TDDD82 Secure Mobile Systems Lecture 1: Introduction and Distributed Systems Models

Size: px
Start display at page:

Download "TDDD82 Secure Mobile Systems Lecture 1: Introduction and Distributed Systems Models"

Transcription

1 TDDD82 Secure Mobile Systems Lecture 1: Introduction and Distributed Systems Models Mikael Asplund Real-time Systems Laboratory Department of Computer and Information Science Linköping University Based on slides by Simin Nadjm-Tehrani

2 People & organisation Lecturer: Mikael Asplund Lessons: Chih-Yuan (Sana) Lin (2 scheduled occasions)

3 Module overview 3hp Some parts that strongly relate to your projects Distributed systems, dependability, qualityof-service General CS knowledge: concurrent programming Processes, resource sharing, deadlocks

4 Lecture organisation Lecture 1: Distributed systems (intro) Lecture 2-4:Processes All concurrency related topics, including synchronisation, mutual exclusion, deadlocks Lecture 5: Dependability Lecture 6: Quality of Service

5 Distributed systems

6 Reading Chapter 2 of Coulouris, Dollimore, and Kindberg

7 Examples

8 Common in all these? Distributed model of computing: Multiple processes Disjoint address spaces Inter-process communication Collective goal

9 Distributed Systems A collection of independent computers that appears to its users as a single coherent system

10 Networking vs. Distributed systems Networking treats the internal mechanisms for inter-process communication: Routing Error control (reliable transmission) Flow control (low level treatment of overloads) Distributed computing treats the application view of the architecture for communication and cooperation

11 This lecture Basic aspects affecting design Distributed systems architectures and models

12 Overview Why is it hard to get it right? Variations in workload, connectivity, mobility, requirements Heterogeneity in systems environment, hardware, operating systems, and networks Consequences of timing and failure issues Security threats, and distributed attacks

13 Architectural models Placement of processes and data across a network of computers Patterns of communication to achieve functional and extra(non)-functional properties Challenges: Scalability, interoperability

14 Architectural models Placement of processes and data across a network of computers Patterns of communication to achieve functional and extra(non)-functional properties Challenges: Scalability, interoperability What are these?

15 System requirements Functional requirements Describe the main objectives of the system, also referred to as correct service Extra-functional requirements Also called non-functional properties Cover other requirements than those relating to main function, for example expressing the frequency and severity of acceptable service failures Example non-functional requirements Timeliness, availability, energy efficiency

16 Scalability Allow the system to become bigger without negatively affecting performance Multiple dimensions: Size: Adding more resources and users Geographic: Dispersed across locations Administrative: Spanning multiple administrative domains 16

17 Architectural roles Client-server Client implements the user interface Server(s) has most of the functionality Computation, data E.g.: Web Peer-to-peer (P2P) Each component is symmetric in functionality Peer: Combination of server-client No well-known centralized server Hybrid Combination of the two

18 System organisation Centralised Most functionality is in a single unit Decentralised Functionality is spread across multiple units

19 Types of distribution Vertical distribution Logically different components on different machines e.g., multitiered architectures Horizonal distribution Multiple logically equivalent parts Potentially operating on different data

20 Physical two-tired architectures Alternative client-server organizations (a) (e)

21 Exaple of horizontal distribution 1-31 An example of horizontal distribution of a Web service. 21

22 A taxonomy of architectural models Distributed systems Client-server Peer-to-peer Hybrid... Centralised Decentralised Decentralised & horizontally distributed Vertically distributed Vertically distributed Horizontally distributed Horiz. & vert. distributed

23 Interaction Interaction

24 What affects timing in a distributed system?

25 Latency

26 Clock drift C (t) > 1 (fast clock) C (t)=1 (Perfect clock) Timestamp of clock C C (t) < 1 (slow clock) reference time t Baspresentation LiU

27 Clock drift C (t) > 1 (fast clock) Real clock C (t)=1 (Perfect clock) Timestamp of clock C C (t) < 1 (slow clock) reference time t Baspresentation LiU

28 Two interaction models Asynchronous No relation between computation rate at different nodes, No bound on message exchange delay, Clock drift rates are arbitrary Synchronous Bounded message exchange delay, Related processing rates at different nodes, Clock drift rates bounded

29 Implications Synchronous: Local clocks can be used to implement timeouts Lack of response from another node can be interpreted as detection of failure Hard to guarantee! Asynchronous: In the absence of global (synchronised) time one cannot relate clocks at different nodes How can events be ordered?

