Fall 2004 CS 186 Discussion Section Exercises - Week 2 ending 9/10

Size: px
Start display at page:

Download "Fall 2004 CS 186 Discussion Section Exercises - Week 2 ending 9/10"

Transcription

1 Fall 00 CS 86 Discussion Section Exercises - Week ending 9/0 RELATIONAL MODEL ) Design relational tables to represent the following information. a. A company has employees working in departments. b. Name, age, salary and manager are employee information. c. Name, budget and chief manager are department information. Use simple data types (INTEGER, CHAR). Employee(EmpId: INT, EmpName: CHAR(8), Age: INT, Salary: INT, Manager: INT); Department(DepId: INT, DepName: CHAR(8), Budget: INT, Chief: INT); Works(EmpId: INT, DepId: INT); Trivia: a) There can be another simpler answer as well if we assume that an employee can work in only one department. Employee(EmpId: INT, EmpName: CHAR(8), Age: INT, Salary: INT, Works: INT, Manager: INT); Department(DepId: INT, DepName: CHAR(8), Budget: INT, Chief: INT); In this case the Works column in the Employee table store any of the values of DepId column of the Deparment table. The former choice however gives the power of allowing an employee to work in multiple departments. It is also a better normalized model, something we will learn later in the course. The rest of the answers assume the first design. b) Is there anything wrong in the choice of Age field? Use of Age field is poor design. As time goes by the Age field does not update itself in the database to reflect the correct age. A good design choice is to use DOB. ) Write CREATE TABLE statements for creating the schema.

2 CREATE TABLE Employee(EmpId INTEGER, EmpName CHAR(8), Age INTEGER, Manager INTEGER); CREATE TABLE Department(DepId INTEGER, DepName CHAR(8), Budget INTEGER, Chief INTEGER); CREATE TABLE Works(EmpId INTEGER, DepId INTEGER); ) Rewrite the CREATE TABLE statements and establish primary key and foreign key constraints. CREATE TABLE Employee(EmpId INTEGER PRIMARY KEY, EmpName CHAR(8), Age INTEGER, Manager INTEGER); CREATE TABLE Department(DepId INTEGER PRIMARY KEY, DepName CHAR(8), Budget INTEGER, Chief INTEGER); CREATE TABLE Works(EmpId INTEGER, DepId INTEGER) PRIMARY KEY (EmpId, DepId), FOREIGN KEY (EmpId) REFERENCES Employee, FOREIGN KEY (DepId) REFERENCES DepId; Trivia: a) Should the Works table have a primary key or not? - The PRIMARY KEY as specified should be present if the employee is allowed to work in only one department. Otherwise the Works table need not have a primary key. This is totally up to the requirements of the application domain. It is something application domain experts have to decide. ) How to ensure that EmpName field will not be null? Add a NOT NULL constraint to the create table statement, as in: CREATE TABLE Employee(EmpId INTEGER PRIMARY KEY, EmpName CHAR(8) NOT NULL, Age INTEGER, Manager INTEGER); Same can be applied to DepName in Department table. ) How to ensure that EmpId field will not be a negative integer?

3 Add a CHECK constraint to the create table statement, as in: CREATE TABLE Employee(EmpId INTEGER PRIMARY KEY, EmpName CHAR(8) NOT NULL, Age INTEGER, Manager INTEGER) CHECK (EmpId > 0); Trivia: Same can be applied to DepId in Department table. Similar check constraints can be applied for Age, etc. 6) How to ensure that Manager field in Employee is also an Employee. It is possible to have a foreign key referring to itself: CREATE TABLE Employee(EmpId INTEGER PRIMARY KEY, EmpName CHAR(8) NOT NULL, Age INTEGER, Manager INTEGER REFERENCES Employee); Further Exercises: 7) How to ensure that nobody can be his or her own boss? Add a check constraint EmpId NOT =Manager to the Employee table. 8) How to ensure that EmpId and DepId always have 6 digits? Add a check constraint EmpId > AND EmpId < to the Employee table. Add a similar check constraint for the DepId in the Department table. II. STORING DATA - DISKS & FILES ) Why is the access method used by disks is partly random and partly sequential? It is partly random because any particular track can be reached by moving the disk head across. It is partly sequential because after a particular track is reached, a particular sector has to be read by sequentially rotating the disk head over the track.

4 ) Which among the following are best suited for databases and why? Answer in one or two sentences. a. RAM Even though provides random access, it is very expensive, is volatile has cannot recover from a system crash. Not well suited. b. Hard disk Persistent, provides random access, less expensive. Best suited. c. Magnetic tape Persistent, but provides only sequential access, though least expensive. Not well suited. d. CD-RW Persistent, provides random access, limited space and very slow compared to hard disk. Not well suited. ) Operating Systems provide support for random access files. Isn t that sufficient for a DBMS to store its data on a disk? Justify your answer with a couple of reasons. Operating systems are lazy in disk writes. They do not guarantee when a disk write will actually make it to the disk. Also, a DBMS can lay the pages on disk more efficiently as it knows the page access patterns, which an Operating System does not have. ) Why does a DBMS need buffer management when an Operating System can provide virtual memory? Operating systems cannot predict which page will be needed next. A DBMS can very well predict the page access pattern. ) What is a frame and what is a page? A frame is a partition of available main memory (buffer pool) used by the DBMS for loading and modifying data of a database. A page is a partition in the data stored in the disk. Disk space manager manages pages, while buffer manager manages frames. 6) Number of frames in a DBMS buffer pool will be: a. Always greater than number of pages in disk. b. Must be equal to number of pages in disk. c. Typically less than the number of pages in disk. c) 7) What does pinning and unpinning a frame mean? When a transaction results in a request for a page from the buffer manager, the buffer manager will ensure it is loaded into the buffer pool from the disk and return it to the calling process. While doing so it will keep track that the page is in use by incrementing a variable pin_count by. This is called pinning a frame. When the

