Orthogonal range searching. Orthogonal range search

Size: px
Start display at page:

Download "Orthogonal range searching. Orthogonal range search"

Transcription

1 CG Lecture Orthogonal range searching Orthogonal range search. Problem definition and motiation. Space decomposition: techniques and trade-offs 3. Space decomposition schemes: Grids: uniform, non-hierarchical decomposition Quad trees: uniform, hierarchical decomposition Range trees and kd-trees: non-uniform, hierarchical. igher dimensions, ariations on the theme Problem: Gien a set of n points in R d, preprocess them such that reporting or counting the k points inside a d- dimensional axis-parallel box (range) will be efficient. Sample application: Report all cities within 0 KM radius of Tel i. Y X Space decomposition techniques Different schemes for different types of data, with arious trade-offs Types of space decomposition: Grids: uniform, non-hierarchical decomposition Quad trees: uniform, hierarchical decomposition Range trees and kd-trees: non-uniform, hierarchical Key efficiency parameters: Preprocessing time: f( Ω( Preprocessing storage f( Ω( erage query time f(n,k) Worst-case query time f(n,k) Grids: uniform, non-hierarchical Store points in a uniform array [:n] [:n] Query is answered by reporting points in subarray [i:j] [k:l] Complexity: Preprocessing in O( time and O(n ) storage. Query time O(k). Update in O() when points on grid. lternaties: Dynamical update (insertions/deletions) f( 3 List, sparse matrix, hashing Quad trees: uniform, hierarchical Recursiely partition the space into four quadrants until leaf quadrants contain a single point or no point. Query is answered by recursiely intersecting the query rectangle R with the quadrants and reporting the results according to the intersection. Complexity: depends on the nature of the data set, not just the number of points! 5 Quad trees: construction Start with smallest rectangle containing all points. Recusiely classify point set into four quadrants. Stop when quadrant has one or no points. The height h of the tree is related to the size of the initial rectangle s and the smallest distance c between two points: h = log (s/c) + 3/. quad tree with n points and height h has O(h+)n nodes and can be constructed in O(h+)n time. s/ i 6

2 Quad trees: query answer t each eel, check how the query rectangle R intersects each quadrant: If it does not intersect, stop. If it is included, report all points below Else, recursiely check each quadrant. Complexity: Tests takes O() at each leel. Worst case: must descend to deepest leel and test all four quadrants: Non-uniform, hierarchical decompositions Range tree Construct a binary search tree for coordinate x, and associate to each node in that tree a binary search tree for the y coordinate. Complexity: O(n log to build and store the trees, O(log n +k) to report k points. Kd-tree Construct a binary search tree by recursiely splitting the points along a median line alternating between in the x and y coordinates. Complexity: O(n log to build, O( to store the tree, O( n +k) to report k points. 7 O( (h+) 8 ). D range searching Points are real numbers, ranges are defined by two numbers u and. lgorithm: Sort points in O(n log time Store points in a balanced binary tree whose leaes are points. Each tree node stores the largest alue of its left subtree. Do binary search for u and in the list in O(log time. List all alues in between u Search complexity: O(log n + 9k) check its alue. 0 Search complexity: Range searching in a D tree Find the two boundaries of the range in the leaes u and. Report all leaes in maximal sub-trees between u and. Mark the ertex at which the search paths dierge as -split. Proceed to find the two boundaries, reporting alues in the sub-trees: - When going to the left (right) endpoint of the range: If going left (right), report the entire right (left) subtree. When a leaf is reached, - - Input Range: split D range trees split node finding D range query algorithm

3 D range query: run-time analysis k: output size Leaes: O(k) time Internal nodes: O(k) time (since this is a binary tree) Paths: O(log time Total: O(log n + k) time Worst case: k = n Θ( time 3 D range search: idea Generalize D range searching: Construction: Construct a tree ordered by x coordinates. Each inner ertex contains a pointer to a secondary containing all the points of the primary subtree ordered by y coordinate. Points are stored only in the secondary trees. T sorted by x T assoc () sorted by y D range tree: idea Searching: Gien a D range, we simulate a D search and find subtrees sorted by x. Instead of reporting the entire subtrees, inoke a search in the secondary trees sorted by y, and report only the points in the query range. T T assoc () D range tree construction algorithm 5 6 D range tree construction complexity Same as a D-Tree, except that in each leel the secondary trees are built as well. Theorem: The space complexity is Θ(n log. Proof: The size of the primary tree is Θ(. Each of its Θ(log leels corresponds to a collection of secondary trees that contains all the n points. Time complexity (naïe analysis): O() n = T( = n O( n log + T else = O( n log 7 D range tree construction complexity Improement: Source of inefficiency: repeated sorting by y coordinate! Instead, sort by y only once, and copy data in the recursie calls in linear time. The resulting recursie equation is: O() n = T( = n O( + T else = O( n log 8 3

