QUESTIONS Distributed Computing Systems. Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal

Size: px
Start display at page:

Download "QUESTIONS Distributed Computing Systems. Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal"

Transcription

1 QUESTIONS Distributed Computing Systems Prof. Ananthanarayana V.S. Dept. Of Information Technology N.I.T.K., Surathkal

2 Questions Fundamentals 1. Discuss five fundamental issues in distributed system 2. What are different transparencies which can be observed in distributed system? List basic transparencies need to be supported by the distributed system. 3. Give main two technical differences between Network OS and Distributed OS. 4. Consider a distributed environment with four systems, A,B,C and D. Name the type of transparencies required in each of the following situations: a. Data available at all four systems and user want to modify the data at D. b. Printer connected to A is disconnected and connected to B. User wants to access that printer. c. Breakdown of system, D. d. User want to access the software X without knowing its whereabouts. 5. Consider that railway reservation system is implemented using distributed environment. List out the possible types of transparencies need to be incorporated in this system. Justify your answer. 6. List any two situation which clearly shows the need for distributed coordination. How this can be achieved? 7. Explain two types of resource management in distributed system. 8. Give characteristics and goals of centralized OS, network OS, distributed OS and cooperative autonomous system.

3 Questions Distributed Coordination 1. What are causally related events? 2. Show that using single value for logical clock C, it is not possible to ensure that if C(a) < C(b), then a b, where denoted happenbefore relation among the events in a distributed system. 3. Give implementation rules of Lamport s logical clock and vector clock. In which type of applications vector clocks are more appropriate? 4. Why global clock is important in a distributed system? Why this is an issue? How this can be realized? 5. Consider a bank database which is fully replicated. Give an algorithm/protocol for ordering of transactions in above situations. 6. Differentiate implementation rules of Vector clock and Lamport s clock. 7. Prove that vector clock condition is strong. What is the significance of this condition?

4 Questions Ordering of Messages S p a c e e11 e12 e21 e22 Time e31 e32 1. Trace SES protocol to ensure the ordering of messages in above scenario. 2. Discuss BSS protocol for causal ordering of messages. In what way this algorithm is different from SES protocol?

5 Questions Global State Detection 1. Why global state detection is an issue in distributed system? 2. Give the consistent global state requirements in DCS. When the global state is said to be strongly consistent? 3. Let C be the channel from node S1 to S2. Show that a consistent global state must always satisfy n m, where n is the number of messages sent by S1 along C before S1 state is recorded and m is the number of messages received by S2 along C before S2 state is recorded. 4. Consider a DCS with set of sites, S={S1,S2,S3}. With respect to real time, t, the global state G={LS1, LS2,LS3} (where LSi is local state of site Si) is recorded. Let LS1={recv(e21, e11), send(e12, e31), recv(e22, e13)} Let LS2={send(e21, e11), send(e22, e13), recv(e14, e23)} Let LS3={recv(e12, e31), send(e32, e15), recv(e16, e33)} where eij is jth event at ith site; send/recv(x,y) send/receive message from x to y. Comment with justification on global state G recorded. 5. Differentiate: Transit less global state from Consistent global state

6 Questions Distributed Process Synchronization 1. In Raymond s tree based DME algorithm, what happens to the message overload when arrival rate of critical section requests increases at each node? 2. How deadlock situation is handled in Meakawa s DME algorithm? 3. Compare the performance of Ricart Agrawala s token based DME algorithm with Ricart Agrawala s permission based algorithm 4. If communication channel is NON FIFO, does a. Lamport s DME algorithm ensures mutual exclusion condition? b. Ricart Agrawala s permission based DME algorithm ensures mutual exclusion condition? 5. Token based DME algorithms are less fault tolerant than permission based algorithms Comment on this. 6. Which one of the following algorithm is fair with respect to Lamport s clock? Why? 1. Meakawa s DME algorithm 2. Ricart Agrawala s DME algorithm 3. Raymond s tree based DME algorithm 7. Differentiate: 1. Fair DME algorithm from starvation free DME algorithm 2. Framework for DME algorithm from its centralized counterpart. 3. Permission based DME algorithm from token based DME algorithm 4. DME algorithm performance measure: Response time from Waiting time.