30 When order matters

31 Another problem: global state P1 Time P2 m1 m3 P3 m2

32 Another problem: global state P1 Time P2 m1 m3 P3 m2

33 Causal ordering A strict partial order Antisymmetrical Transitive Irreflexive Also known as: the happened-before relation Rules: send(m) receive(m) e1 e2 if e1 and e2 are local events on the same machine and e1 occurred before e2 according to the local time Transitive closure

34 Consistent cuts (using partial order) If e2 is after the cut and e1 before the cut, then e2 e1 P1 Time P2 m1 m3 P3 m2

35 Consistent cuts (using partial order) If e2 is after the cut and e1 before the cut, then e2 e1 P1 Time P2 m1 m3 P3 m2

36 Consistent cuts (using partial order) If e2 is after the cut and e1 before the cut, then e2 e1 P1 Time P2 m1 m3 P3 m2 Consistent!

37 Consistent cuts (using partial order) If e2 is after the cut and e1 before the cut, then e2 e1 P1 Time P2 m1 m3 P3 m2 Consistent!

38 Consistent cuts (using partial order) If e2 is after the cut and e1 before the cut, then e2 e1 P1 Time P2 m1 m3 P3 m2 Inconsistent! Consistent!

39 Lamport timestamps Timestamps should follow the partial event ordering A B => C(A) < C(B) Not vice versa! Timestamps always increase Lamport s Algorithm: Each processor i maintains a logical clock Ci Whenever an event occurs locally, Ci = Ci+1 When i sends message to j, piggyback Ci When j receives message from i Cj = max(ci, Cj)+1

40 Failure Failure

41 Failure models We will look into more detail into failure and related notions in lecture 5 For now... Distributed systems can fail in nodes or channels Node/channel failures: Crash Omission timing Byzantine (arbitrary)

System Models 2. Lecture - System Models 2 1. Areas for Discussion. Introduction. Introduction. System Models. The Modelling Process - General

System Models 2. Lecture - System Models 2 1. Areas for Discussion. Introduction. Introduction. System Models. The Modelling Process - General Areas for Discussion System Models 2 Joseph Spring School of Computer Science MCOM0083 - Distributed Systems and Security Lecture - System Models 2 1 Architectural Models Software Layers System Architecture

More information

Middleware and Distributed Systems. System Models. Dr. Martin v. Löwis

Middleware and Distributed Systems. System Models. Dr. Martin v. Löwis Middleware and Distributed Systems System Models Dr. Martin v. Löwis System Models (Coulouris et al.) Architectural models of distributed systems placement of parts and relationships between them e.g.

More information

2. System Models Page 1. University of Freiburg, Germany Department of Computer Science. Distributed Systems. Chapter 2 System Models

2. System Models Page 1. University of Freiburg, Germany Department of Computer Science. Distributed Systems. Chapter 2 System Models 2. System Models Page 1 University of Freiburg, Germany Department of Computer Science Distributed Systems Chapter 2 System Models Christian Schindelhauer 27. April 2012 2. System Models 2.1. Introduction

More information

System Models. 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models. Nicola Dragoni Embedded Systems Engineering DTU Informatics

System Models. 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models. Nicola Dragoni Embedded Systems Engineering DTU Informatics System Models Nicola Dragoni Embedded Systems Engineering DTU Informatics 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models Architectural vs Fundamental Models Systems that are intended

More information

Chapter 1: Distributed Systems: What is a distributed system? Fall 2013

Chapter 1: Distributed Systems: What is a distributed system? Fall 2013 Chapter 1: Distributed Systems: What is a distributed system? Fall 2013 Course Goals and Content n Distributed systems and their: n Basic concepts n Main issues, problems, and solutions n Structured and

More information

Frequently asked questions from the previous class survey

Frequently asked questions from the previous class survey CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [DISTRIBUTED COORDINATION/MUTUAL EXCLUSION] Shrideep Pallickara Computer Science Colorado State University L22.1 Frequently asked questions from the previous

More information

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [DISTRIBUTED COORDINATION/MUTUAL EXCLUSION] Shrideep Pallickara Computer Science Colorado State University

More information

System Models for Distributed Systems

System Models for Distributed Systems System Models for Distributed Systems INF5040/9040 Autumn 2015 Lecturer: Amir Taherkordi (ifi/uio) August 31, 2015 Outline 1. Introduction 2. Physical Models 4. Fundamental Models 2 INF5040 1 System Models

More information

UNIT IV 1. What is meant by hardware and software clock? Clock devices can be programmed to generate interrupts at regular intervals in orders that, for example, time slicing can be implemented.the operating

More information

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [DISTRIBUTED MUTUAL EXCLUSION] Frequently asked questions from the previous class survey

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [DISTRIBUTED MUTUAL EXCLUSION] Frequently asked questions from the previous class survey CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [DISTRIBUTED MUTUAL EXCLUSION] Shrideep Pallickara Computer Science Colorado State University L23.1 Frequently asked questions from the previous class survey