4 D range tree query algorithm D range search complexity Recurrence equation: T ( = O(log + (log n + k ) = O(log n + k) traersing calls to traersing reporting primary secondary secondary structure structure structure The running time can be reduced to O(log n + k) by using fractional cascading. 9 0 d-dimensional dimensional range trees The idea generalizes directly to d dimensions: Create a series of trees, one for each dimension. Search each as before. Complexity: Construction (time and storage) T d ( = O(n log + T d (.O(log = O(n log d Query: Q d ( = O(log + Q d (.O(log = O(log d T sorted by x sorted by x sorted by x 3 D kd trees: idea ound the points by a rectangle. Split the points into two equal-size subsets, using a horizontal or ertical line. Continue recursiely to partition the subsets, alternating the directions of the lines, until point subsets are small enough (of constant size). Canonical subsets are subtrees. In higher (k) dimensions: Split directions alternate between the k axes ( kd trees). Example of a D kd tree 3 D kd tree construction Partition the plane into axisaligned rectangular regions. Nodes represent partition lines, and leaes represent input points. The bottleneck is finding the median, which requires only linear time! Time complexity: O() n= Tn ( ) = n O( + T n> Tn ( ) = On ( log L L C L L L D L E L 6 L 6 G C D E F G F

5 D kd tree construction algorithm D range query search Each node in the tree defines an axis-parallel rectangle in the plane, bounded by the lines marked by this ertex s ancestors. Label each node with the number of points in that rectangle. L L L L 6 F E C D 8 L G L L L C D E F G D range query search (cont.) Gien an axis-parallel range query R, search for this range in the tree. Traerse only subtrees which represent regions oerlapping R. If a subtree entirly contained in R: Counting: dd up its count. Reporting: Report entire subtree. 9 L L L L 6 3 L L L L 6 F R E C D 5 C D E F G G L 8 L 8 I Example of kd tree query answering 7 I 8 D kd tree search algorithm 9 Query time complexity analysis k nodes are reported. ow much time is spent on internal nodes? The nodes isited are those that are stabbed by R but are not contained in R. ow many such cells exist? Theorem: Eery side of R stabs O( cells of the tree. Proof: Extend the side to a full line (wlog, horizontal). In the first leel it stabs two children, and in the next leel it stabs two out of the four grandchildren. Thus, the recursie equation is: Total query time: O( n + k). n = Q( = n + Q else = O ( 30 5

6 kd-trees: higher dimensions For a d-dimensional space: Same algorithm. Construction time: O(dn log. (O(d) time is needed to handle a point.) Space Complexity: O(d. Query time complexity: O(d (n -/d +k)). Note: For large d, full scan is almost equally good. Question: re kd-trees useful for non-orthogonal range queries, e.g., disks, conex polygons? Fact: Using interal trees, orthogonal range queries can be soled in O(d log d- n + k) time using O(d n log d- space. 3 Points in non-general position Question: ow can we handle sets of points which are not in general position, i.e., with multiple points with the same x coordinate? nswer: y two-step order checks. When comparing according to x, resole ties by y, and ice ersa. This splits points into two sides, haing the same effect as infinitesimally rotating the plane. Theorem: The modified order checks presere the correctness of the algorithms. 3 6

Computational Geometry

Computational Geometry Orthogonal Range Searching omputational Geometry hapter 5 Range Searching Problem: Given a set of n points in R d, preprocess them such that reporting or counting the k points inside a d-dimensional axis-parallel

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Computational Geometry 1 David M. Mount Department of Computer Science University of Maryland Fall 2005 1 Copyright, David M. Mount, 2005, Dept. of Computer Science, University of Maryland, College

More information

Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b

Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b simas@cs.aau.dk Range Searching in 2D Main goals of the lecture: to understand and to be able to analyze the kd-trees

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

Orthogonal range searching. Range Trees. Orthogonal range searching. 1D range searching. CS Spring 2009