7 Questions Distributed Process Synchronization 8. Give pseudo code for 1. Lamport s DME algorithm 2. Ricart Agrawala s permission and token based DME algorithm 3. Meakawa s DME algorithm 4. Raymond s tree based DME algorithm 9. Compare the performance measures between following algorithm: 1. Lamport s DME algorithm 2. Ricart Agrawala s permission and token based DME algorithm 3. Meakawa s DME algorithm 4. Raymond s tree based DME algorithm 10. What is the necessity of INQUIRE and RELINQUISH message in Meakawa s DME algorithm? 11. What is the problem if the topology considered for Raymond s algorithm has a cycle? 12. How you can convert the following algorithm into greedy algorithms? 1. Ricart Agrawala s token based DME algorithm and 2. Raymond s tree based algorithm

8 Questions Inter Process Communication 1. What are the various message orderings that are used in group communication? 2. What are different failure handling semantics in RPC? 3. List various semantics of send primitives. Give appropriate application for each of the semantics 4. What is atomic broadcast protocol? Give general overview of its implementation. 5. Differentiate system call and local procedure call. 6. Discuss the system calls which are used to provide the communication 1. Between related processes 2. Between the processes within the file system 3. Between any arbitrary processes 7. How parameter and result passing is handled in RPC? 8. Give block schematic to explain how a single process can communicate with two of its child processes using pipes? What are the limitations of pipes? 9. Consider a client server application. Which semantics of send is preferred? Why?

9 Questions Inter Process Communication 10. Give block schematic which shows the various steps in RPC handling. 11. It is required to update a bank account in DCS in order. Which message ordering is appropriate? Why? 12. List the requirements of broadcast protocol. 13. What is indirect communication? Give an application where this type of communication is appropriate. 14. What are the roles of binding register in RPC? In order to load balance the service providers, what is the requirements of binding register 15. What are pros and cons of different types of binding? 16. What do you mean by non blocking RPC? Give an example. 17. Differentiate unanimity and uniformity requirements of broadcast protocol.

10 Questions Distributed Deadlocks 1. Differentiate reusable and consumable resources with example. 2. What are different resource request models? 3. Which types of deadlocks are handled by wait for graph (WFG)? 4. Which types of deadlocks are not handled by WFG? How this can be handled? 5. Show that how wait die / wound wait protocol ensures prevention of deadlocks? 6. How wait die / wound wait protocol can be extended to handle deadlock prevention in more than one process waiting scenarios? 7. What do you mean by false deadlocks in distributed environment? How this can be detected?

11 Questions Distributed Deadlocks 8. Consider Chand Misra Haas distributed deadlock detection and recovery algorithm. How an unique victim is identified if resource request model is (a) single unit (b) AND resource request model? 9. Which is the deadlock prevention method where there is no resource pre emption? Why? 10. Explain the situation where in a cycle in WFG does not implies the deadlock. How the deadlock can be detected in such situations? 11. Consider an OR resource request model and WFG, G = {V,E}, where V = {P1, P2, P3} and E = {<P1, P2>, <P2, P3>, <P3, P1>}. Is the system in deadlock state? Justify.

12 Questions Load Balancing 1. Differentiate CPU scheduling from Job scheduling. 2. Differentiate Job scheduling with load balancing. 3. What are the objectives of load balancing? 4. Why and what knowledge about the node is important in load balancing? What are the issues if knowledge estimated is not correct? 5. What is the advantage of sender initiated algorithm over receiver initiated algorithm? 6. Compare transfer and location policy between sender initiated and receiver initiated algorithm 7. What are the characteristics of above average algorithm? 8. How the system load is estimated in above average algorithm?

13 Questions Load Balancing 9. What are the drawbacks of above average algorithm when compared with stable symmetrically initiated algorithm? 10. What is learning process in stable symmetrically initiated algorithm? 11. Explain location policy of stable symmetrically initiated algorithm. 12. What is the advantage of stable sender initiated algorithm over stable symmetrically initiated algorithm? 13. What is the use of status vector in stable sender initiated algorithm? 14. What are the performance parameters for a load balancing algorithm?

Distributed Deadlocks. Prof. Ananthanarayana V.S. Dept. of Information Technology N.I.T.K., Surathkal

Distributed Deadlocks. Prof. Ananthanarayana V.S. Dept. of Information Technology N.I.T.K., Surathkal Distributed Deadlocks Prof. Ananthanarayana V.S. Dept. of Information Technology N.I.T.K., Surathkal Objectives of This Module In this module different kind of resources, different kind of resource request

More information

OUTLINE. Introduction Clock synchronization Logical clocks Global state Mutual exclusion Election algorithms Deadlocks in distributed systems

OUTLINE. Introduction Clock synchronization Logical clocks Global state Mutual exclusion Election algorithms Deadlocks in distributed systems Chapter 5 Synchronization OUTLINE Introduction Clock synchronization Logical clocks Global state Mutual exclusion Election algorithms Deadlocks in distributed systems Concurrent Processes Cooperating processes