5 calling process releases the page after its use, the buffer manager will decrement the pin_count variable by. This is called the unpinning of a frame. 8) When two transactions modify distinct portions of a frame, should the dirty flag be set to? Justify your answer in one sentence. The dirty flag is used only to reflect that the page has been modified, not how many times or how many processes modified it. It is enough if the dirty flag of a frame is treated as a boolean value and set to. When the dirty flag is set, the buffer manager has to write the frame to the disk before it can replace it with another page or an upper layer process asks it to write the frame forcibly (for ex for crash recovery purposes). 9) What will happen when all the frames in a buffer pool are pinned by one or more transactions and a transaction makes a new request for a new page to be loaded from the disk? Typically, the transaction making the new request will fail. However, database implementors may choose other techniques like time outs, etc. 0) Assume that a database has pages and frames. Assume that LRU is the page replacement policy. Which of the following sequences of page references will cause a sequential flooding? a.,,,,,,,,,,,,,,, b.,,,,,,,,,,,,,,, c.,,,,,,,,,,,,,,, d.,,,,,,,,,,,,,,, a, b, & c. Not only the repetition of sequence,,,, will cause sequential flooding, any sequence that repeats itself will cause sequential flooding! ) Assume that a database has pages and frames. Assume that you start with an empty buffer pool. In each of the following tables, a. The page reference vector is specified in the top row. b. The frame numbers are specified in the left most column. c. The value in (i, j) empty cells should represent the page id in the i th frame when the j th page reference is made. d. The bottom most row should represent whether a page fault occurred or not (y/n). Fill in the empty cells in following tables for each of the page replacement policies mentioned. Fill in the empty cells in following tables for each of the page replacement policies mentioned. NOTE: Bold numbers are in slots whose page was replaced. Underscored numbers are pages that were accessed (pinned and unpinned).

6 Frames FIFO A B C Fault? Y Y Y N N Y N N Y N N Y N Y N LRU Frames Total number of page faults = 7 A B C Fault? Y Y Y N N Y N N N Y N N Y Y Y Frames Total number of page faults = 8 LIFO A B C Fault? Y Y Y N N Y N N N Y N N Y Y N Frames Total number of page faults = 7 MRU A B C Fault? Y Y Y N N Y N N N N N N Y N N Total number of page faults = 6

7 Frames CLOCK NOTE: The subscripts show the value of reference bit. The < bracket shows the current position of clock hand. Clock hand cycles in the column from top to bottom and cycling back to the top. A. <. <. <. <. <....<.0.0..<.<. B <. 0<.<.0...<.0..0< C <.< Fault? Y Y Y N N Y N N Y Y N Y Y N Y Total number of page faults = 9

8 Frames Frames A ) Do the following assuming a buffer size of frames and disk space size of pages. SQ (Simplified Q) For Simplified Q assume that the A and Am queues have a threshold of 0% of buffer size each. NOTE: FIFO queue A threshold is and LRU queue Am threshold is. The subscript, A_, represent the A FIFO queue. The first in item has lower index () and is the tail, the last in item has highest index and is the head. The subscript Am_, Am_, represent the Am LRU queue. The least recently used item has lower index (Am_), while the most recently used item has highest index. B A_ C A_ A_ D A_ A_ A_ Am_ A_ A_ Am_ A_ Am_ Fault? Y Y Y Y N N Y Y N N Y N Y Total number of page faults = 8 FQ (Full Q) For Full Q assume Kin is % of the page slots and Kout should hold as many identifiers for as many pages as would fit on 0% of the buffer. NOTE: Kin = and Kout= The subscript, A_, represent the Ain FIFO queue. The first in item has lower index (), the last in item has highest index. The values in Aout queue are separately listed in a new row. A A_.A_.A_.A_.A_.A_.A_ B.A_.A_.A_.A_.A_.....Am_.Am_.Am_ C.A_.A_.A_.A_.A_.A_.A_.A_..Am_.Am_ D.A_.A_.A_.A_.A_.A_.A_.A_.. Fault? Y Y Y Y N N Y N N N Y Y N A out,,, Total number of page faults = 7 A_ A_ Am_ A_ A_ Am_ A_ Am_ Am_ Am_ Am_ Am_ Am_ Am_ A_ Am_ Am_ Am_ Am_ A_ Am_

STORING DATA: DISK AND FILES

STORING DATA: DISK AND FILES STORING DATA: DISK AND FILES CS 564- Spring 2018 ACKs: Dan Suciu, Jignesh Patel, AnHai Doan WHAT IS THIS LECTURE ABOUT? How does a DBMS store data? disk, SSD, main memory The Buffer manager controls how

More information

Outlines. Chapter 2 Storage Structure. Structure of a DBMS (with some simplification) Structure of a DBMS (with some simplification)