Orthogonal range searching. Range Trees. Orthogonal range searching. 1D range searching. CS Spring 2009 CS 5633 -- Spring 2009 Orthogonal range searching Range Trees Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CS 5633 Analysis of Algorithms 1 Input: n points in d dimensions

More information

Data Structure: Search Trees 2. Instructor: Prof. Young-guk Ha Dept. of Computer Science & Engineering

Data Structure: Search Trees 2. Instructor: Prof. Young-guk Ha Dept. of Computer Science & Engineering Data Structure: Search Trees 2 2017 Instructor: Prof. Young-guk Ha Dept. of Computer Science & Engineering Search Trees Tree data structures that can be used to implement a dictionary, especially an ordered

More information

Range Searching and Windowing

Range Searching and Windowing CS 6463 -- Fall 2010 Range Searching and Windowing Carola Wenk 1 Orthogonal range searching Input: n points in d dimensions E.g., representing a database of n records each with d numeric fields Query:

More information

Computational Geometry

Computational Geometry Range trees Range queries Database queries salary G. Ometer born: Aug 16, 1954 salary: $3,500 A database query may ask for all employees with age between a 1 and a 2, and salary between s 1 and s 2 19,500,000

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms Geometric data structures Sudebkumar Prasant Pal Department of Computer Science and Engineering IIT Kharagpur, 721302. email: spp@cse.iitkgp.ernet.in January 10-12, 2012 - NIT Surathkal Introduction to

More information

Module 8: Range-Searching in Dictionaries for Points

Module 8: Range-Searching in Dictionaries for Points Module 8: Range-Searching in Dictionaries for Points CS 240 Data Structures and Data Management T. Biedl K. Lanctot M. Sepehri S. Wild Based on lecture notes by many previous cs240 instructors David R.

More information

Computational Geometry

Computational Geometry Range searching and kd-trees 1 Database queries 1D range trees Databases Databases store records or objects Personnel database: Each employee has a name, id code, date of birth, function, salary, start

More information

Data structures for totally monotone matrices

Data structures for totally monotone matrices Data structures for totally monotone matrices Submatrix maximum queries in (inverse) Monge matrices Input: n x n (inverse) Monge matrix M represented implicitly (constant time oracle access) Output: data

More information

Range Searching II: Windowing Queries

Range Searching II: Windowing Queries Computational Geometry Lecture : Windowing Queries INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Tamara Mchedlidze Chih-Hung Liu 23.11.2015 1 Object types in range queries y0 y x x0 Setting

More information

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries.

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries. Range Searching Data structure for a set of objects (oints, rectangles, olygons) for efficient range queries. Y Q Deends on tye of objects and queries. Consider basic data structures with broad alicability.

More information

1 The range query problem

1 The range query problem CS268: Geometric Algorithms Handout #12 Design and Analysis Original Handout #12 Stanford University Thursday, 19 May 1994 Original Lecture #12: Thursday, May 19, 1994 Topics: Range Searching with Partition

More information

Range Reporting. Range Reporting. Range Reporting Problem. Applications

Range Reporting. Range Reporting. Range Reporting Problem. Applications Philip Bille Problem problem. Preprocess at set of points P R 2 to support report(x1, y1, x2, y2): Return the set of points in R P, where R is rectangle given by (x1, y1) and (x2, y2). Applications Relational

More information

Motivation: Art gallery problem. Polygon decomposition. Art gallery problem: upper bound. Art gallery problem: lower bound

Motivation: Art gallery problem. Polygon decomposition. Art gallery problem: upper bound. Art gallery problem: lower bound CG Lecture 3 Polygon decomposition 1. Polygon triangulation Triangulation theory Monotone polygon triangulation 2. Polygon decomposition into monotone pieces 3. Trapezoidal decomposition 4. Conex decomposition

More information

GEOMETRIC SEARCHING PART 2: RANGE SEARCH

GEOMETRIC SEARCHING PART 2: RANGE SEARCH GEOMETRIC SEARCHING PART 2: RANGE SEARCH PETR FELKEL FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg] and [Mount] Version from 19.10.2017 Range search

More information

Lecture 3 February 9, 2010

Lecture 3 February 9, 2010 6.851: Advanced Data Structures Spring 2010 Dr. André Schulz Lecture 3 February 9, 2010 Scribe: Jacob Steinhardt and Greg Brockman 1 Overview In the last lecture we continued to study binary search trees