More information

Event Ordering. Greg Bilodeau CS 5204 November 3, 2009

Event Ordering. Greg Bilodeau CS 5204 November 3, 2009 Greg Bilodeau CS 5204 November 3, 2009 Fault Tolerance How do we prepare for rollback and recovery in a distributed system? How do we ensure the proper processing order of communications between distributed

More information

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [DISTRIBUTED MUTUAL EXCLUSION] Frequently asked questions from the previous class survey Yes. But what really is a second? 1 second ==time for a cesium 133 atom

More information

Distributed Information Processing

Distributed Information Processing Distributed Information Processing 1 st Lecture Eom, Hyeonsang ( 엄현상 ) Department of Computer Science & Engineering Seoul National University Copyrights 2017 Eom, Hyeonsang All Rights Reserved Outline

More information

Three Models. 1. Time Order 2. Distributed Algorithms 3. Nature of Distributed Systems1. DEPT. OF Comp Sc. and Engg., IIT Delhi

Three Models. 1. Time Order 2. Distributed Algorithms 3. Nature of Distributed Systems1. DEPT. OF Comp Sc. and Engg., IIT Delhi DEPT. OF Comp Sc. and Engg., IIT Delhi Three Models 1. CSV888 - Distributed Systems 1. Time Order 2. Distributed Algorithms 3. Nature of Distributed Systems1 Index - Models to study [2] 1. LAN based systems

More information

Advanced Topics in Distributed Systems. Dr. Ayman A. Abdel-Hamid. Computer Science Department Virginia Tech

Advanced Topics in Distributed Systems. Dr. Ayman A. Abdel-Hamid. Computer Science Department Virginia Tech Advanced Topics in Distributed Systems Dr. Ayman A. Abdel-Hamid Computer Science Department Virginia Tech Synchronization (Based on Ch6 in Distributed Systems: Principles and Paradigms, 2/E) Synchronization

More information

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer?

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer? Parallel and Distributed Systems Instructor: Sandhya Dwarkadas Department of Computer Science University of Rochester What is a parallel computer? A collection of processing elements that communicate and

More information

What is a distributed system?

What is a distributed system? CS 378 Intro to Distributed Computing Lorenzo Alvisi Harish Rajamani What is a distributed system? A distributed system is one in which the failure of a computer you didn t even know existed can render

More information

Synchronisation in. Distributed Systems. Co-operation and Co-ordination in. Distributed Systems. Kinds of Synchronisation. Clock Synchronization

Synchronisation in. Distributed Systems. Co-operation and Co-ordination in. Distributed Systems. Kinds of Synchronisation. Clock Synchronization Co-operation and Co-ordination in Distributed ystems Naming for searching communication partners Communication Mechanisms for the communication process ynchronisation in Distributed ystems But... Not enough

More information

Time Synchronization and Logical Clocks

Time Synchronization and Logical Clocks Time Synchronization and Logical Clocks CS 240: Computing Systems and Concurrency Lecture 5 Mootaz Elnozahy Today 1. The need for time synchronization 2. Wall clock time synchronization 3. Logical Time

More information

Last Class: Naming. Today: Classical Problems in Distributed Systems. Naming. Time ordering and clock synchronization (today)

Last Class: Naming. Today: Classical Problems in Distributed Systems. Naming. Time ordering and clock synchronization (today) Last Class: Naming Naming Distributed naming DNS LDAP Lecture 12, page 1 Today: Classical Problems in Distributed Systems Time ordering and clock synchronization (today) Next few classes: Leader election

More information

System models for distributed systems

System models for distributed systems System models for distributed systems INF5040/9040 autumn 2010 lecturer: Frank Eliassen INF5040 H2010, Frank Eliassen 1 System models Purpose illustrate/describe common properties and design choices for

More information

Distributed Systems (5DV147)

Distributed Systems (5DV147) Distributed Systems (5DV147) Replication and consistency Fall 2013 1 Replication 2 What is replication? Introduction Make different copies of data ensuring that all copies are identical Immutable data

More information

Introduction to Distributed Systems

Introduction to Distributed Systems Introduction to Distributed Systems Distributed Systems Sistemi Distribuiti Andrea Omicini andrea.omicini@unibo.it Ingegneria Due Alma Mater Studiorum Università di Bologna a Cesena Academic Year 2011/2012

More information

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. UNIT I PART A (2 marks)

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. UNIT I PART A (2 marks) DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Subject Code : IT1001 Subject Name : Distributed Systems Year / Sem : IV / VII UNIT I 1. Define distributed systems. 2. Give examples of distributed systems

More information

Distributed Systems COMP 212. Revision 2 Othon Michail

Distributed Systems COMP 212. Revision 2 Othon Michail Distributed Systems COMP 212 Revision 2 Othon Michail Synchronisation 2/55 How would Lamport s algorithm synchronise the clocks in the following scenario? 3/55 How would Lamport s algorithm synchronise