Outlines. Chapter 2 Storage Structure. Structure of a DBMS (with some simplification) Structure of a DBMS (with some simplification) Outlines Chapter 2 Storage Structure Instructor: Churee Techawut 1) Structure of a DBMS 2) The memory hierarchy 3) Magnetic tapes 4) Magnetic disks 5) RAID 6) Disk space management 7) Buffer management

More information

Roadmap. Handling large amount of data efficiently. Stable storage. Parallel dataflow. External memory algorithms and data structures

Roadmap. Handling large amount of data efficiently. Stable storage. Parallel dataflow. External memory algorithms and data structures Roadmap Handling large amount of data efficiently Stable storage External memory algorithms and data structures Implementing relational operators Parallel dataflow Algorithms for MapReduce Implementing

More information

Database Applications (15-415)

Database Applications (15-415) Database Applications (15-415) DBMS Internals: Part II Lecture 11, February 17, 2015 Mohammad Hammoud Last Session: DBMS Internals- Part I Today Today s Session: DBMS Internals- Part II A Brief Summary

More information

Database Management Systems. Buffer and File Management. Fall Queries. Query Optimization and Execution. Relational Operators

Database Management Systems. Buffer and File Management. Fall Queries. Query Optimization and Execution. Relational Operators Database Management Systems Buffer and File Management Fall 2017 Yea, from the table of my memory I ll wipe away all trivial fond records. -- Shakespeare, Hamlet The BIG Picture Queries Query Optimization

More information

Unit 2 Buffer Pool Management

Unit 2 Buffer Pool Management Unit 2 Buffer Pool Management Based on: Sections 9.4, 9.4.1, 9.4.2 of Ramakrishnan & Gehrke (text); Silberschatz, et. al. ( Operating System Concepts ); Other sources Original slides by Ed Knorr; Updates

More information

Goals for Today. CS 133: Databases. Relational Model. Multi-Relation Queries. Reason about the conceptual evaluation of an SQL query

Goals for Today. CS 133: Databases. Relational Model. Multi-Relation Queries. Reason about the conceptual evaluation of an SQL query Goals for Today CS 133: Databases Fall 2018 Lec 02 09/06 Relational Model & Memory and Buffer Manager Prof. Beth Trushkowsky Reason about the conceptual evaluation of an SQL query Understand the storage

More information

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Database Management Systems need to:

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Database Management Systems need to: Storing : Disks and Files base Management System, R. Ramakrishnan and J. Gehrke 1 Storing and Retrieving base Management Systems need to: Store large volumes of data Store data reliably (so that data is

More information

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Chapter 7

Storing Data: Disks and Files. Storing and Retrieving Data. Why Not Store Everything in Main Memory? Chapter 7 Storing : Disks and Files Chapter 7 base Management Systems, R. Ramakrishnan and J. Gehrke 1 Storing and Retrieving base Management Systems need to: Store large volumes of data Store data reliably (so

More information

Disks and Files. Storage Structures Introduction Chapter 8 (3 rd edition) Why Not Store Everything in Main Memory?

Disks and Files. Storage Structures Introduction Chapter 8 (3 rd edition) Why Not Store Everything in Main Memory? Why Not Store Everything in Main Memory? Storage Structures Introduction Chapter 8 (3 rd edition) Sharma Chakravarthy UT Arlington sharma@cse.uta.edu base Management Systems: Sharma Chakravarthy Costs

More information

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes?

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes? Storing and Retrieving Storing : Disks and Files base Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve data efficiently Alternatives for

More information

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes?

Storing and Retrieving Data. Storing Data: Disks and Files. Solution 1: Techniques for making disks faster. Disks. Why Not Store Everything in Tapes? Storing and Retrieving Storing : Disks and Files Chapter 9 base Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve data efficiently Alternatives

More information

Disks, Memories & Buffer Management

Disks, Memories & Buffer Management Disks, Memories & Buffer Management The two offices of memory are collection and distribution. - Samuel Johnson CS3223 - Storage 1 What does a DBMS Store? Relations Actual data Indexes Data structures

More information

Unit 2 Buffer Pool Management

Unit 2 Buffer Pool Management Unit 2 Buffer Pool Management Based on: Pages 318-323, 541-542, and 586-587 of Ramakrishnan & Gehrke (text); Silberschatz, et. al. ( Operating System Concepts ); Other sources Original slides by Ed Knorr;

More information

Database Systems. November 2, 2011 Lecture #7. topobo (mit)

Database Systems. November 2, 2011 Lecture #7. topobo (mit) Database Systems November 2, 2011 Lecture #7 1 topobo (mit) 1 Announcement Assignment #2 due today Assignment #3 out today & due on 11/16. Midterm exam in class next week. Cover Chapters 1, 2,

More information

Storing Data: Disks and Files

Storing Data: Disks and Files Storing Data: Disks and Files Lecture 3 (R&G Chapter 7) Yea, from the table of my memory I ll wipe away all trivial fond records. -- Shakespeare, Hamlet Administrivia Greetings Office Hours Prof. Franklin

More information

Storing Data: Disks and Files

Storing Data: Disks and Files Storing Data: Disks and Files Chapter 7 (2 nd edition) Chapter 9 (3 rd edition) Yea, from the table of my memory I ll wipe away all trivial fond records. -- Shakespeare, Hamlet Database Management Systems,