More information

Algorithms for GIS:! Quadtrees

Algorithms for GIS:! Quadtrees Algorithms for GIS: Quadtrees Quadtree A data structure that corresponds to a hierarchical subdivision of the plane Start with a square (containing inside input data) Divide into 4 equal squares (quadrants)

More information

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d )

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d ) kd-trees Invented in 1970s by Jon Bentley Name originally meant 3d-trees, 4d-trees, etc where k was the # of dimensions Now, people say kd-tree of dimension d Idea: Each level of the tree compares against

More information

1. Meshes. D7013E Lecture 14

1. Meshes. D7013E Lecture 14 D7013E Lecture 14 Quadtrees Mesh Generation 1. Meshes Input: Components in the form of disjoint polygonal objects Integer coordinates, 0, 45, 90, or 135 angles Output: A triangular mesh Conforming: A triangle

More information

WINDOWING PETR FELKEL. FEL CTU PRAGUE https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start. Based on [Berg], [Mount]

WINDOWING PETR FELKEL. FEL CTU PRAGUE https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start. Based on [Berg], [Mount] WINDOWING PETR FELKEL FEL CTU PRAGUE felkel@fel.cvut.cz https://cw.felk.cvut.cz/doku.php/courses/a4m39vg/start Based on [Berg], [Mount] Version from 15.12.2016 Windowing queries - examples [Berg] Interaction

More information

Orthogonal Range Search and its Relatives

Orthogonal Range Search and its Relatives Orthogonal Range Search and its Relatives Coordinate-wise dominance and minima Definition: dominates Say that point (x,y) dominates (x', y') if x

More information

Chapter 11: Indexing and Hashing

Chapter 11: Indexing and Hashing Chapter 11: Indexing and Hashing Basic Concepts Ordered Indices B + -Tree Index Files B-Tree Index Files Static Hashing Dynamic Hashing Comparison of Ordered Indexing and Hashing Index Definition in SQL

More information

CS Fall 2010 B-trees Carola Wenk

CS Fall 2010 B-trees Carola Wenk CS 3343 -- Fall 2010 B-trees Carola Wenk 10/19/10 CS 3343 Analysis of Algorithms 1 External memory dictionary Task: Given a large amount of data that does not fit into main memory, process it into a dictionary

More information

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair {machado,tron}@visgraf.impa.br Theoretical Models Random Access Machine Memory: Infinite Array. Access

More information

1D Range Searching (cont) 5.1: 1D Range Searching. Database queries

1D Range Searching (cont) 5.1: 1D Range Searching. Database queries kd!trees SMD156 Lecture 5 Orthogonal Range Searching Database queries Divide!and!conquer Orthogonal Range Searching Range Trees Searching for items using many ranges of criteria at a time SMD156 Computational

More information

Computational Geometry

Computational Geometry CS 5633 -- Spring 2004 Computational Geometry Carola Wenk Slides courtesy of Charles Leiserson with small changes by Carola Wenk CS 5633 Analysis of Algorithms 1 Computational geometry Algorithms for solving

More information

Range Reporting. Range reporting problem 1D range reporting Range trees 2D range reporting Range trees Predecessor in nested sets kd trees

Range Reporting. Range reporting problem 1D range reporting Range trees 2D range reporting Range trees Predecessor in nested sets kd trees Range Reporting Range reporting problem 1D range reporting Range trees 2D range reporting Range trees Predecessor in nested sets kd trees Philip Bille Range Reporting Range reporting problem 1D range reporting

More information

Lower Bound on Comparison-based Sorting

Lower Bound on Comparison-based Sorting Lower Bound on Comparison-based Sorting Different sorting algorithms may have different time complexity, how to know whether the running time of an algorithm is best possible? We know of several sorting

More information

Problem Set 6 Solutions

Problem Set 6 Solutions Introduction to Algorithms October 29, 2001 Massachusetts Institute of Technology 6.046J/18.410J Singapore-MIT Alliance SMA5503 Professors Erik Demaine, Lee Wee Sun, and Charles E. Leiserson Handout 24

More information

Computational Geometry. Lecture 17

Computational Geometry. Lecture 17 Computational Geometry Lecture 17 Computational geometry Algorithms for solving geometric problems in 2D and higher. Fundamental objects: Basic structures: point line segment line point set polygon L17.2

