Note: In the presentation I should have said "baby registry" instead of "bridal registry," see

Size: px
Start display at page:

Download "Note: In the presentation I should have said "baby registry" instead of "bridal registry," see"

Transcription

1 Q-and-A from the Data-Mining Webinar Note: In the presentation I should have said "baby registry" instead of "bridal registry," see Q: You mentioned the 'Big Data' McKinsey Report. Is that the actual name of the report? Do you know where I could find that data point? A: The actual title is "Big Data: the next frontier for innovation, competition and productivity," and it is published by the McKinsey Global Institute. Q: How do you treat missing responses appearing in data sample? A: There is a whole domain of statistics called "missing data analysis" that covers ways to impute values where they are missing. If a small proportion of records (cases) have missing values for one or more variables, you can omit those records and proceed with the analysis. However, if a substantial proportion have missing values, you may need to impute missing values so as to be able to retain the rest of the information in those records. If there are a lot of variables, even a low incidence of missing values can knock out a lot of records. In a clinical trial, where a single subject's data might have cost tens of thousands of dollars to obtain, it pays to go to considerable lengths to retain as much information as possible. Predictive modeling, where data are typically plentiful, is not as sensitive to the problem, so fairly rudimentary remedies for missing data (e.g. "replace with mean for the variable") are often effective. Q: Can you resample to get the training, validation, and test sets? A: There is a variant of this called cross-validation in which the partitioning process is done multiple times, and the modeling process repeated. However, in each cross validation iteration, each partition is disjoint from the others. Classic resampling with replacement will produce duplication within the partitions, which reduces the utility of the validation partition as an independent check on the model's validity. Q: Are you aware of any research studies that cover data mining in a time-series context?

2 A: Yes, the second edition of our book includes several chapters on this, and the lead author has put similar material in her own book, "Practical Time Series Forecasting" (Galit Shmueli) - Q: How can we tackle the problem of having a large pool of features (independent variables) for a specific target? A: There is no one simple answer. Domain knowledge and common sense can help - if you have dozens or hundreds of predictors, only a minority of them are likely to contribute meaningfully to a model. Many can be eliminated by establishing either that they are highly correlated with one another, or completely uncorrelated with the target variable. Principal components can be used to reduce a profusion of variables to a limited number of weighted multivariate "components." Regression and logistic regression have methods for including and excluding variables, but the software implementation may not be up to the task of dealing with hundreds of variables. More sophisticated automated processes for reducing the number of predictor variables are available, but require software implementation. Q: What is Affinity/Recommend in slide 4, the predictive analytics circles? A: The dominant implementation of affinity analysis is Association Rules, or "what goes with what." In Association Rules, or "market basket analysis," each row indicates the items in a particular transaction. The output is in the form of rules like "if day lilies are purchased, tulips are also purchased." These rules, of course, come with quantitative measures, and are translated into recommendations like "since you purchased X, we think you would also like Y." Q: Which machine learning/statistical method is most widely used in analytics? A: A recent poll at KDNuggets identified regression (which I believe includes logistic regression) and clustering at the top of the list. Q: What happens if the model validated didn't do well with the test sub-sample? Do you go back to pick the second best model in the cross validation? A: Recall that the "test" sample is the second holdout sample (in addition to the training set). The first holdout sample, the validation sample, is used to assess and tune models. The "test" sample is used to provide an unbiased estimate of performance with new data, given that there is likely to be some

3 additional overfitting that occurs with a repeated validation process. It is normal for the selected model to underperform on the "test" sample; you should not then go back and select another model Q: Are there data mining programs that support / incorporate dictionaries? A: Data dictionaries are the information that explains the variables. They are an important part of the documentation of the data mining process. In some software, they are supported explicitly (SAS-EM); in others you can add this information as text information (e.g. in XLMiner, as an additional worksheet.) Q: How many records should be used to train a regression or classification model? A: There is no single answer to this question. It depends on how many variables there are, how structured they are, and how much noise there is in the data. There are ad-hoc statistical rules of thumb that relate number of records to number of variables, but data mining applications do not usually deal with such small data sets. You can experiment by bootstrapping, to see how variable the estimates are. Q: In the Target data, can a customer be in the data twice (or more times) - once at date 1 and once at date 2? A: I was presenting hypothetical data, in which each record (row) is a customer, so a customer would be in the data only once. If they purchase at date 1 and again at date 2, this shows up in the same row. For example, a customer might purchase cotton balls 15 days ago and also 90 days ago, thus records a "1" in the two variables cotton15 and cotton90. Q: For rare event targets, and the need to partition the data into the 3 training, validation and testing partitions, what is the minimum amount of target data that is required, and if you don't meet that, can you use some random sampling technique to progress the project. A: If by "random sampling" you mean "oversample the rare cases," the answer is yes. By oversampling we mean that each rare case has a higher probability of being selected than the not-rare cases. In veryrare cases we might take all the rare cases, split them up among the various partitions, and then take an equal number of not-rare cases. If by "random sampling" you mean bootstrapping or some other "with replacement" process to re-use the rare cases so they are selected more than once, the answer is probably no. Doing so would not add information.