More information

Storing Data: Disks and Files

Storing Data: Disks and Files Storing Data: Disks and Files CS 186 Fall 2002, Lecture 15 (R&G Chapter 7) Yea, from the table of my memory I ll wipe away all trivial fond records. -- Shakespeare, Hamlet Stuff Rest of this week My office

More information

Storing Data: Disks and Files

Storing Data: Disks and Files Storing Data: Disks and Files Chapter 9 CSE 4411: Database Management Systems 1 Disks and Files DBMS stores information on ( 'hard ') disks. This has major implications for DBMS design! READ: transfer

More information

Managing Storage: Above the Hardware

Managing Storage: Above the Hardware Managing Storage: Above the Hardware 1 Where we are Last time: hardware HDDs and SSDs Today: how the DBMS uses the hardware to provide fast access to data 2 How DBMS manages storage "Bottom" two layers

More information

Storing Data: Disks and Files

Storing Data: Disks and Files Storing Data: Disks and Files Module 2, Lecture 1 Yea, from the table of my memory I ll wipe away all trivial fond records. -- Shakespeare, Hamlet Database Management Systems, R. Ramakrishnan 1 Disks and

More information

Review 1-- Storing Data: Disks and Files

Review 1-- Storing Data: Disks and Files Review 1-- Storing Data: Disks and Files Chapter 9 [Sections 9.1-9.7: Ramakrishnan & Gehrke (Text)] AND (Chapter 11 [Sections 11.1, 11.3, 11.6, 11.7: Garcia-Molina et al. (R2)] OR Chapter 2 [Sections 2.1,

More information

Storing Data: Disks and Files. Administrivia (part 2 of 2) Review. Disks, Memory, and Files. Disks and Files. Lecture 3 (R&G Chapter 7)

Storing Data: Disks and Files. Administrivia (part 2 of 2) Review. Disks, Memory, and Files. Disks and Files. Lecture 3 (R&G Chapter 7) Storing : Disks and Files Yea, from the table of my memory I ll wipe away all trivial fond records. -- Shakespeare, Hamlet Lecture 3 (R&G Chapter 7) Administrivia Greetings Office Hours Prof. Franklin

More information

EXAMINATIONS 2009 END-YEAR. COMP302 / SWEN304 Database Systems / Database System Engineering. Appendix

EXAMINATIONS 2009 END-YEAR. COMP302 / SWEN304 Database Systems / Database System Engineering. Appendix EXAMINATIONS 2009 END-YEAR COMP302 / SWEN304 Database Systems / Database System Engineering Appendix Do not hand this Appendix in. Do not write your answers on this Appendix. Contents: Appendix A. COMPANY

More information

Parser. Select R.text from Report R, Weather W where W.image.rain() and W.city = R.city and W.date = R.date and R.text.

Parser. Select R.text from Report R, Weather W where W.image.rain() and W.city = R.city and W.date = R.date and R.text. Select R.text from Report R, Weather W where W.image.rain() and W.city = R.city and W.date = R.date and R.text. Lifecycle of an SQL Query CSE 190D base System Implementation Arun Kumar Query Query Result

More information

Disks & Files. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke

Disks & Files. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke Disks & Files Yanlei Diao UMass Amherst Slides Courtesy of R. Ramakrishnan and J. Gehrke DBMS Architecture Query Parser Query Rewriter Query Optimizer Query Executor Lock Manager for Concurrency Access

More information

CSE 190D Database System Implementation

CSE 190D Database System Implementation CSE 190D Database System Implementation Arun Kumar Topic 1: Data Storage, Buffer Management, and File Organization Chapters 8 and 9 (except 8.5.4 and 9.2) of Cow Book Slide ACKs: Jignesh Patel, Paris Koutris

More information

Principles of Data Management. Lecture #2 (Storing Data: Disks and Files)

Principles of Data Management. Lecture #2 (Storing Data: Disks and Files) Principles of Data Management Lecture #2 (Storing Data: Disks and Files) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today s Topics v Today

More information

L9: Storage Manager Physical Data Organization

L9: Storage Manager Physical Data Organization L9: Storage Manager Physical Data Organization Disks and files Record and file organization Indexing Tree-based index: B+-tree Hash-based index c.f. Fig 1.3 in [RG] and Fig 2.3 in [EN] Functional Components

More information

Disks and Files. Jim Gray s Storage Latency Analogy: How Far Away is the Data? Components of a Disk. Disks

Disks and Files. Jim Gray s Storage Latency Analogy: How Far Away is the Data? Components of a Disk. Disks Review Storing : Disks and Files Lecture 3 (R&G Chapter 9) Aren t bases Great? Relational model SQL Yea, from the table of my memory I ll wipe away all trivial fond records. -- Shakespeare, Hamlet A few

More information

Storing Data: Disks and Files

Storing Data: Disks and Files Storing Data: Disks and Files Chapter 9 Yea, from the table of my memory I ll wipe away all trivial fond records. -- Shakespeare, Hamlet Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke Disks

More information

CPSC 421 Database Management Systems. Lecture 11: Storage and File Organization

CPSC 421 Database Management Systems. Lecture 11: Storage and File Organization CPSC 421 Database Management Systems Lecture 11: Storage and File Organization * Some material adapted from R. Ramakrishnan, L. Delcambre, and B. Ludaescher Today s Agenda Start on Database Internals:

