CSE 101- Winter 18 Discussion Section Week 2

Size: px
Start display at page:

Download "CSE 101- Winter 18 Discussion Section Week 2"

Transcription

1 S 101- Winter 18 iscussion Section Week 2

2 Topics Topological ordering Strongly connected components Binary search ntroduction to ivide and onquer algorithms

3 Topological ordering

4 Topological ordering => (only forward edges if vertices arranged in increasing order of labels) B

5 Topological ordering

6 Topological ordering inductive approach ow would you approach this problem?

7 Topological ordering inductive approach ow would you approach this problem? ind a vertex which you know can be labelled 1 What are the properties of such a starting vertex?

8 Topological ordering inductive approach ow would you approach this problem? ind a vertex which you know can be labelled 1 What are the properties of such a starting vertex? laim: always has some vertex with indegree = 0 Take an arbitrary vertex v. f v doesn t have indegree = 0, traverse any incoming edge to reach a predecessor of v. f this vertex doesn t have indegree = 0, traverse any incoming edge to reach a predecessor, etc. ventually, this process will either dentify a vertex with indegree = 0, or else reach a vertex that has been reached previously (a contradiction, given that is acyclic)

9 Topological ordering inductive approach ow would you approach this problem? ind a vertex which you know can be labelled 1 What are the properties of such a starting vertex? nductive (or recursive) approach ind a vertex v with indegree(v) = 0; give it lowest available label; elete v (and incident edges, update degrees of remaining edges) Repeat (Bonus) can you do the same, beginning with an ending vertex?

10 Topological ordering using S laim: n a, every edge leads to a vertex with lower post number. Why?

11 Topological ordering using S laim: n a, every edge leads to a vertex with lower post number. Why? ny edge (u,v) for which post(v) > post(u) is a back edge. But a, being acyclic, has no back edges.

12 Topological ordering using S laim: n a, every edge leads to a vertex with lower post number. Why? ny edge (u,v) for which post(v) > post(u) is a back edge. But a, being acyclic, has no back edges. Obvious solution: Run S, then perform tasks in decreasing order of post numbers Linear running time!

13 Topological ordering example B

14 Topological ordering example 1, B

15 Topological ordering example 1, B 2,3

16 Topological ordering example 1, 4,5 B 2,3

17 Topological ordering example 1,6 4,5 B 2,3

18 Topological ordering example 1,6 4,5 B 2,3 Vertices explored in alphabetical order Topological order: --B

19 Topological ordering example 1,6 4,5 B 2,3 Vertices explored in alphabetical order Topological order: --B B Vertices explored in order: B--

20 Topological ordering example 1,6 4,5 B 2,3 Vertices explored in alphabetical order Topological order: --B B 1, Vertices explored in order: B--

21 Topological ordering example 1,6 4,5 B 2,3 Vertices explored in alphabetical order Topological order: --B B 1,2 Vertices explored in order: B--

22 Topological ordering example 1,6 4,5 B 2,3 Vertices explored in alphabetical order Topological order: --B 3, B 1,2 Vertices explored in order: B--

23 Topological ordering example 1,6 4,5 B 2,3 Vertices explored in alphabetical order Topological order: --B 3,4 B 1,2 Vertices explored in order: B--

24 Topological ordering example 1,6 4,5 B 2,3 Vertices explored in alphabetical order Topological order: --B 5, 3,4 B 1,2 Vertices explored in order: B--

25 Topological ordering example 1,6 4,5 B 2,3 Vertices explored in alphabetical order Topological order: --B 5,6 3,4 B 1,2 Vertices explored in order: B-- Topological order: --B

26 Strongly onnected omponents Two vertices u and v of a directed graph are connected if there is a path from u to v and a path from v to u.

27 Strongly onnected omponents Two vertices u and v of a directed graph are connected if there is a path from u to v and a path from v to u. This definition leads to a partition of a directed graph into disjoint sets of vertices -> strongly connected components B

28 Meta graph Meta raph The graph obtained by shrinking each strongly connected component down to a single meta-node and drawing an edge from one meta-node to another if there is an edge between their respective components. Meta raph is a. (Why?) n other words, every directed graph is a dag of its strongly connected components. B

29 Meta graph Meta raph The graph obtained by shrinking each strongly connected component down to a single meta-node and drawing an edge from one meta-node to another if there is an edge between their respective components. Meta raph is a. (Why?) n other words, every directed graph is a dag of its strongly connected components. B

30 Meta graph Meta raph The graph obtained by shrinking each strongly connected component down to a single meta-node and drawing an edge from one meta-node to another if there is an edge between their respective components. Meta raph is a. (Why?) n other words, every directed graph is a dag of its strongly connected components., B,,, B

31 Binary search Looking up a word in the dictionary Problem: ind x in a sorted array [1 n] lgorithm: ompare x with middle element of array Recursively find x in left subarray or right subarray