More information

Distributed Systems. coordination Johan Montelius ID2201. Distributed Systems ID2201

Distributed Systems. coordination Johan Montelius ID2201. Distributed Systems ID2201 Distributed Systems ID2201 coordination Johan Montelius 1 Coordination Coordinating several threads in one node is a problem, coordination in a network is of course worse: failure of nodes and networks

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK II SEMESTER CP7204 Advanced Operating Systems Regulation 2013 Academic Year

More information

UNIT 02 DISTRIBUTED DEADLOCKS UNIT-02/LECTURE-01

UNIT 02 DISTRIBUTED DEADLOCKS UNIT-02/LECTURE-01 UNIT 02 DISTRIBUTED DEADLOCKS UNIT-02/LECTURE-01 Deadlock ([RGPV/ Dec 2011 (5)] In an operating system, a deadlock is a situation which occurs when a process or thread enters a waiting state because a

More information

Coordination 1. To do. Mutual exclusion Election algorithms Next time: Global state. q q q

Coordination 1. To do. Mutual exclusion Election algorithms Next time: Global state. q q q Coordination 1 To do q q q Mutual exclusion Election algorithms Next time: Global state Coordination and agreement in US Congress 1798-2015 Process coordination How can processes coordinate their action?

More information

PROCESS SYNCHRONIZATION

PROCESS SYNCHRONIZATION DISTRIBUTED COMPUTER SYSTEMS PROCESS SYNCHRONIZATION Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Process Synchronization Mutual Exclusion Algorithms Permission Based Centralized

More information

Distributed Mutual Exclusion

Distributed Mutual Exclusion Distributed Mutual Exclusion Mutual Exclusion Well-understood in shared memory systems Requirements: at most one process in critical section (safety) if more than one requesting process, someone enters

More information

Mutual Exclusion. A Centralized Algorithm

Mutual Exclusion. A Centralized Algorithm Mutual Exclusion Processes in a distributed system may need to simultaneously access the same resource Mutual exclusion is required to prevent interference and ensure consistency We will study three algorithms

More information

Event Ordering. Greg Bilodeau CS 5204 November 3, 2009

Event Ordering. Greg Bilodeau CS 5204 November 3, 2009 Greg Bilodeau CS 5204 November 3, 2009 Fault Tolerance How do we prepare for rollback and recovery in a distributed system? How do we ensure the proper processing order of communications between distributed

More information

Exam 2 Review. Fall 2011

Exam 2 Review. Fall 2011 Exam 2 Review Fall 2011 Question 1 What is a drawback of the token ring election algorithm? Bad question! Token ring mutex vs. Ring election! Ring election: multiple concurrent elections message size grows

More information

CSE 5306 Distributed Systems

CSE 5306 Distributed Systems CSE 5306 Distributed Systems Synchronization Jia Rao http://ranger.uta.edu/~jrao/ 1 Synchronization An important issue in distributed system is how process cooperate and synchronize with one another Cooperation

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester Section Subject Code Subject Name Degree & Branch : I & II : M.E : CP7204 : Advanced Operating Systems : M.E C.S.E. 1. Define Process? UNIT-1

More information

A DAG-BASED ALGORITHM FOR DISTRIBUTED MUTUAL EXCLUSION ATHESIS MASTER OF SCIENCE

A DAG-BASED ALGORITHM FOR DISTRIBUTED MUTUAL EXCLUSION ATHESIS MASTER OF SCIENCE A DAG-BASED ALGORITHM FOR DISTRIBUTED MUTUAL EXCLUSION by Mitchell L. Neilsen ATHESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Computing and Information

More information

Distributed Systems Exam 1 Review Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems Exam 1 Review Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 2015 Exam 1 Review Paul Krzyzanowski Rutgers University Fall 2016 1 Question 1 Why did the use of reference counting for remote objects prove to be impractical? Explain. It s not fault

More information

CSE 486/586 Distributed Systems

CSE 486/586 Distributed Systems CSE 486/586 Distributed Systems Mutual Exclusion Steve Ko Computer Sciences and Engineering University at Buffalo CSE 486/586 Recap: Consensus On a synchronous system There s an algorithm that works. On

More information

Distributed Systems Exam 1 Review. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems Exam 1 Review. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 2016 Exam 1 Review Paul Krzyzanowski Rutgers University Fall 2016 Question 1 Why does it not make sense to use TCP (Transmission Control Protocol) for the Network Time Protocol (NTP)?

More information

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer?