More information

CSE 232A Graduate Database Systems

CSE 232A Graduate Database Systems CSE 232A Graduate Database Systems Arun Kumar Topic 1: Data Storage Chapters 8 and 9 of Cow Book Slide ACKs: Jignesh Patel, Paris Koutris 1 Lifecycle of an SQL Query Query Result Query Database Server

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 23 Virtual memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Is a page replaces when

More information

University of California, Berkeley. (2 points for each row; 1 point given if part of the change in the row was correct)

University of California, Berkeley. (2 points for each row; 1 point given if part of the change in the row was correct) University of California, Berkeley CS 186 Intro to Database Systems, Fall 2012, Prof. Michael J. Franklin MIDTERM II - Questions This is a closed book examination but you are allowed one 8.5 x 11 sheet

More information

CMSC 424 Database design Lecture 12 Storage. Mihai Pop

CMSC 424 Database design Lecture 12 Storage. Mihai Pop CMSC 424 Database design Lecture 12 Storage Mihai Pop Administrative Office hours tomorrow @ 10 Midterms are in solutions for part C will be posted later this week Project partners I have an odd number

More information

INSTITUTO SUPERIOR TÉCNICO Administração e optimização de Bases de Dados

INSTITUTO SUPERIOR TÉCNICO Administração e optimização de Bases de Dados -------------------------------------------------------------------------------------------------------------- INSTITUTO SUPERIOR TÉCNICO Administração e optimização de Bases de Dados Exam 1 - Solution

More information

University of California, Berkeley. CS 186 Introduction to Databases, Spring 2014, Prof. Dan Olteanu MIDTERM

University of California, Berkeley. CS 186 Introduction to Databases, Spring 2014, Prof. Dan Olteanu MIDTERM University of California, Berkeley CS 186 Introduction to Databases, Spring 2014, Prof. Dan Olteanu MIDTERM This is a closed book examination sided). but you are allowed one 8.5 x 11 sheet of notes (double

More information

File Structures and Indexing

File Structures and Indexing File Structures and Indexing CPS352: Database Systems Simon Miner Gordon College Last Revised: 10/11/12 Agenda Check-in Database File Structures Indexing Database Design Tips Check-in Database File Structures

More information

Chapter 11: Storage and File Structure. Silberschatz, Korth and Sudarshan Updated by Bird and Tanin

Chapter 11: Storage and File Structure. Silberschatz, Korth and Sudarshan Updated by Bird and Tanin Chapter 11: Storage and File Structure Storage Hierarchy 11.2 Storage Hierarchy (Cont.) primary storage: Fastest media but volatile (cache, main memory). secondary storage: next level in hierarchy, non-volatile,

More information

CS 222/122C Fall 2016, Midterm Exam

CS 222/122C Fall 2016, Midterm Exam STUDENT NAME: STUDENT ID: Instructions: CS 222/122C Fall 2016, Midterm Exam Principles of Data Management Department of Computer Science, UC Irvine Prof. Chen Li (Max. Points: 100) This exam has six (6)

More information

Relational Model. IT 5101 Introduction to Database Systems. J.G. Zheng Fall 2011

Relational Model. IT 5101 Introduction to Database Systems. J.G. Zheng Fall 2011 Relational Model IT 5101 Introduction to Database Systems J.G. Zheng Fall 2011 Overview What is the relational model? What are the most important practical elements of the relational model? 2 Introduction

More information

Datenbanksysteme II: Caching and File Structures. Ulf Leser

Datenbanksysteme II: Caching and File Structures. Ulf Leser Datenbanksysteme II: Caching and File Structures Ulf Leser Content of this Lecture Caching Overview Accessing data Cache replacement strategies Prefetching File structure Index Files Ulf Leser: Implementation

More information

Spring 2013 CS 122C & CS 222 Midterm Exam (and Comprehensive Exam, Part I) (Max. Points: 100)

Spring 2013 CS 122C & CS 222 Midterm Exam (and Comprehensive Exam, Part I) (Max. Points: 100) Spring 2013 CS 122C & CS 222 Midterm Exam (and Comprehensive Exam, Part I) (Max. Points: 100) Instructions: - This exam is closed book and closed notes but open cheat sheet. - The total time for the exam

More information

Locality of Reference

Locality of Reference Locality of Reference 1 In view of the previous discussion of secondary storage, it makes sense to design programs so that data is read from and written to disk in relatively large chunks but there is

More information

ACID Properties. Transaction Management: Crash Recovery (Chap. 18), part 1. Motivation. Recovery Manager. Handling the Buffer Pool.

ACID Properties. Transaction Management: Crash Recovery (Chap. 18), part 1. Motivation. Recovery Manager. Handling the Buffer Pool. ACID Properties Transaction Management: Crash Recovery (Chap. 18), part 1 Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke CS634 Class 20, Apr 13, 2016 Transaction Management

More information

Last Class: Memory management. Per-process Replacement

Last Class: Memory management. Per-process Replacement Last Class: Memory management Page replacement algorithms - make paging work well. Random, FIFO, MIN, LRU Approximations to LRU: Second chance Multiprogramming considerations Lecture 17, page 1 Per-process

More information

CS 4284 Systems Capstone

CS 4284 Systems Capstone CS 4284 Systems Capstone Disks & File Systems Godmar Back Disks & Filesystems Disk Schematics Source: Micro House PC Hardware Library Volume I: Hard Drives 3 Tracks, Sectors, Cylinders 4 Hard Disk Example

More information

Design Overview and Implementation Details

Design Overview and Implementation Details Database Systems Instructor: Hao-Hua Chu Fall Semester, 2004 Assignment 5: Buffer Manager Deadline: 24:00, November 2 (Tuesday), 2004 This is a group assignment, and at most 2 students per group are allowed.