4 Q: Is better to simulate data rather than using the test data? A: I can't see how it would be better. Best to use actual data. Q: You discussed "data analysis" part of data mining, how about "data collection" part? I know something about statistics analysis using some software, but know a little about writing a program to have computer "grab" data. Any advice? A: This is a broad area, because of the many varieties and flavors that data come in, the different programs that house it, and the degree of structure that it has. It's beyond the scope of this webinar, but the issue of taking massive amounts of unstructured data and turning it into analyzable data is actually what consumes most of the time in the data mining process. We do have a course in this at Statistics.com, called data cleaning and preparation, taught by Robert Nisbet, an experienced data mining consultant, and author of several books. That course will be taught Oct. 5. Q: Is data mining more for database analysts or IT rather than statisticians A: You can think of data mining as a stool with three legs: (1) IT/database, (2) computer science, and (3) statistics. All good data mining implementations need all 3 legs. Q: Is data mining different from data warehouse? A: Yes, the data warehouse is the structure that receives and integrates data from various functional areas in a business (sales, service, etc.). Data mining is one of several functions for which you might extract data from a data warehouse. Q: Do you think the new "MBA' program under "Analytics" degree is a good thing, in terms of producing better informed/trained marketing planners? A: I do - the new Masters in Analytics programs provide updated skills training that reflect the opportunities opened up by the deluge of data. Classic MBA curriculum did not cover these analytics.

5 Q: Which method is better - machine learning or statistical analysis? A: In a predictive modeling context, both are used, and one judges their performance by how well they predict on the validation data. If the goal is not simply to predict, but to understand something about the relationship between predictor variables and target variables, then statistical models that produce parameter estimates (like coefficients in a linear regression) are more interpretable than black box machine-learning models such as neural nets. CART (classification and regression trees), on the other hand, is a machine learning tool that does provide easily-interpretable rules that shed light on the role of different predictor variables. Q: Do you have suggestions for how to minimize/deal with selection bias into the training set? For example, some pregnant mothers may be more likely to sign up for the baby registry than other pregnant mothers. A: I can't think of any other way in which Target could conclusively determine whether a customer is pregnant. Keep in mind, though, that the purpose here is not to publish a journal article that is a definititive explanation of buying signals that explain pregnancy. Bias would be an issue in such a case, since it might call into question your explanation. In the Target example that was presented, the only thing of interest is whether the model is better than random chance in predicting pregnant or notpregnant -- or at least better enough to warrant the expense of the effort. Q: What are the considerations in setting the sizes of the training, validation and test partitions? A: The purposes of these partitions are, respectively, to train/fit the model, to tune, assess and select models, and, finally, to determine likely performance on actual data. Intuitively you can see that each of these tasks, in succession, requires less information to perform its job, though I am not aware of any optimal rules. In XLMiner the defaults used to be 50%, 30% and 20%. Q: Is it safe to say that data mining applications are primarily intended for situations where we have higher tolerance for misclassification or error in predicting a continuous variable than for situations that use traditional methods like designed experiments, simple regression, etc? A: Well, note that regression is one (of many) methods that are used in data mining. In data mining, you have large quantities of data that have been collected, usually, for some other purpose. Data mining is an attempt to make use of it, without having to go to great effort and expense to collect "statisticallyvalid" data. A designed experiment is used when you collect data for the purpose of applying treatments and answering a research question; the data are scarce and expensive to collect.

Overview. Data Mining for Business Intelligence. Shmueli, Patel & Bruce

Overview. Data Mining for Business Intelligence. Shmueli, Patel & Bruce Overview Data Mining for Business Intelligence Shmueli, Patel & Bruce Galit Shmueli and Peter Bruce 2010 Core Ideas in Data Mining Classification Prediction Association Rules Data Reduction Data Exploration

More information

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1 Big Data Methods Chapter 5: Machine learning Big Data Methods, Chapter 5, Slide 1 5.1 Introduction to machine learning What is machine learning? Concerned with the study and development of algorithms that

More information

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset.