32 Binary search pseudocode Binary_search([], key, first, last) if (first > last) return not_found mid = (first + last)/2 if (key == [mid]) return mid if (key < [mid]) return Binary_search([],key,first,mid-1) if (key > [mid]) return Binary_search([],key,mid+1,last)

33 ivide and onquer ivide the problem (instance) into one or more subproblems onquer each subproblem recursively ombine separate solutions

34 Binary search pseudocode Binary_search([], key, first, last) if (first > last) return not_found //base case mid = (first + last)/2 if (key == [mid]) return mid //divide & conquer if (key < [mid]) return Binary_search([],key,first,mid-1) if (key > [mid]) return Binary_search([],key,mid+1,last)

35 Binary search revisited ivide: compare x with middle element onquer: recurse in one subarray ombine: trivial Running time T(n) = T(n/2) + O(1) Master theorem: T(n) a T(n/b) + O(n d ) 1. T(n) = O(n d ) if a < b d 2. T(n) = O(n d log n) if a = b d 3. T(n) = O(nlogba) if a > b d Using master theorem, T(n) = O(log n) (ase 2)

36 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution

37 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1,

38 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2,

39 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 3, 2,

40 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2, 3, 4,

41 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2, 3, 4, 5,

42 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2, 3, 4, 5,6

43 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2, 3, 4, 5,6 7,

44 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2, 3, 4, 5,6 7,8

45 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2, 3, 4,9 5,6 7,8

46 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2, 3,10 4,9 5,6 7,8

47 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2, 3,10 11, 4,9 5,6 7,8

48 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2, 3,10 11,12 4,9 5,6 7,8

49 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2,13 3,10 11,12 4,9 5,6 7,8

50 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 2,13 3,10 11,12 4,9 5,6 7,8

51 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 14, 2,13 3,10 11,12 4,9 5,6 7,8

52 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. a) ndicate the pre and post numbers of the nodes. Solution 1, 14,15 2,13 3,10 11,12 4,9 5,6 7,8

53 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. B a) ndicate the pre and post numbers of the nodes. Solution 1,16 14,15 2,13 3,10 11,12 4,9 5,6 7,8

54 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. b) What are the sources and sinks of the graph?

55 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. b) What are the sources and sinks of the graph? Solution rom the S performed in the previous step we are aware that vertex is a source node since it has the highest post number.

56 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. b) What are the sources and sinks of the graph? Solution rom the S performed in the previous step, we are aware that vertex has the lowest post number. Thus, vertex is a sink.

57 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. b) What are the sources and sinks of the graph? Solution rom the S performed in the previous step, we are aware that vertex has the lowest post number. Thus, vertex is a sink. lso, in the above S while visiting the vertices in the adjacency list of vertex we could have visited vertex before vertex. This would have lead to vertex having the least post number. Thus, vertex can be a sink as well.

58 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. c) What topological ordering is found by the algorithm? Solution

59 Solved xercise Run the S-based topological ordering algorithm on the following graph. Whenever you have a choice of vertices to explore, always pick the one that is alphabetically first. c) What topological ordering is found by the algorithm? Solution

Design and Analysis of Algorithms

Design and Analysis of Algorithms S 101, Winter 2018 esign and nalysis of lgorithms Lecture 3: onnected omponents lass URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ nd of Lecture 2: s, Topological Order irected cyclic raph.g., Vertices

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE, Winter 8 Design and Analysis of Algorithms Lecture : Graphs, DFS (Undirected, Directed), DAGs Class URL: http://vlsicad.ucsd.edu/courses/cse-w8/ Graphs Internet topology Graphs Gene-gene interactions

More information

Graphs: Connectivity. A graph. Transportation systems. Social networks

Graphs: Connectivity. A graph. Transportation systems. Social networks graph raphs: onnectivity ordi ortadella and ordi Petit epartment of omputer Science Source: Wikipedia The network graph formed by Wikipedia editors (edges) contributing to different Wikipedia language

More information

CSE Winter 2015 Quiz 2 Solutions

CSE Winter 2015 Quiz 2 Solutions CSE 101 - Winter 2015 Quiz 2 s January 27, 2015 1. True or False: For any DAG G = (V, E) with at least one vertex v V, there must exist at least one topological ordering. (Answer: True) Fact (from class)

More information

We can use a max-heap to sort data.

We can use a max-heap to sort data. Sorting 7B N log N Sorts 1 Heap Sort We can use a max-heap to sort data. Convert an array to a max-heap. Remove the root from the heap and store it in its proper position in the same array. Repeat until

More information

Depth-first search in undirected graphs What parts of the graph are reachable from a given vertex?

Depth-first search in undirected graphs What parts of the graph are reachable from a given vertex? Why graphs? Chapter 3. Decompositions of graphs Awiderangeofproblemscanbeexpressedwithclarityandprecisionin the concise pictorial language of graphs. Graph coloring. Graph connectivity and reachability.