More information

Query Processing: A Systems View. Announcements (March 1) Physical (execution) plan. CPS 216 Advanced Database Systems

Query Processing: A Systems View. Announcements (March 1) Physical (execution) plan. CPS 216 Advanced Database Systems Query Processing: A Systems View CPS 216 Advanced Database Systems Announcements (March 1) 2 Reading assignment due Wednesday Buffer management Homework #2 due this Thursday Course project proposal due

More information

4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING

4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING 4.1 COMPUTATIONAL THINKING AND PROBLEM-SOLVING 4.1.2 ALGORITHMS ALGORITHM An Algorithm is a procedure or formula for solving a problem. It is a step-by-step set of operations to be performed. It is almost

More information

A memory is what is left when something happens and does not completely unhappen.

A memory is what is left when something happens and does not completely unhappen. 7 STORING DATA: DISKS &FILES A memory is what is left when something happens and does not completely unhappen. Edward DeBono This chapter initiates a study of the internals of an RDBMS. In terms of the

More information

Transaction Management: Crash Recovery (Chap. 18), part 1

Transaction Management: Crash Recovery (Chap. 18), part 1 Transaction Management: Crash Recovery (Chap. 18), part 1 CS634 Class 17 Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke ACID Properties Transaction Management must fulfill

More information

some sequential execution crash! Recovery Manager replacement MAIN MEMORY policy DISK

some sequential execution crash! Recovery Manager replacement MAIN MEMORY policy DISK ACID Properties Transaction Management: Crash Recovery (Chap. 18), part 1 Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke CS634 Class 17 Transaction Management must fulfill

More information

CS 405G: Introduction to Database Systems. Storage

CS 405G: Introduction to Database Systems. Storage CS 405G: Introduction to Database Systems Storage It s all about disks! Outline That s why we always draw databases as And why the single most important metric in database processing is the number of disk

More information

Overview IN this chapter we will study. William Stallings Computer Organization and Architecture 6th Edition

Overview IN this chapter we will study. William Stallings Computer Organization and Architecture 6th Edition William Stallings Computer Organization and Architecture 6th Edition Chapter 4 Cache Memory Overview IN this chapter we will study 4.1 COMPUTER MEMORY SYSTEM OVERVIEW 4.2 CACHE MEMORY PRINCIPLES 4.3 ELEMENTS

More information

CS 525: Advanced Database Organization 03: Disk Organization

CS 525: Advanced Database Organization 03: Disk Organization CS 525: Advanced Database Organization 03: Disk Organization Boris Glavic Slides: adapted from a course taught by Hector Garcia-Molina, Stanford InfoLab CS 525 Notes 3 1 Topics for today How to lay out

More information

Database design and implementation CMPSCI 645. Lecture 08: Storage and Indexing

Database design and implementation CMPSCI 645. Lecture 08: Storage and Indexing Database design and implementation CMPSCI 645 Lecture 08: Storage and Indexing 1 Where is the data and how to get to it? DB 2 DBMS architecture Query Parser Query Rewriter Query Op=mizer Query Executor

More information

Computer Organization and Assembly Language (CS-506)

Computer Organization and Assembly Language (CS-506) Computer Organization and Assembly Language (CS-506) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 2 Memory Organization and Structure

More information

Normalization, Generated Keys, Disks

Normalization, Generated Keys, Disks Normalization, Generated Keys, Disks CS634 Lecture 3 Slides based on Database Management Systems 3 rd ed, Ramakrishnan and Gehrke Normalization in practice The text has only one example, pg. 640: books,

More information

Announcements. CS18000: Problem Solving And Object-Oriented Programming

Announcements. CS18000: Problem Solving And Object-Oriented Programming Announcements Exam 1 Monday, February 28 Wetherill 200, 4:30pm-5:20pm Coverage: Through Week 6 Project 2 is a good study mechanism Final Exam Tuesday, May 3, 3:20pm-5:20pm, PHYS 112 If you have three or

More information

UNIT-V MEMORY ORGANIZATION

UNIT-V MEMORY ORGANIZATION UNIT-V MEMORY ORGANIZATION 1 The main memory of a computer is semiconductor memory.the main memory unit is basically consists of two kinds of memory: RAM (RWM):Random access memory; which is volatile in

More information

LECTURE 11. Memory Hierarchy

LECTURE 11. Memory Hierarchy LECTURE 11 Memory Hierarchy MEMORY HIERARCHY When it comes to memory, there are two universally desirable properties: Large Size: ideally, we want to never have to worry about running out of memory. Speed

More information

Advance Database Management System

Advance Database Management System Advance Database Management System Conceptual Design Lecture- A simplified database design process Database Requirements UoD Requirements Collection and Analysis Functional Requirements A simplified database

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 18 Lecture 18/19: Page Replacement Memory Management Memory management systems Physical and virtual addressing; address translation Techniques: Partitioning,

More information

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I)

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I) ECE7995 Caching and Prefetching Techniques in Computer Systems Lecture 8: Buffer Cache in Main Memory (I) 1 Review: The Memory Hierarchy Take advantage of the principle of locality to present the user