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset. Glossary of data mining terms: Accuracy Accuracy is an important factor in assessing the success of data mining. When applied to data, accuracy refers to the rate of correct values in the data. When applied

More information

Big Data Analytics The Data Mining process. Roger Bohn March. 2016

Big Data Analytics The Data Mining process. Roger Bohn March. 2016 1 Big Data Analytics The Data Mining process Roger Bohn March. 2016 Office hours HK thursday5 to 6 in the library 3115 If trouble, email or Slack private message. RB Wed. 2 to 3:30 in my office Some material

More information

Data mining overview. Data Mining. Data mining overview. Data mining overview. Data mining overview. Data mining overview 3/24/2014

Data mining overview. Data Mining. Data mining overview. Data mining overview. Data mining overview. Data mining overview 3/24/2014 Data Mining Data mining processes What technological infrastructure is required? Data mining is a system of searching through large amounts of data for patterns. It is a relatively new concept which is

More information

1 Topic. Image classification using Knime.

1 Topic. Image classification using Knime. 1 Topic Image classification using Knime. The aim of image mining is to extract valuable knowledge from image data. In the context of supervised image classification, we want to assign automatically a

More information

Automatic Detection of Section Membership for SAS Conference Paper Abstract Submissions: A Case Study

Automatic Detection of Section Membership for SAS Conference Paper Abstract Submissions: A Case Study 1746-2014 Automatic Detection of Section Membership for SAS Conference Paper Abstract Submissions: A Case Study Dr. Goutam Chakraborty, Professor, Department of Marketing, Spears School of Business, Oklahoma

More information

From Building Better Models with JMP Pro. Full book available for purchase here.

From Building Better Models with JMP Pro. Full book available for purchase here. From Building Better Models with JMP Pro. Full book available for purchase here. Contents Acknowledgments... ix About This Book... xi About These Authors... xiii Part 1 Introduction... 1 Chapter 1 Introduction...

More information

Notes based on: Data Mining for Business Intelligence

Notes based on: Data Mining for Business Intelligence Chapter 9 Classification and Regression Trees Roger Bohn April 2017 Notes based on: Data Mining for Business Intelligence 1 Shmueli, Patel & Bruce 2 3 II. Results and Interpretation There are 1183 auction

More information

GETTING STARTED WITH DATA MINING

GETTING STARTED WITH DATA MINING GETTING STARTED WITH DATA MINING Nora Galambos, PhD Senior Data Scientist Office of Institutional Research, Planning & Effectiveness Stony Brook University AIR Forum 2017 Washington, D.C. 1 Using Data

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Lecture 26: Missing data

Lecture 26: Missing data Lecture 26: Missing data Reading: ESL 9.6 STATS 202: Data mining and analysis December 1, 2017 1 / 10 Missing data is everywhere Survey data: nonresponse. 2 / 10 Missing data is everywhere Survey data:

More information

Random Forest A. Fornaser

Random Forest A. Fornaser Random Forest A. Fornaser alberto.fornaser@unitn.it Sources Lecture 15: decision trees, information theory and random forests, Dr. Richard E. Turner Trees and Random Forests, Adele Cutler, Utah State University

More information

Big Data Analytics The Data Mining process. Roger Bohn March. 2017

Big Data Analytics The Data Mining process. Roger Bohn March. 2017 Big Data Analytics The Data Mining process Roger Bohn March. 2017 Office hours RB Tuesday + Thursday 5:10 to 6:15. Tuesday = office rm 1315; Thursday = Peet s Sai Kolasani =? 1

More information

INTRO TO RANDOM FOREST BY ANTHONY ANH QUOC DOAN

INTRO TO RANDOM FOREST BY ANTHONY ANH QUOC DOAN INTRO TO RANDOM FOREST BY ANTHONY ANH QUOC DOAN MOTIVATION FOR RANDOM FOREST Random forest is a great statistical learning model. It works well with small to medium data. Unlike Neural Network which requires

More information

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning Partitioning Data IRDS: Evaluation, Debugging, and Diagnostics Charles Sutton University of Edinburgh Training Validation Test Training : Running learning algorithms Validation : Tuning parameters of learning

More information

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Performance Estimation and Regularization Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Bias- Variance Tradeoff Fundamental to machine learning approaches Bias- Variance Tradeoff Error due to Bias:

More information

Predict Outcomes and Reveal Relationships in Categorical Data

Predict Outcomes and Reveal Relationships in Categorical Data PASW Categories 18 Specifications Predict Outcomes and Reveal Relationships in Categorical Data Unleash the full potential of your data through predictive analysis, statistical learning, perceptual mapping,

More information

Tree-based methods for classification and regression

Tree-based methods for classification and regression Tree-based methods for classification and regression Ryan Tibshirani Data Mining: 36-462/36-662 April 11 2013 Optional reading: ISL 8.1, ESL 9.2 1 Tree-based methods Tree-based based methods for predicting

More information

Cluster Analysis Gets Complicated

Cluster Analysis Gets Complicated Cluster Analysis Gets Complicated Collinearity is a natural problem in clustering. So how can researchers get around it? Cluster analysis is widely used in segmentation studies for several reasons. First

More information

Practical Guidance for Machine Learning Applications

Practical Guidance for Machine Learning Applications Practical Guidance for Machine Learning Applications Brett Wujek About the authors Material from SGF Paper SAS2360-2016 Brett Wujek Senior Data Scientist, Advanced Analytics R&D ~20 years developing engineering

More information

CS435 Introduction to Big Data Spring 2018 Colorado State University. 3/21/2018 Week 10-B Sangmi Lee Pallickara. FAQs. Collaborative filtering

CS435 Introduction to Big Data Spring 2018 Colorado State University. 3/21/2018 Week 10-B Sangmi Lee Pallickara. FAQs. Collaborative filtering W10.B.0.0 CS435 Introduction to Big Data W10.B.1 FAQs Term project 5:00PM March 29, 2018 PA2 Recitation: Friday PART 1. LARGE SCALE DATA AALYTICS 4. RECOMMEDATIO SYSTEMS 5. EVALUATIO AD VALIDATIO TECHIQUES

More information

Slice Intelligence!