More information

Lecture 1: Introduction to distributed Algorithms

Lecture 1: Introduction to distributed Algorithms Distributed Algorithms M.Tech., CSE, 2016 Lecture 1: Introduction to distributed Algorithms Faculty: K.R. Chowdhary : Professor of CS Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Distributed Systems (5DV147)

Distributed Systems (5DV147) Distributed Systems (5DV147) Fundamentals Fall 2013 1 basics 2 basics Single process int i; i=i+1; 1 CPU - Steps are strictly sequential - Program behavior & variables state determined by sequence of operations

More information

Introduction to Distributed Systems

Introduction to Distributed Systems Introduction to Distributed Systems Distributed Systems L-A Sistemi Distribuiti L-A Andrea Omicini andrea.omicini@unibo.it Ingegneria Due Alma Mater Studiorum Università di Bologna a Cesena Academic Year

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [LOGICAL CLOCKS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey What happens in a cluster when 2 machines

More information

Chapter 2 System Models

Chapter 2 System Models CSF661 Distributed Systems 分散式系統 Chapter 2 System Models 吳俊興國立高雄大學資訊工程學系 Chapter 2 System Models 2.1 Introduction 2.2 Physical models 2.3 Architectural models 2.4 Fundamental models 2.5 Summary 2 A physical

More information

Synchronization. Clock Synchronization

Synchronization. Clock Synchronization Synchronization Clock Synchronization Logical clocks Global state Election algorithms Mutual exclusion Distributed transactions 1 Clock Synchronization Time is counted based on tick Time judged by query

More information

Introduction to Distributed Systems

Introduction to Distributed Systems Introduction to Distributed Systems Other matters: review of the Bakery Algorithm: why can t we simply keep track of the last ticket taken and the next ticvket to be called? Ref: [Coulouris&al Ch 1, 2]

More information

Time Synchronization and Logical Clocks

Time Synchronization and Logical Clocks Time Synchronization and Logical Clocks CS 240: Computing Systems and Concurrency Lecture 5 Marco Canini Credits: Michael Freedman and Kyle Jamieson developed much of the original material. Today 1. The

More information

CSE 5306 Distributed Systems

CSE 5306 Distributed Systems CSE 5306 Distributed Systems Synchronization Jia Rao http://ranger.uta.edu/~jrao/ 1 Synchronization An important issue in distributed system is how process cooperate and synchronize with one another Cooperation

More information

02 - Distributed Systems

02 - Distributed Systems 02 - Distributed Systems Definition Coulouris 1 (Dis)advantages Coulouris 2 Challenges Saltzer_84.pdf Models Physical Architectural Fundamental 2/58 Definition Distributed Systems Distributed System is

More information

02 - Distributed Systems

02 - Distributed Systems 02 - Distributed Systems Definition Coulouris 1 (Dis)advantages Coulouris 2 Challenges Saltzer_84.pdf Models Physical Architectural Fundamental 2/60 Definition Distributed Systems Distributed System is

More information

Distributed Systems COMP 212. Lecture 17 Othon Michail

Distributed Systems COMP 212. Lecture 17 Othon Michail Distributed Systems COMP 212 Lecture 17 Othon Michail Synchronisation 2/29 What Can Go Wrong Updating a replicated database: Customer (update 1) adds 100 to an account, bank employee (update 2) adds 1%

More information

Distributed Transaction Management 2003

Distributed Transaction Management 2003 Distributed Transaction Management 2003 Jyrki Nummenmaa http://www.cs.uta.fi/~dtm jyrki@cs.uta.fi General information We will view this from the course web page. Motivation We will pick up some motivating

More information

2. Time and Global States Page 1. University of Freiburg, Germany Department of Computer Science. Distributed Systems

2. Time and Global States Page 1. University of Freiburg, Germany Department of Computer Science. Distributed Systems 2. Time and Global States Page 1 University of Freiburg, Germany Department of Computer Science Distributed Systems Chapter 3 Time and Global States Christian Schindelhauer 12. May 2014 2. Time and Global

More information

Introduction to Distributed Systems

Introduction to Distributed Systems Introduction to Distributed Systems Minsoo Ryu Department of Computer Science and Engineering 2 Definition A distributed system is a collection of independent computers that appears to its users as a single

More information

TDDB68 + TDDD82. Lecture: Deadlocks

TDDB68 + TDDD82. Lecture: Deadlocks TDDB68 + TDDD82 Lecture: Deadlocks Mikael Asplund, Senior Lecturer Real-time Systems Laboratory Department of Computer and Information Science Thanks to Simin Nadjm-Tehrani and Christoph Kessler for much