More information

VIRTUAL MEMORY. Maninder Kaur. 1

VIRTUAL MEMORY. Maninder Kaur. 1 VIRTUAL MEMORY Maninder Kaur professormaninder@gmail.com 1 www.eazynotes.com What is Virtual Memory? The term virtual memory refers to something which appears to be present but actually it is not. The

More information

IMPORTANT: Circle the last two letters of your class account:

IMPORTANT: Circle the last two letters of your class account: Spring 2011 University of California, Berkeley College of Engineering Computer Science Division EECS MIDTERM I CS 186 Introduction to Database Systems Prof. Michael J. Franklin NAME: STUDENT ID: IMPORTANT:

More information

Architecture of a Database Management System Ray Lockwood

Architecture of a Database Management System Ray Lockwood Assorted Topics Architecture of a Database Management System Pg 1 Architecture of a Database Management System Ray Lockwood Points: A DBMS is divided into modules or layers that isolate functionality.

More information

Database Management Systems Paper Solution

Database Management Systems Paper Solution Database Management Systems Paper Solution Following questions have been asked in GATE CS exam. 1. Given the relations employee (name, salary, deptno) and department (deptno, deptname, address) Which of

More information

Memory. Objectives. Introduction. 6.2 Types of Memory

Memory. Objectives. Introduction. 6.2 Types of Memory Memory Objectives Master the concepts of hierarchical memory organization. Understand how each level of memory contributes to system performance, and how the performance is measured. Master the concepts

More information

CS4411 Intro. to Operating Systems Final Fall points 10 pages

CS4411 Intro. to Operating Systems Final Fall points 10 pages CS44 Intro. to Operating Systems Final Exam Fall 9 CS44 Intro. to Operating Systems Final Fall 9 points pages Name: Most of the following questions only require very short answers. Usually a few sentences

More information

Data about data is database Select correct option: True False Partially True None of the Above

Data about data is database Select correct option: True False Partially True None of the Above Within a table, each primary key value. is a minimal super key is always the first field in each table must be numeric must be unique Foreign Key is A field in a table that matches a key field in another

More information

Database Systems II. Record Organization

Database Systems II. Record Organization Database Systems II Record Organization CMPT 454, Simon Fraser University, Fall 2009, Martin Ester 75 Introduction We have introduced secondary storage devices, in particular disks. Disks use blocks as

More information

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory Memory Hierarchy Contents Memory System Overview Cache Memory Internal Memory External Memory Virtual Memory Memory Hierarchy Registers In CPU Internal or Main memory Cache RAM External memory Backing

More information

COSC-4411(M) Midterm #1

COSC-4411(M) Midterm #1 12 February 2004 COSC-4411(M) Midterm #1 & answers p. 1 of 10 COSC-4411(M) Midterm #1 Sur / Last Name: Given / First Name: Student ID: Instructor: Parke Godfrey Exam Duration: 75 minutes Term: Winter 2004

More information

Computer Systems II. Memory Management" Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed

Computer Systems II. Memory Management Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed Computer Systems II Memory Management" Memory Management" Subdividing memory to accommodate many processes A program is loaded in main memory to be executed Memory needs to be allocated efficiently to

More information

Storage. Database Systems: The Complete Book

Storage. Database Systems: The Complete Book Storage Database Systems: The Complete Book UBDB Seminars Mondays @ 0:30 AM in Davis 3A Feb 5: Rethinking the Database for the Data Science Era Zack Ives (UPenn) Feb 22: Large-Scale Machine Learning With

More information

Data Abstractions. National Chiao Tung University Chun-Jen Tsai 05/23/2012

Data Abstractions. National Chiao Tung University Chun-Jen Tsai 05/23/2012 Data Abstractions National Chiao Tung University Chun-Jen Tsai 05/23/2012 Concept of Data Structures How do we store some conceptual structure in a linear memory? For example, an organization chart: 2/32

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 24 File Systems Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions from last time How

More information

COGS 121 HCI Programming Studio. Week 03 - Tech Lecture

COGS 121 HCI Programming Studio. Week 03 - Tech Lecture COGS 121 HCI Programming Studio Week 03 - Tech Lecture Housekeeping Assignment #1 extended to Monday night 11:59pm Assignment #2 to be released on Tuesday during lecture Database Management Systems and

More information

Project is due on March 11, 2003 Final Examination March 18, pm to 10.30pm

Project is due on March 11, 2003 Final Examination March 18, pm to 10.30pm Announcements Please remember to send a mail to Deepa to register for a timeslot for your project demo by March 6, 2003 See Project Guidelines on class web page for more details Project is due on March

More information

Operating system Dr. Shroouq J.

Operating system Dr. Shroouq J. 2.2.2 DMA Structure In a simple terminal-input driver, when a line is to be read from the terminal, the first character typed is sent to the computer. When that character is received, the asynchronous-communication

More information

Lecture 14 Page Replacement Policies

Lecture 14 Page Replacement Policies CS 423 Operating Systems Design Lecture 14 Page Replacement Policies Klara Nahrstedt Fall 2011 Based on slides by YY Zhou and Andrew S. Tanenbaum Overview Administrative Issues Page Replacement Policies

More information

Announcements (March 1) Query Processing: A Systems View. Physical (execution) plan. Announcements (March 3) Physical plan execution

Announcements (March 1) Query Processing: A Systems View. Physical (execution) plan. Announcements (March 3) Physical plan execution Announcements (March 1) 2 Query Processing: A Systems View CPS 216 Advanced Database Systems Reading assignment due Wednesday Buffer management Homework #2 due this Thursday Course project proposal due

More information

QUIZ: Is either set of attributes a superkey? A candidate key? Source:

QUIZ: Is either set of attributes a superkey? A candidate key? Source: QUIZ: Is either set of attributes a superkey? A candidate key? Source: http://courses.cs.washington.edu/courses/cse444/06wi/lectures/lecture09.pdf 10.1 QUIZ: MVD What MVDs can you spot in this table? Source:

More information

Each time a file is opened, assign it one of several access patterns, and use that pattern to derive a buffer management policy.