More information

Algorithms for Memory Hierarchies Lecture 2

Algorithms for Memory Hierarchies Lecture 2 Algorithms for emory Hierarchies Lecture Lecturer: odari Sitchianva Scribes: Robin Rehrmann, ichael Kirsten Last Time External memory (E) model Scan(): O( ) I/Os Stacks / queues: O( 1 ) I/Os / elt ergesort:

More information

Line segment intersection. Family of intersection problems

Line segment intersection. Family of intersection problems CG Lecture 2 Line segment intersection Intersecting two line segments Line sweep algorithm Convex polygon intersection Boolean operations on polygons Subdivision overlay algorithm 1 Family of intersection

More information

I/O-Algorithms Lars Arge Aarhus University

I/O-Algorithms Lars Arge Aarhus University I/O-Algorithms Aarhus University April 10, 2008 I/O-Model Block I/O D Parameters N = # elements in problem instance B = # elements that fits in disk block M = # elements that fits in main memory M T =

More information

Chapter 12: Indexing and Hashing. Basic Concepts

Chapter 12: Indexing and Hashing. Basic Concepts Chapter 12: Indexing and Hashing! Basic Concepts! Ordered Indices! B+-Tree Index Files! B-Tree Index Files! Static Hashing! Dynamic Hashing! Comparison of Ordered Indexing and Hashing! Index Definition

More information

Chapter 12: Indexing and Hashing

Chapter 12: Indexing and Hashing Chapter 12: Indexing and Hashing Basic Concepts Ordered Indices B+-Tree Index Files B-Tree Index Files Static Hashing Dynamic Hashing Comparison of Ordered Indexing and Hashing Index Definition in SQL

More information

CMPS 2200 Fall 2017 B-trees Carola Wenk

CMPS 2200 Fall 2017 B-trees Carola Wenk CMPS 2200 Fall 2017 B-trees Carola Wenk 9/18/17 CMPS 2200 Intro. to Algorithms 1 External memory dictionary Task: Given a large amount of data that does not fit into main memory, process it into a dictionary

More information

Intro to DB CHAPTER 12 INDEXING & HASHING

Intro to DB CHAPTER 12 INDEXING & HASHING Intro to DB CHAPTER 12 INDEXING & HASHING Chapter 12: Indexing and Hashing Basic Concepts Ordered Indices B+-Tree Index Files B-Tree Index Files Static Hashing Dynamic Hashing Comparison of Ordered Indexing

More information

Geometric Data Structures

Geometric Data Structures Geometric Data Structures Swami Sarvottamananda Ramakrishna Mission Vivekananda University THAPAR-IGGA, 2010 Outline I 1 Introduction Motivation for Geometric Data Structures Scope of the Lecture 2 Range

More information

Range-Aggregate Queries Involving Geometric Aggregation Operations

Range-Aggregate Queries Involving Geometric Aggregation Operations Range-Aggregate Queries Involving Geometric Aggregation Operations Saladi Rahul, Ananda Swarup Das, K. S. Rajan, and Kannan Srinathan {srahul,anandaswarup}@research.iiit.ac.in {rajan, srinathan}@iiit.ac.in

More information

Computational Geometry

Computational Geometry Computational Geometry Search in High dimension and kd-trees Ioannis Emiris Dept Informatics & Telecoms, National Kapodistrian U. Athens ATHENA Research & Innovation Center, Greece Spring 2018 I.Emiris

More information

Geometric Data Structures

Geometric Data Structures Geometric Data Structures Swami Sarvottamananda Ramakrishna Mission Vivekananda University Coimbatore-IGGA, 2010 Outline I 1 Introduction Scope of the Lecture Motivation for Geometric Data Structures 2

More information

Geometric Algorithms. Geometric search: overview. 1D Range Search. 1D Range Search Implementations

Geometric Algorithms. Geometric search: overview. 1D Range Search. 1D Range Search Implementations Geometric search: overview Geometric Algorithms Types of data:, lines, planes, polygons, circles,... This lecture: sets of N objects. Range searching Quadtrees, 2D trees, kd trees Intersections of geometric

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Lecture 9 - Jan. 22, 2018 CLRS 12.2, 12.3, 13.2, read problem 13-3 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures

More information

AVL Trees. (AVL Trees) Data Structures and Programming Spring / 17

AVL Trees. (AVL Trees) Data Structures and Programming Spring / 17 AVL Trees (AVL Trees) Data Structures and Programming Spring 2017 1 / 17 Balanced Binary Tree The disadvantage of a binary search tree is that its height can be as large as N-1 This means that the time