More information

CMSC 714 Lecture 14 Lamport Clocks and Eraser

CMSC 714 Lecture 14 Lamport Clocks and Eraser Notes CMSC 714 Lecture 14 Lamport Clocks and Eraser Midterm exam on April 16 sample exam questions posted Research project questions? Alan Sussman (with thanks to Chris Ackermann) 2 Lamport Clocks Distributed

More information

Clock and Time. THOAI NAM Faculty of Information Technology HCMC University of Technology

Clock and Time. THOAI NAM Faculty of Information Technology HCMC University of Technology Clock and Time THOAI NAM Faculty of Information Technology HCMC University of Technology Using some slides of Prashant Shenoy, UMass Computer Science Chapter 3: Clock and Time Time ordering and clock synchronization

More information

TIME AND SYNCHRONIZATION. I. Physical Clock Synchronization: Motivation and Challenges

TIME AND SYNCHRONIZATION. I. Physical Clock Synchronization: Motivation and Challenges TIME AND SYNCHRONIZATION In previous lectures, we discussed some important concepts and goals of distributed. One important concept is remote procedure calls, where we saw how failures creep up into semantics

More information

CS 43: Computer Networks. 08:Network Services and Distributed Systems 19 September

CS 43: Computer Networks. 08:Network Services and Distributed Systems 19 September CS 43: Computer Networks 08:Network Services and Distributed Systems 19 September Reading Quiz Lecture 8 -Slide 2 Last class Inter-process communication using message passing How send and recv buffers

More information

OUTLINE. Introduction Clock synchronization Logical clocks Global state Mutual exclusion Election algorithms Deadlocks in distributed systems

OUTLINE. Introduction Clock synchronization Logical clocks Global state Mutual exclusion Election algorithms Deadlocks in distributed systems Chapter 5 Synchronization OUTLINE Introduction Clock synchronization Logical clocks Global state Mutual exclusion Election algorithms Deadlocks in distributed systems Concurrent Processes Cooperating processes

More information

wait with priority An enhanced version of the wait operation accepts an optional priority argument:

wait with priority An enhanced version of the wait operation accepts an optional priority argument: wait with priority An enhanced version of the wait operation accepts an optional priority argument: syntax: .wait the smaller the value of the parameter, the highest the priority

More information

Multi-threaded programming in Java

Multi-threaded programming in Java Multi-threaded programming in Java Java allows program to specify multiple threads of execution Provides instructions to ensure mutual exclusion, and selective blocking/unblocking of threads What is a

More information

Architecture of distributed systems

Architecture of distributed systems Prof. Dr. Claudia Müller-Birn Institute for Computer Science, Networked Information Systems Architecture of distributed systems Oct 25, 2011 Netzprogrammierung (Algorithmen und Programmierung V) Our topics

More information

Architecture of distributed systems

Architecture of distributed systems Prof. Dr. Claudia Müller-Birn Institute for Computer Science, Networked Information Systems Architecture of distributed systems Oct 25, 2011 Netzprogrammierung (Algorithmen und Programmierung V) Our topics

More information

CSE 5306 Distributed Systems. Consistency and Replication

CSE 5306 Distributed Systems. Consistency and Replication CSE 5306 Distributed Systems Consistency and Replication 1 Reasons for Replication Data are replicated for the reliability of the system Servers are replicated for performance Scaling in numbers Scaling

More information

Architectural Models

Architectural Models Architectural Models Dr. Gannouni Sofien Most concepts are drawn from Chapter 2 Pearson Education Some ideas from Chapter 1 Pearson Education Presentation Outline Introduction Architectural Models Software

More information

Specifying and Proving Broadcast Properties with TLA

Specifying and Proving Broadcast Properties with TLA Specifying and Proving Broadcast Properties with TLA William Hipschman Department of Computer Science The University of North Carolina at Chapel Hill Abstract Although group communication is vitally important

More information

Distributed Algorithms. Partha Sarathi Mandal Department of Mathematics IIT Guwahati

Distributed Algorithms. Partha Sarathi Mandal Department of Mathematics IIT Guwahati Distributed Algorithms Partha Sarathi Mandal Department of Mathematics IIT Guwahati Thanks to Dr. Sukumar Ghosh for the slides Distributed Algorithms Distributed algorithms for various graph theoretic

More information

Replication of Data. Data-Centric Consistency Models. Reliability vs. Availability

Replication of Data. Data-Centric Consistency Models. Reliability vs. Availability CIS 505: Software Systems Lecture Note on Consistency and Replication Instructor: Insup Lee Department of Computer and Information Science University of Pennsylvania CIS 505, Spring 2007 Replication of