Each time a file is opened, assign it one of several access patterns, and use that pattern to derive a buffer management policy. LRU? What if a query just does one sequential scan of a file -- then putting it in the cache at all would be pointless. So you should only do LRU if you are going to access a page again, e.g., if it is

More information

Page Replacement Algorithms

Page Replacement Algorithms Page Replacement Algorithms MIN, OPT (optimal) RANDOM evict random page FIFO (first-in, first-out) give every page equal residency LRU (least-recently used) MRU (most-recently used) 1 9.1 Silberschatz,

More information

Chapter 10 Storage and File Structure

Chapter 10 Storage and File Structure Chapter 10 Storage and File Structure Table of Contents z 2 ºÆ Ö c z Storage Media z Buffer Management z File Organization Chapter 10-1 1 1. 2 ºÆ Ö c z File Structure Selection Sequential, Indexed Sequential,

More information

Virtual Memory Management in Linux (Part II)

Virtual Memory Management in Linux (Part II) Virtual Memory Management in Linux (Part II) Minsoo Ryu Department of Computer Science and Engineering 2 1 Page Table and Page Fault Handling Page X 2 Page Cache Page X 3 Page Frame Reclamation (Swapping

More information

Repetition CSC 121 Fall 2014 Howard Rosenthal

Repetition CSC 121 Fall 2014 Howard Rosenthal Repetition CSC 121 Fall 2014 Howard Rosenthal Lesson Goals Learn the following three repetition methods, their similarities and differences, and how to avoid common errors when using them: while do-while

More information

Memory Organization MEMORY ORGANIZATION. Memory Hierarchy. Main Memory. Auxiliary Memory. Associative Memory. Cache Memory.

Memory Organization MEMORY ORGANIZATION. Memory Hierarchy. Main Memory. Auxiliary Memory. Associative Memory. Cache Memory. MEMORY ORGANIZATION Memory Hierarchy Main Memory Auxiliary Memory Associative Memory Cache Memory Virtual Memory MEMORY HIERARCHY Memory Hierarchy Memory Hierarchy is to obtain the highest possible access

More information

Mass-Storage Structure

Mass-Storage Structure CS 4410 Operating Systems Mass-Storage Structure Summer 2011 Cornell University 1 Today How is data saved in the hard disk? Magnetic disk Disk speed parameters Disk Scheduling RAID Structure 2 Secondary

More information

Chapter 4: Control structures. Repetition

Chapter 4: Control structures. Repetition Chapter 4: Control structures Repetition Loop Statements After reading and studying this Section, student should be able to Implement repetition control in a program using while statements. Implement repetition

More information

CMSC 313 Lecture 13 Project 4 Questions Reminder: Midterm Exam next Thursday 10/16 Virtual Memory

CMSC 313 Lecture 13 Project 4 Questions Reminder: Midterm Exam next Thursday 10/16 Virtual Memory CMSC 33 Lecture 3 Project 4 Questions Reminder: Midterm Exam next Thursday /6 Virtual Memory UMBC, CMSC33, Richard Chang CMSC 33, Computer Organization & Assembly Language Programming

More information

Physical Data Organization. Introduction to Databases CompSci 316 Fall 2018

Physical Data Organization. Introduction to Databases CompSci 316 Fall 2018 Physical Data Organization Introduction to Databases CompSci 316 Fall 2018 2 Announcements (Tue., Nov. 6) Homework #3 due today Project milestone #2 due Thursday No separate progress update this week Use

More information

CS 245: Database System Principles

CS 245: Database System Principles CS 245: Database System Principles Notes 03: Disk Organization Peter Bailis CS 245 Notes 3 1 Topics for today How to lay out data on disk How to move it to memory CS 245 Notes 3 2 What are the data items

More information

Unit 3 Disk Scheduling, Records, Files, Metadata

Unit 3 Disk Scheduling, Records, Files, Metadata Unit 3 Disk Scheduling, Records, Files, Metadata Based on Ramakrishnan & Gehrke (text) : Sections 9.3-9.3.2 & 9.5-9.7.2 (pages 316-318 and 324-333); Sections 8.2-8.2.2 (pages 274-278); Section 12.1 (pages

More information

Midterm Exam #2 Solutions April 20, 2016 CS162 Operating Systems

Midterm Exam #2 Solutions April 20, 2016 CS162 Operating Systems University of California, Berkeley College of Engineering Computer Science Division EECS Spring 2016 Anthony D. Joseph Midterm Exam #2 Solutions April 20, 2016 CS162 Operating Systems Your Name: SID AND

More information

Input/Output Management

Input/Output Management Chapter 11 Input/Output Management This could be the messiest aspect of an operating system. There are just too much stuff involved, it is difficult to develop a uniform and consistent theory to cover

More information