More information

Depth First Search (DFS)

Depth First Search (DFS) Algorithms & Models of Computation CS/ECE 374, Fall 2017 epth First Search (FS) Lecture 1 Thursday, October 2, 2017 Today Two topics: Structure of directed graphs FS and its properties One application

More information

17/05/2018. Outline. Outline. Divide and Conquer. Control Abstraction for Divide &Conquer. Outline. Module 2: Divide and Conquer

17/05/2018. Outline. Outline. Divide and Conquer. Control Abstraction for Divide &Conquer. Outline. Module 2: Divide and Conquer Module 2: Divide and Conquer Divide and Conquer Control Abstraction for Divide &Conquer 1 Recurrence equation for Divide and Conquer: If the size of problem p is n and the sizes of the k sub problems are

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Analyzing Complexity of Lists

Analyzing Complexity of Lists Analyzing Complexity of Lists Operation Sorted Array Sorted Linked List Unsorted Array Unsorted Linked List Search( L, x ) O(logn) O( n ) O( n ) O( n ) Insert( L, x ) O(logn) O( n ) + O( 1 ) O( 1 ) + O(

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

Depth First Search (DFS)

Depth First Search (DFS) Algorithms & Models of Computation CS/ECE 374, Fall 2017 Depth First Search (DFS) Lecture 16 Thursday, October 26, 2017 Sariel Har-Peled (UIUC) CS374 1 Fall 2017 1 / 60 Today Two topics: Structure of directed

More information

Algorithms and Data Structures 2014 Exercises and Solutions Week 9

Algorithms and Data Structures 2014 Exercises and Solutions Week 9 Algorithms and Data Structures 2014 Exercises and Solutions Week 9 November 26, 2014 1 Directed acyclic graphs We are given a sequence (array) of numbers, and we would like to find the longest increasing

More information

U.C. Berkeley CS170 : Algorithms, Fall 2013 Midterm 1 Professor: Satish Rao October 10, Midterm 1 Solutions

U.C. Berkeley CS170 : Algorithms, Fall 2013 Midterm 1 Professor: Satish Rao October 10, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms, Fall 2013 Midterm 1 Professor: Satish Rao October 10, 2013 Midterm 1 Solutions 1 True/False 1. The Mayan base 20 system produces representations of size that is asymptotically

More information

CS473 - Algorithms I

CS473 - Algorithms I CS473 - Algorithms I Lecture 4 The Divide-and-Conquer Design Paradigm View in slide-show mode 1 Reminder: Merge Sort Input array A sort this half sort this half Divide Conquer merge two sorted halves Combine

More information

Graph Representations and Traversal

Graph Representations and Traversal COMPSCI 330: Design and Analysis of Algorithms 02/08/2017-02/20/2017 Graph Representations and Traversal Lecturer: Debmalya Panigrahi Scribe: Tianqi Song, Fred Zhang, Tianyu Wang 1 Overview This lecture

More information

1 Digraphs. Definition 1

1 Digraphs. Definition 1 1 Digraphs Definition 1 Adigraphordirected graphgisatriplecomprisedofavertex set V(G), edge set E(G), and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together

More information

CS4800: Algorithms & Data Jonathan Ullman

CS4800: Algorithms & Data Jonathan Ullman CS4800: Algorithms & Data Jonathan Ullman Lecture 12: Graph Search: BFS Applications, DFS Feb 20, 2018 BFS Review BFS Algorithm: Input: source node! " # =! " % = all neighbors of " # " & = all neighbors

More information

e-pg PATHSHALA- Computer Science Design and Analysis of Algorithms Module 14 Component-I (A) - Personal Details

e-pg PATHSHALA- Computer Science Design and Analysis of Algorithms Module 14 Component-I (A) - Personal Details e-pg PATHSHALA- Computer Science Design and Analysis of Algorithms Module 14 Component-I (A) - Personal Details Role Name Designation Principal Investigator Dr.T.V.Geetha Senior Professor, Department of

More information

These are not polished as solutions, but ought to give a correct idea of solutions that work. Note that most problems have multiple good solutions.

These are not polished as solutions, but ought to give a correct idea of solutions that work. Note that most problems have multiple good solutions. CSE 591 HW Sketch Sample Solutions These are not polished as solutions, but ought to give a correct idea of solutions that work. Note that most problems have multiple good solutions. Problem 1 (a) Any

More information

Spanning Trees. CSE373: Data Structures & Algorithms Lecture 17: Minimum Spanning Trees. Motivation. Observations. Spanning tree via DFS

Spanning Trees. CSE373: Data Structures & Algorithms Lecture 17: Minimum Spanning Trees. Motivation. Observations. Spanning tree via DFS Spanning Trees S: ata Structures & lgorithms Lecture : Minimum Spanning Trees simple problem: iven a connected undirected graph =(V,), find a minimal subset of edges such that is still connected graph