Slice Intelligence! Intern @ Slice Intelligence! Wei1an(Wu( September(8,(2014( Outline!! Details about the job!! Skills required and learned!! My thoughts regarding the internship! About the company!! Slice, which we call

More information

SPM Users Guide. This guide elaborates on powerful ways to combine the TreeNet and GPS engines to achieve model compression and more.

SPM Users Guide. This guide elaborates on powerful ways to combine the TreeNet and GPS engines to achieve model compression and more. SPM Users Guide Model Compression via ISLE and RuleLearner This guide elaborates on powerful ways to combine the TreeNet and GPS engines to achieve model compression and more. Title: Model Compression

More information

Chapter 1, Introduction

Chapter 1, Introduction CSI 4352, Introduction to Data Mining Chapter 1, Introduction Young-Rae Cho Associate Professor Department of Computer Science Baylor University What is Data Mining? Definition Knowledge Discovery from

More information

Modeling Methodology 2: Model Input Selection. by Will Dwinnell. Introduction

Modeling Methodology 2: Model Input Selection. by Will Dwinnell. Introduction Modeling Methodology 2: Model Input Selection Introduction by Will Dwinnell In this installment of the modeling methodology series, we explore model input selection. This is the process of choosing the

More information

Data Preprocessing. Slides by: Shree Jaswal

Data Preprocessing. Slides by: Shree Jaswal Data Preprocessing Slides by: Shree Jaswal Topics to be covered Why Preprocessing? Data Cleaning; Data Integration; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling; Data

More information

The Definitive Guide to Preparing Your Data for Tableau

The Definitive Guide to Preparing Your Data for Tableau The Definitive Guide to Preparing Your Data for Tableau Speed Your Time to Visualization If you re like most data analysts today, creating rich visualizations of your data is a critical step in the analytic

More information

Certified Data Science with Python Professional VS-1442

Certified Data Science with Python Professional VS-1442 Certified Data Science with Python Professional VS-1442 Certified Data Science with Python Professional Certified Data Science with Python Professional Certification Code VS-1442 Data science has become

More information

Outrun Your Competition With SAS In-Memory Analytics Sascha Schubert Global Technology Practice, SAS

Outrun Your Competition With SAS In-Memory Analytics Sascha Schubert Global Technology Practice, SAS Outrun Your Competition With SAS In-Memory Analytics Sascha Schubert Global Technology Practice, SAS Topics AGENDA Challenges with Big Data Analytics How SAS can help you to minimize time to value with

More information

Introduction to Data Mining and Data Analytics

Introduction to Data Mining and Data Analytics 1/28/2016 MIST.7060 Data Analytics 1 Introduction to Data Mining and Data Analytics What Are Data Mining and Data Analytics? Data mining is the process of discovering hidden patterns in data, where Patterns

More information

Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002

Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002 Recitation Supplement: Creating a Neural Network for Classification SAS EM December 2, 2002 Introduction Neural networks are flexible nonlinear models that can be used for regression and classification

More information

SAS/SPECTRAVIEW Software and Data Mining: A Case Study

SAS/SPECTRAVIEW Software and Data Mining: A Case Study SAS/SPECTRAVIEW Software and Data Mining: A Case Study Ronald Stogner and Aaron Hill, SAS Institute Inc., Cary NC Presented By Stuart Nisbet, SAS Institute Inc., Cary NC Abstract Advances in information

More information

Think & Work like a Data Scientist with SQL 2016 & R DR. SUBRAMANI PARAMASIVAM (MANI)

Think & Work like a Data Scientist with SQL 2016 & R DR. SUBRAMANI PARAMASIVAM (MANI) Think & Work like a Data Scientist with SQL 2016 & R DR. SUBRAMANI PARAMASIVAM (MANI) About the Speaker Dr. SubraMANI Paramasivam PhD., MCT, MCSE, MCITP, MCP, MCTS, MCSA CEO, Principal Consultant & Trainer

More information

Advanced and Predictive Analytics with JMP 12 PRO. JMP User Meeting 9. Juni Schwalbach