More information

Planar Point Location

Planar Point Location C.S. 252 Prof. Roberto Tamassia Computational Geometry Sem. II, 1992 1993 Lecture 04 Date: February 15, 1993 Scribe: John Bazik Planar Point Location 1 Introduction In range searching, a set of values,

More information

Data Organization and Processing

Data Organization and Processing Data Organization and Processing Spatial Join (NDBI007) David Hoksza http://siret.ms.mff.cuni.cz/hoksza Outline Spatial join basics Relational join Spatial join Spatial join definition (1) Given two sets

More information

Orthogonal Range Queries

Orthogonal Range Queries Orthogonal Range Piotr Indyk Range Searching in 2D Given a set of n points, build a data structure that for any query rectangle R, reports all points in R Kd-trees [Bentley] Not the most efficient solution

More information

Chapter 12: Indexing and Hashing

Chapter 12: Indexing and Hashing Chapter 12: Indexing and Hashing Database System Concepts, 5th Ed. See www.db-book.com for conditions on re-use Chapter 12: Indexing and Hashing Basic Concepts Ordered Indices B + -Tree Index Files B-Tree

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Lecture 9 - Jan. 22, 2018 CLRS 12.2, 12.3, 13.2, read problem 13-3 University of Manitoba 1 / 12 Binary Search Trees (review) Structure

More information

An improvement in the build algorithm for Kd-trees using mathematical mean

An improvement in the build algorithm for Kd-trees using mathematical mean An improvement in the build algorithm for Kd-trees using mathematical mean Priyank Trivedi, Abhinandan Patni, Zeon Trevor Fernando and Tejaswi Agarwal School of Computing Sciences and Engineering, VIT

More information

08 A: Sorting III. CS1102S: Data Structures and Algorithms. Martin Henz. March 10, Generated on Tuesday 9 th March, 2010, 09:58

08 A: Sorting III. CS1102S: Data Structures and Algorithms. Martin Henz. March 10, Generated on Tuesday 9 th March, 2010, 09:58 08 A: Sorting III CS1102S: Data Structures and Algorithms Martin Henz March 10, 2010 Generated on Tuesday 9 th March, 2010, 09:58 CS1102S: Data Structures and Algorithms 08 A: Sorting III 1 1 Recap: Sorting

More information

Computational Geometry

Computational Geometry Planar point location Point location Introduction Planar point location Strip-based structure Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision

More information

Data Structures (CS 1520) Lecture 28 Name:

Data Structures (CS 1520) Lecture 28 Name: Traeling Salesperson Problem (TSP) -- Find an optimal (ie, minimum length) when at least one exists A (or Hamiltonian circuit) is a path from a ertex back to itself that passes through each of the other

More information

Red-Black Trees. 2/24/2006 Red-Black Trees 1

Red-Black Trees. 2/24/2006 Red-Black Trees 1 Red-Black Trees 3 8 //00 Red-Black Trees 1 Outline and Reading From (,) trees to red-black trees ( 10.5) Red-black tree ( 10.5.1) Definition Height Insertion restructuring recoloring Deletion restructuring

More information

Section 1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations

Section 1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations Section 1.1 The Distance and Midpoint Formulas; Graphing Utilities; Introduction to Graphing Equations origin (x, y) Ordered pair (x-coordinate, y-coordinate) (abscissa, ordinate) x axis Rectangular or

More information

Multidimensional Indexes [14]

Multidimensional Indexes [14] CMSC 661, Principles of Database Systems Multidimensional Indexes [14] Dr. Kalpakis http://www.csee.umbc.edu/~kalpakis/courses/661 Motivation Examined indexes when search keys are in 1-D space Many interesting

More information

CSC Design and Analysis of Algorithms

CSC Design and Analysis of Algorithms CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Merge Sort & Quick Sort

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Merge Sort & Quick Sort Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Merge Sort & Quick Sort 1 Divide-and-Conquer Divide-and conquer is a general algorithm

More information

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

Quadrilateral Meshes with Provable Angle Bounds

Quadrilateral Meshes with Provable Angle Bounds Quadrilateral Meshes with Proable Angle Bounds F. Betul Atalay Suneeta Ramaswami Dianna Xu March 3, 2011 Abstract In this paper, we present an algorithm that utilizes a quadtree data structure to construct