More information

CSE 101. Algorithm Design and Analysis Miles Jones and Russell Impagliazzo Miles Office 4208 CSE Building

CSE 101. Algorithm Design and Analysis Miles Jones and Russell Impagliazzo  Miles Office 4208 CSE Building CSE 101 Algorithm Design and Analysis Miles Jones and Russell Impagliazzo mej016@eng.ucsd.edu russell@cs.ucsd.edu Miles Office 4208 CSE Building Russell s Office: 4248 CSE Building procedure DFS(G) cc

More information

Practice Problems for the Final

Practice Problems for the Final ECE-250 Algorithms and Data Structures (Winter 2012) Practice Problems for the Final Disclaimer: Please do keep in mind that this problem set does not reflect the exact topics or the fractions of each

More information

Algorithms (VII) Yijia Chen Shanghai Jiaotong University

Algorithms (VII) Yijia Chen Shanghai Jiaotong University Algorithms (VII) Yijia Chen Shanghai Jiaotong University Review of the Previous Lecture Depth-first search in undirected graphs Exploring graphs explore(g, v) Input: G = (V, E) is a graph; v V Output:

More information

Algorithms (VII) Yijia Chen Shanghai Jiaotong University

Algorithms (VII) Yijia Chen Shanghai Jiaotong University Algorithms (VII) Yijia Chen Shanghai Jiaotong University Review of the Previous Lecture Depth-first search in undirected graphs Exploring graphs explore(g, v) Input: G = (V, E) is a graph; v V Output:

More information

3.1 Basic Definitions and Applications

3.1 Basic Definitions and Applications Graphs hapter hapter Graphs. Basic efinitions and Applications Graph. G = (V, ) n V = nodes. n = edges between pairs of nodes. n aptures pairwise relationship between objects: Undirected graph represents

More information

FINAL EXAM SOLUTIONS

FINAL EXAM SOLUTIONS COMP/MATH 3804 Design and Analysis of Algorithms I Fall 2015 FINAL EXAM SOLUTIONS Question 1 (12%). Modify Euclid s algorithm as follows. function Newclid(a,b) if a

More information

CISC 320 Introduction to Algorithms Fall Lecture 15 Depth First Search

CISC 320 Introduction to Algorithms Fall Lecture 15 Depth First Search IS 320 Introduction to lgorithms all 2014 Lecture 15 epth irst Search 1 Traversing raphs Systematic search of every edge and vertex of graph (directed or undirected) fficiency: each edge is visited no

More information

DESIGN AND ANALYSIS OF ALGORITHMS

DESIGN AND ANALYSIS OF ALGORITHMS NPTEL MOOC,JAN-FEB 205 Week 3, Module 6 DESIGN AND ANALYSIS OF ALGORITHMS Directed acyclic graphs (DAGs) MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan Tasks with constraints

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 10 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 10 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 10 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 13 (1) HW5 is due

More information

CSE 332: Data Structures & Parallelism Lecture 22: Minimum Spanning Trees. Ruth Anderson Winter 2018

CSE 332: Data Structures & Parallelism Lecture 22: Minimum Spanning Trees. Ruth Anderson Winter 2018 SE 33: Data Structures & Parallelism Lecture : Minimum Spanning Trees Ruth nderson Winter 08 Minimum Spanning Trees iven an undirected graph =(V,E), find a graph =(V, E ) such that: E is a subset of E

More information

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019 CS 341: Algorithms Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo February 26, 2019 D.R. Stinson (SCS) CS 341 February 26, 2019 1 / 296 1 Course Information 2 Introduction

More information

COL 702 : Assignment 1 solutions

COL 702 : Assignment 1 solutions COL 70 : Assignment 1 solutions 1(a ( n T (n = T + bn log n ( n = T + b n ( n log + bn log n ( n = T + b n ( n 8 log + b n log ( n + bn log n = bn log n + b n log n + bn log n +... log n terms = nb [(log

More information

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL:

Notes slides from before lecture. CSE 21, Winter 2017, Section A00. Lecture 9 Notes. Class URL: Notes slides from before lecture CSE 21, Winter 2017, Section A00 Lecture 9 Notes Class URL: http://vlsicad.ucsd.edu/courses/cse21-w17/ Notes slides from before lecture Notes February 8 (1) HW4 is due

More information

Directed acyclic graphs

Directed acyclic graphs Directed acyclic graphs Madhavan Mukund Chennai Mathematical Institute madhavan@cmi.ac.in http://www.cmi.ac.in/~madhavan March, 2 Directed Graphs 2 3 4 5 x v y Edges have direction. Cannot be traversed

More information

Unit-2 Divide and conquer 2016

Unit-2 Divide and conquer 2016 2 Divide and conquer Overview, Structure of divide-and-conquer algorithms, binary search, quick sort, Strassen multiplication. 13% 05 Divide-and- conquer The Divide and Conquer Paradigm, is a method of