Advanced and Predictive Analytics with JMP 12 PRO. JMP User Meeting 9. Juni Schwalbach Advanced and Predictive Analytics with JMP 12 PRO JMP User Meeting 9. Juni 2016 -Schwalbach Definition Predictive Analytics encompasses a variety of statistical techniques from modeling, machine learning

More information

Mira Shapiro, Analytic Designers LLC, Bethesda, MD

Mira Shapiro, Analytic Designers LLC, Bethesda, MD Paper JMP04 Using JMP Partition to Grow Decision Trees in Base SAS Mira Shapiro, Analytic Designers LLC, Bethesda, MD ABSTRACT Decision Tree is a popular technique used in data mining and is often used

More information

Enterprise Miner Tutorial Notes 2 1

Enterprise Miner Tutorial Notes 2 1 Enterprise Miner Tutorial Notes 2 1 ECT7110 E-Commerce Data Mining Techniques Tutorial 2 How to Join Table in Enterprise Miner e.g. we need to join the following two tables: Join1 Join 2 ID Name Gender

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 10 - Classification trees Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey

More information

Neural Networks and Machine Learning Applied to Classification of Cancer. Sachin Govind, Advisor: Namrata Pandya, IMSA

Neural Networks and Machine Learning Applied to Classification of Cancer. Sachin Govind, Advisor: Namrata Pandya, IMSA Neural Networks and Machine Learning Applied to Classification of Cancer Sachin Govind, Advisor: Namrata Pandya, IMSA Cancer Screening Current methods Invasive techniques (biopsy, colonoscopy, etc.) Helical

More information

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer Model Assessment and Selection Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Model Training data Testing data Model Testing error rate Training error

More information

Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support

Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Evaluating generalization (validation) Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Topics Validation of biomedical models Data-splitting Resampling Cross-validation

More information

Model selection and validation 1: Cross-validation

Model selection and validation 1: Cross-validation Model selection and validation 1: Cross-validation Ryan Tibshirani Data Mining: 36-462/36-662 March 26 2013 Optional reading: ISL 2.2, 5.1, ESL 7.4, 7.10 1 Reminder: modern regression techniques Over the

More information

Data Mining & Data Warehouse

Data Mining & Data Warehouse Data Mining & Data Warehouse Associate Professor Dr. Raed Ibraheem Hamed University of Human Development, College of Science and Technology (1) 2016 2017 1 Points to Cover Why Do We Need Data Warehouses?

More information

Data Mining Overview. CHAPTER 1 Introduction to SAS Enterprise Miner Software

Data Mining Overview. CHAPTER 1 Introduction to SAS Enterprise Miner Software 1 CHAPTER 1 Introduction to SAS Enterprise Miner Software Data Mining Overview 1 Layout of the SAS Enterprise Miner Window 2 Using the Application Main Menus 3 Using the Toolbox 8 Using the Pop-Up Menus

More information

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017 Lecture 27: Review Reading: All chapters in ISLR. STATS 202: Data mining and analysis December 6, 2017 1 / 16 Final exam: Announcements Tuesday, December 12, 8:30-11:30 am, in the following rooms: Last

More information

> Data Mining Overview with Clementine

> Data Mining Overview with Clementine > Data Mining Overview with Clementine This two-day course introduces you to the major steps of the data mining process. The course goal is for you to be able to begin planning or evaluate your firm s

More information

Non-trivial extraction of implicit, previously unknown and potentially useful information from data

Non-trivial extraction of implicit, previously unknown and potentially useful information from data CS 795/895 Applied Visual Analytics Spring 2013 Data Mining Dr. Michele C. Weigle http://www.cs.odu.edu/~mweigle/cs795-s13/ What is Data Mining? Many Definitions Non-trivial extraction of implicit, previously

More information

Lecture 18. Business Intelligence and Data Warehousing. 1:M Normalization. M:M Normalization 11/1/2017. Topics Covered

Lecture 18. Business Intelligence and Data Warehousing. 1:M Normalization. M:M Normalization 11/1/2017. Topics Covered Lecture 18 Business Intelligence and Data Warehousing BDIS 6.2 BSAD 141 Dave Novak Topics Covered Test # Review What is Business Intelligence? How can an organization be data rich and information poor?

More information

Machine Learning: An Applied Econometric Approach Online Appendix

Machine Learning: An Applied Econometric Approach Online Appendix Machine Learning: An Applied Econometric Approach Online Appendix Sendhil Mullainathan mullain@fas.harvard.edu Jann Spiess jspiess@fas.harvard.edu April 2017 A How We Predict In this section, we detail

More information

Powering Knowledge Discovery. Insights from big data with Linguamatics I2E

Powering Knowledge Discovery. Insights from big data with Linguamatics I2E Powering Knowledge Discovery Insights from big data with Linguamatics I2E Gain actionable insights from unstructured data The world now generates an overwhelming amount of data, most of it written in natural

More information

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey.