More information

Ray Tracing Acceleration Data Structures

Ray Tracing Acceleration Data Structures Ray Tracing Acceleration Data Structures Sumair Ahmed October 29, 2009 Ray Tracing is very time-consuming because of the ray-object intersection calculations. With the brute force method, each ray has

More information

Approximation Algorithms for Geometric Intersection Graphs

Approximation Algorithms for Geometric Intersection Graphs Approximation Algorithms for Geometric Intersection Graphs Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Outline

More information

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conuer Algorithm Design Techniue Divide-and-Conuer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

CPSC 311 Lecture Notes. Sorting and Order Statistics (Chapters 6-9)

CPSC 311 Lecture Notes. Sorting and Order Statistics (Chapters 6-9) CPSC 311 Lecture Notes Sorting and Order Statistics (Chapters 6-9) Acknowledgement: These notes are compiled by Nancy Amato at Texas A&M University. Parts of these course notes are based on notes from

More information

Remember. 376a. Database Design. Also. B + tree reminders. Algorithms for B + trees. Remember

Remember. 376a. Database Design. Also. B + tree reminders. Algorithms for B + trees. Remember 376a. Database Design Dept. of Computer Science Vassar College http://www.cs.vassar.edu/~cs376 Class 14 B + trees, multi-key indices, partitioned hashing and grid files B and B + -trees are used one implementation

More information

Transform & Conquer. Presorting

Transform & Conquer. Presorting Transform & Conquer Definition Transform & Conquer is a general algorithm design technique which works in two stages. STAGE : (Transformation stage): The problem s instance is modified, more amenable to

More information

Computation Geometry Exercise Range Searching II

Computation Geometry Exercise Range Searching II Computation Geometry Exercise Range Searching II LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Guido Brückner 20.07.2018 1 Object types in range queries y0 y

More information

Analysis of Algorithms

Analysis of Algorithms Analysis of Algorithms Concept Exam Code: 16 All questions are weighted equally. Assume worst case behavior and sufficiently large input sizes unless otherwise specified. Strong induction Consider this

More information

Box-Trees and R-trees with Near-Optimal Query Time Λ

Box-Trees and R-trees with Near-Optimal Query Time Λ Box-Trees and R-trees with Near-Optimal Query Time Λ P. K. Agarwal y,m.deberg z, J. Gudmundsson z, M. Hammar x,h.j.haverkort z y Dept. of Computer Science, Box 90129, Duke University, Durham, NC 27708-0129,

More information

CSE 530A. B+ Trees. Washington University Fall 2013

CSE 530A. B+ Trees. Washington University Fall 2013 CSE 530A B+ Trees Washington University Fall 2013 B Trees A B tree is an ordered (non-binary) tree where the internal nodes can have a varying number of child nodes (within some range) B Trees When a key

More information

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Part 2 1 3 Maximum Selection Problem : Given n numbers, x 1, x 2,, x

More information

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree.

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree. The Lecture Contains: Index structure Binary search tree (BST) B-tree B+-tree Order file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture13/13_1.htm[6/14/2012

More information

Data Structures and Algorithms Week 4

Data Structures and Algorithms Week 4 Data Structures and Algorithms Week. About sorting algorithms. Heapsort Complete binary trees Heap data structure. Quicksort a popular algorithm very fast on average Previous Week Divide and conquer Merge

More information

Lecture Notes: Range Searching with Linear Space

Lecture Notes: Range Searching with Linear Space Lecture Notes: Range Searching with Linear Space Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk In this lecture, we will continue our discussion

More information

CSC Design and Analysis of Algorithms. Lecture 7. Transform and Conquer I Algorithm Design Technique. Transform and Conquer

CSC Design and Analysis of Algorithms. Lecture 7. Transform and Conquer I Algorithm Design Technique. Transform and Conquer // CSC - Design and Analysis of Algorithms Lecture 7 Transform and Conquer I Algorithm Design Technique Transform and Conquer This group of techniques solves a problem by a transformation to a simpler/more

More information

1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls

1/60. Geometric Algorithms. Lecture 1: Introduction. Convex Hulls 1/60 Geometric Algorithms Lecture 1: Introduction Convex Hulls Geometric algorithms scope 2/60 Geometry algorithms (practice): Study of geometric problems that arise in various applications and how algorithms

More information

Data Structures Question Bank Multiple Choice

Data Structures Question Bank Multiple Choice Section 1. Fundamentals: Complexity, Algorthm Analysis 1. An algorithm solves A single problem or function Multiple problems or functions Has a single programming language implementation 2. A solution

More information

We can use a max-heap to sort data.