More information

IS 709/809: Computational Methods in IS Research. Graph Algorithms: Introduction

IS 709/809: Computational Methods in IS Research. Graph Algorithms: Introduction IS 709/809: Computational Methods in IS Research Graph Algorithms: Introduction Nirmalya Roy Department of Information Systems University of Maryland Baltimore County www.umbc.edu Motivation Several real-life

More information

CS170 Discussion Section 4: 9/18

CS170 Discussion Section 4: 9/18 CS170 Discussion Section 4: 9/18 1. Alien alphabet. Suppose you have a dictionary of an alien language which lists words in some sorted lexicographical ordering. For example, given the following list of

More information

Analysis of Algorithms Prof. Karen Daniels

Analysis of Algorithms Prof. Karen Daniels UMass Lowell omputer Science 91.404 nalysis of lgorithms Prof. Karen aniels Spring, 2013 hapter 22: raph lgorithms & rief Introduction to Shortest Paths [Source: ormen et al. textbook except where noted]

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. Directed

More information

Solving Linear Recurrence Relations (8.2)

Solving Linear Recurrence Relations (8.2) EECS 203 Spring 2016 Lecture 18 Page 1 of 10 Review: Recurrence relations (Chapter 8) Last time we started in on recurrence relations. In computer science, one of the primary reasons we look at solving

More information

CS 473: Algorithms. Chandra Chekuri 3228 Siebel Center. Fall University of Illinois, Urbana-Champaign

CS 473: Algorithms. Chandra Chekuri 3228 Siebel Center. Fall University of Illinois, Urbana-Champaign CS 473: Algorithms Chandra chekuri@cs.illinois.edu 3228 Siebel Center University of Illinois, Urbana-Champaign Fall 2010 Depth First Search Directed Graphs Searching ted Graphs Strong Connected Components

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 4 Graphs Definitions Traversals Adam Smith 9/8/10 Exercise How can you simulate an array with two unbounded stacks and a small amount of memory? (Hint: think of a

More information

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College Laura Toma Algorithms (csci2200), Bowdoin College Undirected graphs Concepts: connectivity, connected components paths (undirected) cycles Basic problems, given undirected graph G: is G connected how many

More information

Trees. Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck. April 29, 2016

Trees. Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck.  April 29, 2016 Trees Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck http://cseweb.ucsd.edu/classes/sp16/cse21-bd/ April 29, 2016 Another Special Type of Graph: Trees Trees 1. Definitions of trees 2.

More information

Advanced algorithms. topological ordering, minimum spanning tree, Union-Find problem. Jiří Vyskočil, Radek Mařík 2012

Advanced algorithms. topological ordering, minimum spanning tree, Union-Find problem. Jiří Vyskočil, Radek Mařík 2012 topological ordering, minimum spanning tree, Union-Find problem Jiří Vyskočil, Radek Mařík 2012 Subgraph subgraph A graph H is a subgraph of a graph G, if the following two inclusions are satisfied: 2

More information

Graphs: Connectivity. Jordi Cortadella and Jordi Petit Department of Computer Science

Graphs: Connectivity. Jordi Cortadella and Jordi Petit Department of Computer Science Graphs: Connectivity Jordi Cortadella and Jordi Petit Department of Computer Science A graph Source: Wikipedia The network graph formed by Wikipedia editors (edges) contributing to different Wikipedia

More information

Directed Graphs (II) Hwansoo Han

Directed Graphs (II) Hwansoo Han Directed Graphs (II) Hwansoo Han Traversals of Directed Graphs To solve many problems dealing with digraphs, we need to visit vertexes and arcs in a systematic way Depth-first search (DFS) A generalization

More information

CSE 331: Introduction to Algorithm Analysis and Design Graphs

CSE 331: Introduction to Algorithm Analysis and Design Graphs CSE 331: Introduction to Algorithm Analysis and Design Graphs 1 Graph Definitions Graph: A graph consists of a set of verticies V and a set of edges E such that: G = (V, E) V = {v 0, v 1,..., v n 1 } E

More information

GRAPHS Lecture 19 CS2110 Spring 2013

GRAPHS Lecture 19 CS2110 Spring 2013 GRAPHS Lecture 19 CS2110 Spring 2013 Announcements 2 Prelim 2: Two and a half weeks from now Tuesday, April16, 7:30-9pm, Statler Exam conflicts? We need to hear about them and can arrange a makeup It would

More information

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, )

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, ) Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 1. if >. 2. error new key is greater than current key 3.. 4.. 5. if NIL and.