Knowledge Discovery and Data Mining. Neural Nets. A simple NN as a Mathematical Formula. Notes. Lecture 13 - Neural Nets. Tom Kelsey. Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

SAS High-Performance Analytics Products

SAS High-Performance Analytics Products Fact Sheet What do SAS High-Performance Analytics products do? With high-performance analytics products from SAS, you can develop and process models that use huge amounts of diverse data. These products

More information

Taking Your Application Design to the Next Level with Data Mining

Taking Your Application Design to the Next Level with Data Mining Taking Your Application Design to the Next Level with Data Mining Peter Myers Mentor SolidQ Australia HDNUG 24 June, 2008 WHO WE ARE Industry experts: Growing, elite group of over 90 of the world s best

More information

The Attraction of Complexity

The Attraction of Complexity The Attraction of Complexity Carlo Bottiglieri December 10, 2017 1 Introduction How is complexity distributed through a codebase? Does this distribution present similarities across different projects?

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 13 - Neural Nets Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-13-NN

More information

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018 MIT 801 [Presented by Anna Bosman] 16 February 2018 Machine Learning What is machine learning? Artificial Intelligence? Yes as we know it. What is intelligence? The ability to acquire and apply knowledge

More information

Introduction to Automated Text Analysis. bit.ly/poir599

Introduction to Automated Text Analysis. bit.ly/poir599 Introduction to Automated Text Analysis Pablo Barberá School of International Relations University of Southern California pablobarbera.com Lecture materials: bit.ly/poir599 Today 1. Solutions for last

More information

ENTERPRISE MINER: 1 DATA EXPLORATION AND VISUALISATION

ENTERPRISE MINER: 1 DATA EXPLORATION AND VISUALISATION ENTERPRISE MINER: 1 DATA EXPLORATION AND VISUALISATION JOZEF MOFFAT, ANALYTICS & INNOVATION PRACTICE, SAS UK 10, MAY 2016 DATA EXPLORATION AND VISUALISATION AGENDA SAS Webinar 10th May 2016 at 10:00 AM

More information

This tutorial has been prepared for computer science graduates to help them understand the basic-to-advanced concepts related to data mining.

This tutorial has been prepared for computer science graduates to help them understand the basic-to-advanced concepts related to data mining. About the Tutorial Data Mining is defined as the procedure of extracting information from huge sets of data. In other words, we can say that data mining is mining knowledge from data. The tutorial starts

More information

How to implement NIST Cybersecurity Framework using ISO WHITE PAPER. Copyright 2017 Advisera Expert Solutions Ltd. All rights reserved.

How to implement NIST Cybersecurity Framework using ISO WHITE PAPER. Copyright 2017 Advisera Expert Solutions Ltd. All rights reserved. How to implement NIST Cybersecurity Framework using ISO 27001 WHITE PAPER Copyright 2017 Advisera Expert Solutions Ltd. All rights reserved. Copyright 2017 Advisera Expert Solutions Ltd. All rights reserved.

More information

How to Conduct a Heuristic Evaluation

How to Conduct a Heuristic Evaluation Page 1 of 9 useit.com Papers and Essays Heuristic Evaluation How to conduct a heuristic evaluation How to Conduct a Heuristic Evaluation by Jakob Nielsen Heuristic evaluation (Nielsen and Molich, 1990;

More information

Week - 01 Lecture - 04 Downloading and installing Python

Week - 01 Lecture - 04 Downloading and installing Python Programming, Data Structures and Algorithms in Python Prof. Madhavan Mukund Department of Computer Science and Engineering Indian Institute of Technology, Madras Week - 01 Lecture - 04 Downloading and

More information

CS4491/CS 7265 BIG DATA ANALYTICS

CS4491/CS 7265 BIG DATA ANALYTICS CS4491/CS 7265 BIG DATA ANALYTICS EVALUATION * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Dr. Mingon Kang Computer Science, Kennesaw State University Evaluation for

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

This tutorial will help computer science graduates to understand the basic-to-advanced concepts related to data warehousing.

This tutorial will help computer science graduates to understand the basic-to-advanced concepts related to data warehousing. About the Tutorial A data warehouse is constructed by integrating data from multiple heterogeneous sources. It supports analytical reporting, structured and/or ad hoc queries and decision making. This

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Knowledge Discovery. URL - Spring 2018 CS - MIA 1/22

Knowledge Discovery. URL - Spring 2018 CS - MIA 1/22 Knowledge Discovery Javier Béjar cbea URL - Spring 2018 CS - MIA 1/22 Knowledge Discovery (KDD) Knowledge Discovery in Databases (KDD) Practical application of the methodologies from machine learning/statistics

More information

Decision trees. Decision trees are useful to a large degree because of their simplicity and interpretability

Decision trees. Decision trees are useful to a large degree because of their simplicity and interpretability Decision trees A decision tree is a method for classification/regression that aims to ask a few relatively simple questions about an input and then predicts the associated output Decision trees are useful