More information

Time. COS 418: Distributed Systems Lecture 3. Wyatt Lloyd

Time. COS 418: Distributed Systems Lecture 3. Wyatt Lloyd Time COS 418: Distributed Systems Lecture 3 Wyatt Lloyd Today 1. The need for time synchronization 2. Wall clock time synchronization 3. Logical Time: Lamport Clocks 2 A distributed edit-compile workflow

More information

DISTRIBUTED MUTEX. EE324 Lecture 11

DISTRIBUTED MUTEX. EE324 Lecture 11 DISTRIBUTED MUTEX EE324 Lecture 11 Vector Clocks Vector clocks overcome the shortcoming of Lamport logical clocks L(e) < L(e ) does not imply e happened before e Goal Want ordering that matches causality

More information

PART B UNIT II COMMUNICATION IN DISTRIBUTED SYSTEM PART A

PART B UNIT II COMMUNICATION IN DISTRIBUTED SYSTEM PART A CS6601 DISTRIBUTED SYSTEMS QUESTION BANK UNIT 1 INTRODUCTION 1. What is a distributed system? 2. Mention few examples of distributed systems. 3. Mention the trends in distributed systems. 4. What are backbones

More information

Distributed Algorithms Models

Distributed Algorithms Models Distributed Algorithms Models Alberto Montresor University of Trento, Italy 2016/04/26 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Contents 1 Taxonomy

More information

Distributed Systems: Models and Design

Distributed Systems: Models and Design Distributed Systems: Models and Design Nicola Dragoni Embedded Systems Engineering DTU Informatics 1. Architectural Models 2. Interaction Model 3. Design Challenges 4. Case Study: Design of a Client-Server

More information

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [ELECTION ALGORITHMS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Does a process

More information

MODELS OF DISTRIBUTED SYSTEMS

MODELS OF DISTRIBUTED SYSTEMS Distributed Systems Fö 2/3-1 Distributed Systems Fö 2/3-2 MODELS OF DISTRIBUTED SYSTEMS Basic Elements 1. Architectural Models 2. Interaction Models Resources in a distributed system are shared between

More information

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner Real-Time Component Software slide credits: H. Kopetz, P. Puschner Overview OS services Task Structure Task Interaction Input/Output Error Detection 2 Operating System and Middleware Application Software

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK 2015-2016 : DISTRIBUTED SYSTEMS

More information

Announcements. me your survey: See the Announcements page. Today. Reading. Take a break around 10:15am. Ack: Some figures are from Coulouris

Announcements.  me your survey: See the Announcements page. Today. Reading. Take a break around 10:15am. Ack: Some figures are from Coulouris Announcements Email me your survey: See the Announcements page Today Conceptual overview of distributed systems System models Reading Today: Chapter 2 of Coulouris Next topic: client-side processing (HTML,

More information

TIME ATTRIBUTION 11/4/2018. George Porter Nov 6 and 8, 2018

TIME ATTRIBUTION 11/4/2018. George Porter Nov 6 and 8, 2018 TIME George Porter Nov 6 and 8, 2018 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license These slides incorporate

More information

TDDD82 Secure Mobile Systems Lecture 6: Quality of Service

TDDD82 Secure Mobile Systems Lecture 6: Quality of Service TDDD82 Secure Mobile Systems Lecture 6: Quality of Service Mikael Asplund Real-time Systems Laboratory Department of Computer and Information Science Linköping University Based on slides by Simin Nadjm-Tehrani

More information

Distributed Systems Development

Distributed Systems Development Distributed Systems Development Paulo Gandra de Sousa psousa@dei.isep.ipp.pt MSc in Computer Engineering DEI/ISEP Programação de Sistemas Distribuidos Paulo Gandra de Sousa psousa@dei.isep.ipp.pt Mestrado

More information

Lecture 7: Logical Time

Lecture 7: Logical Time Lecture 7: Logical Time 1. Question from reviews a. In protocol, is in- order delivery assumption reasonable? i. TCP provides it b. In protocol, need all participants to be present i. Is this a reasonable

More information

Consistency in Distributed Systems

Consistency in Distributed Systems Consistency in Distributed Systems Recall the fundamental DS properties DS may be large in scale and widely distributed 1. concurrent execution of components 2. independent failure modes 3. transmission

More information

Introduction to Distributed Systems Seif Haridi

Introduction to Distributed Systems Seif Haridi Introduction to Distributed Systems Seif Haridi haridi@kth.se What is a distributed system? A set of nodes, connected by a network, which appear to its users as a single coherent system p1 p2. pn send

More information

Arranging lunch value of preserving the causal order. a: how about lunch? meet at 12? a: <receives b then c>: which is ok?

