for ADTs,

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 2. O(n) 2. [1 pt] What is the solution to the recurrence T(n) = T(n/2) + n, T(1)

More information

CSCI-1200 Data Structures Fall 2018 Lecture 23 Priority Queues II

CSCI-1200 Data Structures Fall 2018 Lecture 23 Priority Queues II Review from Lecture 22 CSCI-1200 Data Structures Fall 2018 Lecture 23 Priority Queues II Using STL s for_each, Function Objects, a.k.a., Functors STL s unordered_set (and unordered_map) Hash functions

More information

Bichromatic Line Segment Intersection Counting in O(n log n) Time

Bichromatic Line Segment Intersection Counting in O(n log n) Time Bichromatic Line Segment Intersection Counting in O(n log n) Time Timothy M. Chan Bryan T. Wilkinson Abstract We give an algorithm for bichromatic line segment intersection counting that runs in O(n log

More information

Optimization I : Brute force and Greedy strategy

Optimization I : Brute force and Greedy strategy Chapter 3 Optimization I : Brute force and Greedy strategy A generic definition of an optimization problem involves a set of constraints that defines a subset in some underlying space (like the Euclidean

More information

Sorting and Selection

Sorting and Selection Sorting and Selection Introduction Divide and Conquer Merge-Sort Quick-Sort Radix-Sort Bucket-Sort 10-1 Introduction Assuming we have a sequence S storing a list of keyelement entries. The key of the element

More information

CISC 235: Topic 4. Balanced Binary Search Trees

CISC 235: Topic 4. Balanced Binary Search Trees CISC 235: Topic 4 Balanced Binary Search Trees Outline Rationale and definitions Rotations AVL Trees, Red-Black, and AA-Trees Algorithms for searching, insertion, and deletion Analysis of complexity CISC

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Computational Geometry 1 David M. Mount Department of Computer Science University of Maryland Fall 2005 1 Copyright, David M. Mount, 2005, Dept. of Computer Science, University of Maryland, College

More information

Lecture 9 March 15, 2012

Lecture 9 March 15, 2012 6.851: Advanced Data Structures Spring 2012 Prof. Erik Demaine Lecture 9 March 15, 2012 1 Overview This is the last lecture on memory hierarchies. Today s lecture is a crossover between cache-oblivious

More information

REPORTS IN INFORMATICS

REPORTS IN INFORMATICS REPORTS IN INFORMATICS ISSN 0333-3590 Dynamic Programming and Fast Matrix Multiplication Frederic Dorn REPORT NO 321 April 2006 Department of Informatics UNIVERSITY OF BERGEN Bergen, Norway This report

More information

CMSC 341 Leftist Heaps

CMSC 341 Leftist Heaps CMSC 341 Leftist Heaps Based on slides from previous iterations of this course Today s Topics Review of Min Heaps Introduction of Left-ist Heaps Merge Operation Heap Operations Review of Heaps Min Binary

More information

Speeding up MWU based Approximation Schemes and Some Applications

Speeding up MWU based Approximation Schemes and Some Applications Speeding up MWU based Approximation Schemes and Some Applications Chandra Chekuri Univ. of Illinois, Urbana-Champaign Joint work with Kent Quanrud Based on recent papers Near-linear-time approximation

More information

managing an evolving set of connected components implementing a Union-Find data structure implementing Kruskal s algorithm

managing an evolving set of connected components implementing a Union-Find data structure implementing Kruskal s algorithm Spanning Trees 1 Spanning Trees the minimum spanning tree problem three greedy algorithms analysis of the algorithms 2 The Union-Find Data Structure managing an evolving set of connected components implementing

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.2 Row Reduction and Echelon Forms ECHELON FORM A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties: 1. All nonzero

More information

Evolutionary tree reconstruction (Chapter 10)

Evolutionary tree reconstruction (Chapter 10) Evolutionary tree reconstruction (Chapter 10) Early Evolutionary Studies Anatomical features were the dominant criteria used to derive evolutionary relationships between species since Darwin till early

More information