More information

Oracle Big Data Connectors

Oracle Big Data Connectors Oracle Big Data Connectors Oracle Big Data Connectors is a software suite that integrates processing in Apache Hadoop distributions with operations in Oracle Database. It enables the use of Hadoop to process

More information

Seven Interesting Data Warehouse Ideas

Seven Interesting Data Warehouse Ideas Seven Interesting Data Warehouse Ideas Learning Objectives Take a detailed dive into some interesting ideas and concepts that can enhance your data warehouse or reporting database. Review some examples

More information

Chapter 3: Supervised Learning

Chapter 3: Supervised Learning Chapter 3: Supervised Learning Road Map Basic concepts Evaluation of classifiers Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Summary 2 An example

More information

Predictive Analysis: Evaluation and Experimentation. Heejun Kim

Predictive Analysis: Evaluation and Experimentation. Heejun Kim Predictive Analysis: Evaluation and Experimentation Heejun Kim June 19, 2018 Evaluation and Experimentation Evaluation Metrics Cross-Validation Significance Tests Evaluation Predictive analysis: training

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Unit # 1 1 Acknowledgement Several Slides in this presentation are taken from course slides provided by Han and Kimber (Data Mining Concepts and Techniques) and Tan,

More information

The Consequences of Poor Data Quality on Model Accuracy

The Consequences of Poor Data Quality on Model Accuracy The Consequences of Poor Data Quality on Model Accuracy Dr. Gerhard Svolba SAS Austria Cologne, June 14th, 2012 From this talk you can expect The analytical viewpoint on data quality Answers to the questions

More information

1 Machine Learning System Design

1 Machine Learning System Design Machine Learning System Design Prioritizing what to work on: Spam classification example Say you want to build a spam classifier Spam messages often have misspelled words We ll have a labeled training

More information

Introduction to Mixed Models: Multivariate Regression

Introduction to Mixed Models: Multivariate Regression Introduction to Mixed Models: Multivariate Regression EPSY 905: Multivariate Analysis Spring 2016 Lecture #9 March 30, 2016 EPSY 905: Multivariate Regression via Path Analysis Today s Lecture Multivariate

More information

Ensemble Learning. Another approach is to leverage the algorithms we have via ensemble methods

Ensemble Learning. Another approach is to leverage the algorithms we have via ensemble methods Ensemble Learning Ensemble Learning So far we have seen learning algorithms that take a training set and output a classifier What if we want more accuracy than current algorithms afford? Develop new learning

More information

JMP Book Descriptions

JMP Book Descriptions JMP Book Descriptions The collection of JMP documentation is available in the JMP Help > Books menu. This document describes each title to help you decide which book to explore. Each book title is linked

More information

Management Information Systems Review Questions. Chapter 6 Foundations of Business Intelligence: Databases and Information Management

Management Information Systems Review Questions. Chapter 6 Foundations of Business Intelligence: Databases and Information Management Management Information Systems Review Questions Chapter 6 Foundations of Business Intelligence: Databases and Information Management 1) The traditional file environment does not typically have a problem

More information

Clustering algorithms and autoencoders for anomaly detection

Clustering algorithms and autoencoders for anomaly detection Clustering algorithms and autoencoders for anomaly detection Alessia Saggio Lunch Seminars and Journal Clubs Université catholique de Louvain, Belgium 3rd March 2017 a Outline Introduction Clustering algorithms

More information

Knowledge Discovery. Javier Béjar URL - Spring 2019 CS - MIA

Knowledge Discovery. Javier Béjar URL - Spring 2019 CS - MIA Knowledge Discovery Javier Béjar URL - Spring 2019 CS - MIA Knowledge Discovery (KDD) Knowledge Discovery in Databases (KDD) Practical application of the methodologies from machine learning/statistics

More information

IBM SPSS Categories. Predict outcomes and reveal relationships in categorical data. Highlights. With IBM SPSS Categories you can:

IBM SPSS Categories. Predict outcomes and reveal relationships in categorical data. Highlights. With IBM SPSS Categories you can: IBM Software IBM SPSS Statistics 19 IBM SPSS Categories Predict outcomes and reveal relationships in categorical data Highlights With IBM SPSS Categories you can: Visualize and explore complex categorical

More information

SOFTWARE ENGINEERING Prof.N.L.Sarda Computer Science & Engineering IIT Bombay. Lecture #10 Process Modelling DFD, Function Decomp (Part 2)

SOFTWARE ENGINEERING Prof.N.L.Sarda Computer Science & Engineering IIT Bombay. Lecture #10 Process Modelling DFD, Function Decomp (Part 2) SOFTWARE ENGINEERING Prof.N.L.Sarda Computer Science & Engineering IIT Bombay Lecture #10 Process Modelling DFD, Function Decomp (Part 2) Let us continue with the data modeling topic. So far we have seen

More information

Eureka Math. Algebra I, Module 5. Student File_B. Contains Exit Ticket, and Assessment Materials