More information

Randomized Algorithms: Selection

Randomized Algorithms: Selection Randomized Algorithms: Selection CSE21 Winter 2017, Day 25 (B00), Day 16 (A00) March 15, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Selection Problem: WHAT Given list of distinct integers a 1, a 2,,

More information

Shortest Path Problem

Shortest Path Problem Shortest Path Problem CLRS Chapters 24.1 3, 24.5, 25.2 Shortest path problem Shortest path problem (and variants) Properties of shortest paths Algorithmic framework Bellman-Ford algorithm Shortest paths

More information

A loose end: binary search

A loose end: binary search COSC311 CRN 17281 - Session 20 (Dec. 3, 2018) A loose end: binary search binary search algorithm vs binary search tree A binary search tree, such as AVL, is a data structure. Binary search is an algorithm

More information

The divide-and-conquer paradigm involves three steps at each level of the recursion: Divide the problem into a number of subproblems.

The divide-and-conquer paradigm involves three steps at each level of the recursion: Divide the problem into a number of subproblems. 2.3 Designing algorithms There are many ways to design algorithms. Insertion sort uses an incremental approach: having sorted the subarray A[1 j - 1], we insert the single element A[j] into its proper

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-I ) Name: Entry number:

COL351: Analysis and Design of Algorithms (CSE, IITD, Semester-I ) Name: Entry number: Name: Entry number: There are 6 questions for a total of 75 points. 1. Consider functions f(n) = 10n2 n + 3 n and g(n) = n3 n. Answer the following: (a) ( 1 / 2 point) State true or false: f(n) is O(g(n)).

More information

Solutions to relevant spring 2000 exam problems

Solutions to relevant spring 2000 exam problems Problem 2, exam Here s Prim s algorithm, modified slightly to use C syntax. MSTPrim (G, w, r): Q = V[G]; for (each u Q) { key[u] = ; key[r] = 0; π[r] = 0; while (Q not empty) { u = ExtractMin (Q); for

More information

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60 CPS 102: Discrete Mathematics Instructor: Bruce Maggs Quiz 3 Date: Wednesday November 30, 2011 NAME: Prob # Score Max Score 1 10 2 10 3 10 4 10 5 10 6 10 Total 60 1 Problem 1 [10 points] Find a minimum-cost

More information

CSE 373 Final Exam 3/14/06 Sample Solution

CSE 373 Final Exam 3/14/06 Sample Solution Question 1. (6 points) A priority queue is a data structure that supports storing a set of values, each of which has an associated key. Each key-value pair is an entry in the priority queue. The basic

More information

Lecture 9: Sorting Algorithms

Lecture 9: Sorting Algorithms Lecture 9: Sorting Algorithms Bo Tang @ SUSTech, Spring 2018 Sorting problem Sorting Problem Input: an array A[1..n] with n integers Output: a sorted array A (in ascending order) Problem is: sort A[1..n]

More information

ICS 311, Fall 2017, Problem Set 04, Topics 7 & 8

ICS 311, Fall 2017, Problem Set 04, Topics 7 & 8 ICS 311, Fall 2017, Problem Set 04, Topics 7 & 8 Due by midnight Tuesday 2/16. 35 points. #1. Peer Credit Assignment 1 Point Extra Credit for replying Please list the names of the other members of your

More information

The guaranteed existence of a source suggests an alternative approach to linearization:

The guaranteed existence of a source suggests an alternative approach to linearization: S. asgupta,.h. Papadimitriou, and U.V. Vazirani 101 Figure 3.8 directed acyclic graph with one source, two sinks, and four possible linearizations. F What types of dags can be linearized? Simple: ll of

More information

CPE702 Algorithm Analysis and Design Week 7 Algorithm Design Patterns

CPE702 Algorithm Analysis and Design Week 7 Algorithm Design Patterns CPE702 Algorithm Analysis and Design Week 7 Algorithm Design Patterns Pruet Boonma pruet@eng.cmu.ac.th Department of Computer Engineering Faculty of Engineering, Chiang Mai University Based on Slides by

More information

CSC Design and Analysis of Algorithms. Lecture 5. Decrease and Conquer Algorithm Design Technique. Decrease-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 5. Decrease and Conquer Algorithm Design Technique. Decrease-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 5 Decrease and Conquer Algorithm Design Technique Decrease-and-Conquer This algorithm design technique is based on exploiting a relationship between

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

DEPTH-FIRST SEARCH A B C D E F G H I J K L M N O P. Graph Traversals. Depth-First Search

DEPTH-FIRST SEARCH A B C D E F G H I J K L M N O P. Graph Traversals. Depth-First Search PTH-IRST SRH raph Traversals epth-irst Search H I J K L M N O P epth-irst Search 1 xploring a Labyrinth Without etting Lost depth-first search (S) in an undirected graph is like wandering in a labyrinth

More information

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 13-A. Graphs. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 3-A Graphs Graphs A directed graph (or digraph) G is a pair (V, E), where V is a finite set, and E is a binary relation on V The set V: Vertex set of G The set E: Edge set of

More information

2. Instance simplification Solve a problem s instance by transforming it into another simpler/easier instance of the same problem

2. Instance simplification Solve a problem s instance by transforming it into another simpler/easier instance of the same problem CmSc 20 Intro to Algorithms Chapter 6. Transform and Conquer Algorithms. Introduction This group of techniques solves a problem by a transformation to a simpler/more convenient instance of the same problem

More information

3.4 Testing Bipartiteness

3.4 Testing Bipartiteness 3.4 Testing Bipartiteness Bipartite Graphs Def. An undirected graph G = (V, E) is bipartite (2-colorable) if the nodes can be colored red or blue such that no edge has both ends the same color. Applications.