Arranging lunch value of preserving the causal order. a: how about lunch? meet at 12? a: <receives b then c>: which is ok? Lamport Clocks: First, questions about project 1: due date for the design document is Thursday. Can be less than a page what we re after is for you to tell us what you are planning to do, so that we can

More information

CSE 486/586 Distributed Systems

CSE 486/586 Distributed Systems CSE 486/586 Distributed Systems Failure Detectors Slides by: Steve Ko Computer Sciences and Engineering University at Buffalo Administrivia Programming Assignment 2 is out Please continue to monitor Piazza

More information

CSE 5306 Distributed Systems. Synchronization

CSE 5306 Distributed Systems. Synchronization CSE 5306 Distributed Systems Synchronization 1 Synchronization An important issue in distributed system is how processes cooperate and synchronize with one another Cooperation is partially supported by

More information

Homework #2 Nathan Balon CIS 578 October 31, 2004

Homework #2 Nathan Balon CIS 578 October 31, 2004 Homework #2 Nathan Balon CIS 578 October 31, 2004 1 Answer the following questions about the snapshot algorithm: A) What is it used for? It used for capturing the global state of a distributed system.

More information

Module 7 - Replication

Module 7 - Replication Module 7 - Replication Replication Why replicate? Reliability Avoid single points of failure Performance Scalability in numbers and geographic area Why not replicate? Replication transparency Consistency

More information

Verteilte Systeme (Distributed Systems)

Verteilte Systeme (Distributed Systems) Verteilte Systeme (Distributed Systems) Karl M. Göschka Karl.Goeschka@tuwien.ac.at http://www.infosys.tuwien.ac.at/teaching/courses/ VerteilteSysteme/ Lecture 6: Clocks and Agreement Synchronization of

More information

To do. Consensus and related problems. q Failure. q Raft

To do. Consensus and related problems. q Failure. q Raft Consensus and related problems To do q Failure q Consensus and related problems q Raft Consensus We have seen protocols tailored for individual types of consensus/agreements Which process can enter the

More information

Failures, Elections, and Raft

Failures, Elections, and Raft Failures, Elections, and Raft CS 8 XI Copyright 06 Thomas W. Doeppner, Rodrigo Fonseca. All rights reserved. Distributed Banking SFO add interest based on current balance PVD deposit $000 CS 8 XI Copyright

More information

殷亚凤. Synchronization. Distributed Systems [6]

殷亚凤. Synchronization. Distributed Systems [6] Synchronization Distributed Systems [6] 殷亚凤 Email: yafeng@nju.edu.cn Homepage: http://cs.nju.edu.cn/yafeng/ Room 301, Building of Computer Science and Technology Review Protocols Remote Procedure Call

More information

TDDD07 Real-time Systems Lecture 10: Wrapping up & Real-time operating systems

TDDD07 Real-time Systems Lecture 10: Wrapping up & Real-time operating systems TDDD07 Real-time Systems Lecture 10: Wrapping up & Real-time operating systems Simin Nadjm-Tehrani Real-time Systems Laboratory Department of Computer and Information Science Linköping Univerity 28 pages

More information

Lecture 6: Logical Time

Lecture 6: Logical Time Lecture 6: Logical Time 1. Question from reviews a. 2. Key problem: how do you keep track of the order of events. a. Examples: did a file get deleted before or after I ran that program? b. Did this computers

More information

Distributed Clock Synchronization Algorithms: A Survey

Distributed Clock Synchronization Algorithms: A Survey I J C T A, 9(18) 2016, pp. 9035-9040 International Science Press Distributed Clock Synchronization Algorithms: A Survey C. Sharma * and Pooja S * ABSTRACT Distributed System is an agglomeration of sovereign

More information

Concurrent and Distributed Systems Introduction

Concurrent and Distributed Systems Introduction Concurrent and Distributed Systems 8 lectures on concurrency control in centralised systems - interaction of components in main memory - interactions involving main memory and persistent storage (concurrency

More information

殷亚凤. Consistency and Replication. Distributed Systems [7]

殷亚凤. Consistency and Replication. Distributed Systems [7] Consistency and Replication Distributed Systems [7] 殷亚凤 Email: yafeng@nju.edu.cn Homepage: http://cs.nju.edu.cn/yafeng/ Room 301, Building of Computer Science and Technology Review Clock synchronization

More information

Distributed systems. Distributed Systems Architectures. System types. Objectives. Distributed system characteristics.