We can use a max-heap to sort data. Sorting 7B N log N Sorts 1 Heap Sort We can use a max-heap to sort data. Convert an array to a max-heap. Remove the root from the heap and store it in its proper position in the same array. Repeat until

More information

Trees. CSE 373 Data Structures

Trees. CSE 373 Data Structures Trees CSE 373 Data Structures Readings Reading Chapter 7 Trees 2 Why Do We Need Trees? Lists, Stacks, and Queues are linear relationships Information often contains hierarchical relationships File directories

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Hidden-Surface Removal Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm

More information

Chap4: Spatial Storage and Indexing. 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary

Chap4: Spatial Storage and Indexing. 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary Chap4: Spatial Storage and Indexing 4.1 Storage:Disk and Files 4.2 Spatial Indexing 4.3 Trends 4.4 Summary Learning Objectives Learning Objectives (LO) LO1: Understand concept of a physical data model

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Binary Search Trees CLRS 12.2, 12.3, 13.2, read problem 13-3 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures

More information

Data Structures and Algorithms Chapter 4

Data Structures and Algorithms Chapter 4 Data Structures and Algorithms Chapter. About sorting algorithms. Heapsort Complete binary trees Heap data structure. Quicksort a popular algorithm very fast on average Previous Chapter Divide and conquer

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

CS 372: Computational Geometry Lecture 3 Line Segment Intersection

CS 372: Computational Geometry Lecture 3 Line Segment Intersection CS 372: Computational Geometry Lecture 3 Line Segment Intersection Antoine Vigneron King Abdullah University of Science and Technology September 9, 2012 Antoine Vigneron (KAUST) CS 372 Lecture 3 September

More information

Massive Data Algorithmics. Lecture 12: Cache-Oblivious Model

Massive Data Algorithmics. Lecture 12: Cache-Oblivious Model Typical Computer Hierarchical Memory Basics Data moved between adjacent memory level in blocks A Trivial Program A Trivial Program: d = 1 A Trivial Program: d = 1 A Trivial Program: n = 2 24 A Trivial

More information

Data Structures (CS 1520) Lecture 28 Name:

Data Structures (CS 1520) Lecture 28 Name: Traeling Salesperson Problem (TSP) -- Find an optimal (ie, minimum length) when at least one exists A (or Hamiltonian circuit) is a path from a ertex back to itself that passes through each of the other

More information

Midterm solutions. n f 3 (n) = 3

Midterm solutions. n f 3 (n) = 3 Introduction to Computer Science 1, SE361 DGIST April 20, 2016 Professors Min-Soo Kim and Taesup Moon Midterm solutions Midterm solutions The midterm is a 1.5 hour exam (4:30pm 6:00pm). This is a closed

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Divide and Conquer

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Divide and Conquer Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Divide and Conquer Divide and-conquer is a very common and very powerful algorithm design technique. The general idea:

More information

Jana Kosecka. Linear Time Sorting, Median, Order Statistics. Many slides here are based on E. Demaine, D. Luebke slides

Jana Kosecka. Linear Time Sorting, Median, Order Statistics. Many slides here are based on E. Demaine, D. Luebke slides Jana Kosecka Linear Time Sorting, Median, Order Statistics Many slides here are based on E. Demaine, D. Luebke slides Insertion sort: Easy to code Fast on small inputs (less than ~50 elements) Fast on

More information

1 Closest Pair Problem

1 Closest Pair Problem 1 Closest Pair Problem Computational Geometry, Lectures 3,4 Closest Pair Problem Scribe Varun Nayyar Given a set of n points determine points a,b such that the interpoint distance ( Euclidean ) is the

More information

Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis

Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis 1 Advances in Data Management Principles of Database Systems - 2 A.Poulovassilis 1 Storing data on disk The traditional storage hierarchy for DBMSs is: 1. main memory (primary storage) for data currently

More information

Balanced Search Trees

Balanced Search Trees Balanced Search Trees Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D. Review: Balanced Trees A tree is balanced if, for each node, the node s subtrees have the same height or have

More information

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

What we have covered?

What we have covered? What we have covered? Indexing and Hashing Data warehouse and OLAP Data Mining Information Retrieval and Web Mining XML and XQuery Spatial Databases Transaction Management 1 Lecture 6: Spatial Data Management

More information