More information

DFS on Directed Graphs BOS. Outline and Reading ( 6.4) Digraphs. Reachability ( 6.4.1) Directed Acyclic Graphs (DAG s) ( 6.4.4)

DFS on Directed Graphs BOS. Outline and Reading ( 6.4) Digraphs. Reachability ( 6.4.1) Directed Acyclic Graphs (DAG s) ( 6.4.4) S on irected Graphs OS OR JK SO LX W MI irected Graphs S 1.3 1 Outline and Reading ( 6.4) Reachability ( 6.4.1) irected S Strong connectivity irected cyclic Graphs (G s) ( 6.4.4) Topological Sorting irected

More information

Strongly Connected Components. Andreas Klappenecker

Strongly Connected Components. Andreas Klappenecker Strongly Connected Components Andreas Klappenecker Undirected Graphs An undirected graph that is not connected decomposes into several connected components. Finding the connected components is easily solved

More information

Shortest path problems

Shortest path problems Next... Shortest path problems Single-source shortest paths in weighted graphs Shortest-Path Problems Properties of Shortest Paths, Relaxation Dijkstra s Algorithm Bellman-Ford Algorithm Shortest-Paths

More information

Exercise 1. D-ary Tree

Exercise 1. D-ary Tree CSE 101: Design and Analysis of Algorithms Winter 2018 Homework 1 Solutions Due: 01/19/2018, 11.59 PM Exercise 1. D-ary Tree A d-ary tree is a rooted tree in which each node has at most d children. Show

More information

Divide and Conquer 4-0

Divide and Conquer 4-0 Divide and Conquer 4-0 Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances recursively 3. Obtain

More information

Inf 2B: Graphs II - Applications of DFS

Inf 2B: Graphs II - Applications of DFS Inf 2B: Graphs II - Applications of DFS Kyriakos Kalorkoti School of Informatics University of Edinburgh Reminder: Recursive DFS Algorithm dfs(g) 1. Initialise Boolean array visited by setting all entries

More information

COMP 251 Winter 2017 Online quizzes with answers

COMP 251 Winter 2017 Online quizzes with answers COMP 251 Winter 2017 Online quizzes with answers Open Addressing (2) Which of the following assertions are true about open address tables? A. You cannot store more records than the total number of slots

More information

Divide-and-Conquer. The most-well known algorithm design strategy: smaller instances. combining these solutions

Divide-and-Conquer. The most-well known algorithm design strategy: smaller instances. combining these solutions Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances recursively 3. Obtain solution to original

More information

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Part 2 1 3 Maximum Selection Problem : Given n numbers, x 1, x 2,, x

More information

Graph Algorithms Using Depth First Search

Graph Algorithms Using Depth First Search Graph Algorithms Using Depth First Search Analysis of Algorithms Week 8, Lecture 1 Prepared by John Reif, Ph.D. Distinguished Professor of Computer Science Duke University Graph Algorithms Using Depth

More information

Discrete Structures CISC 2315 FALL Graphs & Trees

Discrete Structures CISC 2315 FALL Graphs & Trees Discrete Structures CISC 2315 FALL 2010 Graphs & Trees Graphs A graph is a discrete structure, with discrete components Components of a Graph edge vertex (node) Vertices A graph G = (V, E), where V is

More information

Question Bank Subject: Advanced Data Structures Class: SE Computer

Question Bank Subject: Advanced Data Structures Class: SE Computer Question Bank Subject: Advanced Data Structures Class: SE Computer Question1: Write a non recursive pseudo code for post order traversal of binary tree Answer: Pseudo Code: 1. Push root into Stack_One.

More information

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 3. Graphs CLRS Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 3 Graphs CLRS 12-13 Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 25 3.4 Testing Bipartiteness Bipartite Graphs Def. An undirected graph G = (V, E) is bipartite

More information

Homework 2. Sample Solution. Due Date: Thursday, May 31, 11:59 pm

Homework 2. Sample Solution. Due Date: Thursday, May 31, 11:59 pm Homework Sample Solution Due Date: Thursday, May 31, 11:59 pm Directions: Your solutions should be typed and submitted as a single pdf on Gradescope by the due date. L A TEX is preferred but not required.

More information

Problem. Input: An array A = (A[1],..., A[n]) with length n. Output: a permutation A of A, that is sorted: A [i] A [j] for all. 1 i j n.