Eureka Math. Algebra I, Module 5. Student File_B. Contains Exit Ticket, and Assessment Materials A Story of Functions Eureka Math Algebra I, Module 5 Student File_B Contains Exit Ticket, and Assessment Materials Published by the non-profit Great Minds. Copyright 2015 Great Minds. No part of this work

More information

Data Visualization Techniques

Data Visualization Techniques Data Visualization Techniques From Basics to Big Data with SAS Visual Analytics WHITE PAPER SAS White Paper Table of Contents Introduction.... 1 Generating the Best Visualizations for Your Data... 2 The

More information

COMP 465 Special Topics: Data Mining

COMP 465 Special Topics: Data Mining COMP 465 Special Topics: Data Mining Introduction & Course Overview 1 Course Page & Class Schedule http://cs.rhodes.edu/welshc/comp465_s15/ What s there? Course info Course schedule Lecture media (slides,

More information

More on Neural Networks. Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5.

More on Neural Networks. Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5. More on Neural Networks Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5.6 Recall the MLP Training Example From Last Lecture log likelihood

More information

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation Data Mining Part 2. Data Understanding and Preparation 2.4 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Normalization Attribute Construction Aggregation Attribute Subset Selection Discretization

More information

An introduction to plotting data

An introduction to plotting data An introduction to plotting data Eric D. Black California Institute of Technology February 25, 2014 1 Introduction Plotting data is one of the essential skills every scientist must have. We use it on a

More information

Software Engineering Prof.N.L.Sarda IIT Bombay. Lecture-11 Data Modelling- ER diagrams, Mapping to relational model (Part -II)

Software Engineering Prof.N.L.Sarda IIT Bombay. Lecture-11 Data Modelling- ER diagrams, Mapping to relational model (Part -II) Software Engineering Prof.N.L.Sarda IIT Bombay Lecture-11 Data Modelling- ER diagrams, Mapping to relational model (Part -II) We will continue our discussion on process modeling. In the previous lecture

More information

Data warehouses Decision support The multidimensional model OLAP queries

Data warehouses Decision support The multidimensional model OLAP queries Data warehouses Decision support The multidimensional model OLAP queries Traditional DBMSs are used by organizations for maintaining data to record day to day operations On-line Transaction Processing

More information

Chapter 3. Foundations of Business Intelligence: Databases and Information Management

Chapter 3. Foundations of Business Intelligence: Databases and Information Management Chapter 3 Foundations of Business Intelligence: Databases and Information Management THE DATA HIERARCHY TRADITIONAL FILE PROCESSING Organizing Data in a Traditional File Environment Problems with the traditional

More information

How do we obtain reliable estimates of performance measures?

How do we obtain reliable estimates of performance measures? How do we obtain reliable estimates of performance measures? 1 Estimating Model Performance How do we estimate performance measures? Error on training data? Also called resubstitution error. Not a good

More information

Data Mining. Jeff M. Phillips. January 7, 2019 CS 5140 / CS 6140

Data Mining. Jeff M. Phillips. January 7, 2019 CS 5140 / CS 6140 Data Mining CS 5140 / CS 6140 Jeff M. Phillips January 7, 2019 What is Data Mining? What is Data Mining? Finding structure in data? Machine learning on large data? Unsupervised learning? Large scale computational

More information

Clean & Speed Up Windows with AWO

Clean & Speed Up Windows with AWO Clean & Speed Up Windows with AWO C 400 / 1 Manage Windows with this Powerful Collection of System Tools Every version of Windows comes with at least a few programs for managing different aspects of your

More information

Now, Data Mining Is Within Your Reach

Now, Data Mining Is Within Your Reach Clementine Desktop Specifications Now, Data Mining Is Within Your Reach Data mining delivers significant, measurable value. By uncovering previously unknown patterns and connections in data, data mining

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining Fundamentals of learning (continued) and the k-nearest neighbours classifier Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.

More information

Predicting Gene Function and Localization

Predicting Gene Function and Localization Predicting Gene Function and Localization By Ankit Kumar and Raissa Largman CS 229 Fall 2013 I. INTRODUCTION Our data comes from the 2001 KDD Cup Data Mining Competition. The competition had two tasks,

More information

GENREG DID THAT? Clay Barker Research Statistician Developer JMP Division, SAS Institute

GENREG DID THAT? Clay Barker Research Statistician Developer JMP Division, SAS Institute GENREG DID THAT? Clay Barker Research Statistician Developer JMP Division, SAS Institute GENREG WHAT IS IT? The Generalized Regression platform was introduced in JMP Pro 11 and got much better in version

More information

Nearest Neighbor Predictors

Nearest Neighbor Predictors Nearest Neighbor Predictors September 2, 2018 Perhaps the simplest machine learning prediction method, from a conceptual point of view, and perhaps also the most unusual, is the nearest-neighbor method,

More information