Distributed systems. Distributed Systems Architectures. System types. Objectives. Distributed system characteristics. Distributed systems Distributed Systems Architectures Virtually all large computer-based systems are now distributed systems. Information processing is distributed over several computers rather than confined

More information

Distributed Systems. Lehrstuhl für Informatik IV RWTH Aachen. Organisation. Classification of the lecture. Literature

Distributed Systems. Lehrstuhl für Informatik IV RWTH Aachen. Organisation. Classification of the lecture. Literature Organisation Distributed Systems Lehrstuhl für Informatik IV RWTH Aachen Prof. Dr. Otto Spaniol Dipl.-Inform. Dirk Thißen Exercises about all 14 days Wednesday, 15.30 17.00 Room AH III, RWTH Aachen Teacher-centred

More information

MODELS OF DISTRIBUTED SYSTEMS

MODELS OF DISTRIBUTED SYSTEMS Distributed Systems Fö 2/3-1 Distributed Systems Fö 2/3-2 MODELS OF DISTRIBUTED SYSTEMS Basic Elements 1. Architectural Models 2. Interaction Models Resources in a distributed system are shared between

More information

QUESTIONS Distributed Computing Systems. Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal

QUESTIONS Distributed Computing Systems. Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal QUESTIONS Distributed Computing Systems Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal Questions Fundamentals 1. Discuss five fundamental issues in distributed system 2.

More information

C 1. Recap. CSE 486/586 Distributed Systems Failure Detectors. Today s Question. Two Different System Models. Why, What, and How.

C 1. Recap. CSE 486/586 Distributed Systems Failure Detectors. Today s Question. Two Different System Models. Why, What, and How. Recap Best Practices Distributed Systems Failure Detectors Steve Ko Computer Sciences and Engineering University at Buffalo 2 Today s Question Two Different System Models How do we handle failures? Cannot

More information

Concepts of Distributed Systems 2006/2007

Concepts of Distributed Systems 2006/2007 Concepts of Distributed Systems 2006/2007 Introduction & overview Johan Lukkien 1 Introduction & overview Communication Distributed OS & Processes Synchronization Security Consistency & replication Programme

More information

CHAPTER 7 CONCLUSION AND FUTURE SCOPE

CHAPTER 7 CONCLUSION AND FUTURE SCOPE 121 CHAPTER 7 CONCLUSION AND FUTURE SCOPE This research has addressed the issues of grid scheduling, load balancing and fault tolerance for large scale computational grids. To investigate the solution

More information

Synchronisation and Coordination (Part 2)

Synchronisation and Coordination (Part 2) The University of New South Wales School of Computer Science & Engineering COMP9243 Week 5 (18s1) Ihor Kuz, Manuel M. T. Chakravarty & Gernot Heiser Synchronisation and Coordination (Part 2) Transactions

More information

Data Replication CS 188 Distributed Systems February 3, 2015

Data Replication CS 188 Distributed Systems February 3, 2015 Data Replication CS 188 Distributed Systems February 3, 2015 Page 1 Some Other Possibilities What if the machines sharing files are portable and not always connected? What if the machines communicate across

More information

Distributed Systems Course. a.o. Univ.-Prof. Dr. Harald Kosch

Distributed Systems Course. a.o. Univ.-Prof. Dr. Harald Kosch Distributed Systems Course a.o. Univ.-Prof. Dr. Harald Kosch Topics Introduction Advantages, Disadvantages, Hard/Soft Concepts Network / Distributed Operating Systems Basics of Communication Models (Client/Server,

More information

Synchronization. Chapter 5

Synchronization. Chapter 5 Synchronization Chapter 5 Clock Synchronization In a centralized system time is unambiguous. (each computer has its own clock) In a distributed system achieving agreement on time is not trivial. (it is

More information

Dependability and real-time. TDDD07 Real-time Systems Lecture 7: Dependability & Fault tolerance. Early computer systems. Dependable systems

Dependability and real-time. TDDD07 Real-time Systems Lecture 7: Dependability & Fault tolerance. Early computer systems. Dependable systems TDDD7 Real-time Systems Lecture 7: Dependability & Fault tolerance Simin i Nadjm-Tehrani Real-time Systems Laboratory Department of Computer and Information Science Linköping university Dependability and

More information

Mobile and Heterogeneous databases Distributed Database System Transaction Management. A.R. Hurson Computer Science Missouri Science & Technology

Mobile and Heterogeneous databases Distributed Database System Transaction Management. A.R. Hurson Computer Science Missouri Science & Technology Mobile and Heterogeneous databases Distributed Database System Transaction Management A.R. Hurson Computer Science Missouri Science & Technology 1 Distributed Database System Note, this unit will be covered

More information

Consistency & Replication

Consistency & Replication Objectives Consistency & Replication Instructor: Dr. Tongping Liu To understand replication and related issues in distributed systems" To learn about how to keep multiple replicas consistent with each

More information

Presented By: Devarsh Patel

Presented By: Devarsh Patel : Amazon s Highly Available Key-value Store Presented By: Devarsh Patel CS5204 Operating Systems 1 Introduction Amazon s e-commerce platform Requires performance, reliability and efficiency To support

More information