Problem. Input: An array A = (A[1],..., A[n]) with length n. Output: a permutation A of A, that is sorted: A [i] A [j] for all. 1 i j n. Problem 5. Sorting Simple Sorting, Quicksort, Mergesort Input: An array A = (A[1],..., A[n]) with length n. Output: a permutation A of A, that is sorted: A [i] A [j] for all 1 i j n. 98 99 Selection Sort

More information

The Konigsberg Bridge Problem

The Konigsberg Bridge Problem The Konigsberg Bridge Problem This is a classic mathematical problem. There were seven bridges across the river Pregel at Königsberg. Is it possible to take a walk in which each bridge is crossed exactly

More information

Digraphs ( 12.4) Directed Graphs. Digraph Application. Digraph Properties. A digraph is a graph whose edges are all directed.

Digraphs ( 12.4) Directed Graphs. Digraph Application. Digraph Properties. A digraph is a graph whose edges are all directed. igraphs ( 12.4) irected Graphs OR OS digraph is a graph whose edges are all directed Short for directed graph pplications one- way streets flights task scheduling irected Graphs 1 irected Graphs 2 igraph

More information

CSE 421 Greedy Alg: Union Find/Dijkstra s Alg

CSE 421 Greedy Alg: Union Find/Dijkstra s Alg CSE 1 Greedy Alg: Union Find/Dijkstra s Alg Shayan Oveis Gharan 1 Dijkstra s Algorithm Dijkstra(G, c, s) { d s 0 foreach (v V) d[v] //This is the key of node v foreach (v V) insert v onto a priority queue

More information

Algorithms (IX) Guoqiang Li. School of Software, Shanghai Jiao Tong University

Algorithms (IX) Guoqiang Li. School of Software, Shanghai Jiao Tong University Algorithms (IX) Guoqiang Li School of Software, Shanghai Jiao Tong University Q: What we have learned in Algorithm? Algorithm Design Algorithm Design Basic methodologies: Algorithm Design Algorithm Design

More information

Strongly Connected Components

Strongly Connected Components Strongly Connected Components Let G = (V, E) be a directed graph Write if there is a path from to in G Write if and is an equivalence relation: implies and implies s equivalence classes are called the

More information

CSC Design and Analysis of Algorithms. Lecture 5. Decrease and Conquer Algorithm Design Technique. Decrease-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 5. Decrease and Conquer Algorithm Design Technique. Decrease-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 5 Decrease and Conuer Algorithm Design Techniue Decrease-and-Conuer This algorithm design techniue is based on exploiting a relationship between a solution

More information

Data Structures and Algorithms CMPSC 465

Data Structures and Algorithms CMPSC 465 Data Structures and Algorithms CMPSC 465 LECTURES 7-8 More Divide and Conquer Multiplication Adam Smith S. Raskhodnikova and A. Smith; based on slides by E. Demaine and C. Leiserson John McCarthy (1927

More information

Module 5 Graph Algorithms

Module 5 Graph Algorithms Module 5 Graph lgorithms Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 97 E-mail: natarajan.meghanathan@jsums.edu 5. Graph Traversal lgorithms Depth First

More information

Chapter 5. Decrease-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 5. Decrease-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 5 Decrease-and-Conquer Copyright 2007 Pearson Addison-Wesley. All rights reserved. Decrease-and-Conquer 1. Reduce problem instance to smaller instance of the same problem 2. Solve smaller instance

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 350 - Algorithms and Complexity Basic Sorting Sean Anderson 1/18/18 Portland State University Table of contents 1. Core Concepts of Sort 2. Selection Sort 3. Insertion Sort 4. Non-Comparison Sorts 5.

More information

CPS 616 TRANSFORM-AND-CONQUER 7-1

CPS 616 TRANSFORM-AND-CONQUER 7-1 CPS 616 TRANSFORM-AND-CONQUER 7-1 TRANSFORM AND CONQUER Group of techniques to solve a problem by first transforming the problem into one of: 1. a simpler/more convenient instance of the same problem (instance

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis TOM 50: Networking Theory & undamentals Lecture pril 6, 2003 Prof. Yannis. Korilis 2 Topics Routing in ata Network Graph Representation of a Network Undirected Graphs Spanning Trees and Minimum Weight

More information

Lecture 7. Transform-and-Conquer

Lecture 7. Transform-and-Conquer Lecture 7 Transform-and-Conquer 6-1 Transform and Conquer This group of techniques solves a problem by a transformation to a simpler/more convenient instance of the same problem (instance simplification)

More information

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11

Undirected Graphs. V = { 1, 2, 3, 4, 5, 6, 7, 8 } E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } n = 8 m = 11 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. V = {

More information

CSI 604 Elementary Graph Algorithms

CSI 604 Elementary Graph Algorithms CSI 604 Elementary Graph Algorithms Ref: Chapter 22 of the text by Cormen et al. (Second edition) 1 / 25 Graphs: Basic Definitions Undirected Graph G(V, E): V is set of nodes (or vertices) and E is the

More information