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer? Parallel and Distributed Systems Instructor: Sandhya Dwarkadas Department of Computer Science University of Rochester What is a parallel computer? A collection of processing elements that communicate and

More information

Introduction to Distributed Systems

Introduction to Distributed Systems to Distributed Systems Distributed Systems Network OSs vs. distributed OSs Research and design issues Reading: Coulouris, chapters 1, 2, and 3 Distributed vs. Centralized Systems Advantages of Distributed

More information

A Dag-Based Algorithm for Distributed Mutual Exclusion. Kansas State University. Manhattan, Kansas maintains [18]. algorithms [11].

A Dag-Based Algorithm for Distributed Mutual Exclusion. Kansas State University. Manhattan, Kansas maintains [18]. algorithms [11]. A Dag-Based Algorithm for Distributed Mutual Exclusion Mitchell L. Neilsen Masaaki Mizuno Department of Computing and Information Sciences Kansas State University Manhattan, Kansas 66506 Abstract The paper

More information

416 practice questions (PQs)

416 practice questions (PQs) 416 practice questions (PQs) 1. Goal: give you some material to study for the final exam and to help you to more actively engage with the material we cover in class. 2. Format: questions that are in scope

More information

Coordination and Agreement

Coordination and Agreement Coordination and Agreement Nicola Dragoni Embedded Systems Engineering DTU Informatics 1. Introduction 2. Distributed Mutual Exclusion 3. Elections 4. Multicast Communication 5. Consensus and related problems

More information

Homework #2 Nathan Balon CIS 578 October 31, 2004

Homework #2 Nathan Balon CIS 578 October 31, 2004 Homework #2 Nathan Balon CIS 578 October 31, 2004 1 Answer the following questions about the snapshot algorithm: A) What is it used for? It used for capturing the global state of a distributed system.

More information

Lecture 1: Introduction to distributed Algorithms

Lecture 1: Introduction to distributed Algorithms Distributed Algorithms M.Tech., CSE, 2016 Lecture 1: Introduction to distributed Algorithms Faculty: K.R. Chowdhary : Professor of CS Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Frequently asked questions from the previous class survey

Frequently asked questions from the previous class survey CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [DISTRIBUTED COORDINATION/MUTUAL EXCLUSION] Shrideep Pallickara Computer Science Colorado State University L22.1 Frequently asked questions from the previous

More information

Distributed Systems Question Bank UNIT 1 Chapter 1 1. Define distributed systems. What are the significant issues of the distributed systems?

Distributed Systems Question Bank UNIT 1 Chapter 1 1. Define distributed systems. What are the significant issues of the distributed systems? UNIT 1 Chapter 1 1. Define distributed systems. What are the significant issues of the distributed systems? 2. What are different application domains of distributed systems? Explain. 3. Discuss the different

More information

MC7204 OPERATING SYSTEMS

MC7204 OPERATING SYSTEMS MC7204 OPERATING SYSTEMS QUESTION BANK UNIT I INTRODUCTION 9 Introduction Types of operating systems operating systems structures Systems components operating systems services System calls Systems programs

More information

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [DISTRIBUTED COORDINATION/MUTUAL EXCLUSION] Shrideep Pallickara Computer Science Colorado State University

More information

Distributed Deadlock

Distributed Deadlock Distributed Deadlock 9.55 DS Deadlock Topics Prevention Too expensive in time and network traffic in a distributed system Avoidance Determining safe and unsafe states would require a huge number of messages

More information

CSE Traditional Operating Systems deal with typical system software designed to be:

CSE Traditional Operating Systems deal with typical system software designed to be: CSE 6431 Traditional Operating Systems deal with typical system software designed to be: general purpose running on single processor machines Advanced Operating Systems are designed for either a special

More information

CHAPTER 4: INTERPROCESS COMMUNICATION AND COORDINATION

CHAPTER 4: INTERPROCESS COMMUNICATION AND COORDINATION CHAPTER 4: INTERPROCESS COMMUNICATION AND COORDINATION Chapter outline Discuss three levels of communication: basic message passing, request/reply and transaction communication based on message passing

More information

Self Stabilization. CS553 Distributed Algorithms Prof. Ajay Kshemkalyani. by Islam Ismailov & Mohamed M. Ali

Self Stabilization. CS553 Distributed Algorithms Prof. Ajay Kshemkalyani. by Islam Ismailov & Mohamed M. Ali Self Stabilization CS553 Distributed Algorithms Prof. Ajay Kshemkalyani by Islam Ismailov & Mohamed M. Ali Introduction There is a possibility for a distributed system to go into an illegitimate state,

More information

Chapter 16: Distributed Synchronization

Chapter 16: Distributed Synchronization Chapter 16: Distributed Synchronization Chapter 16 Distributed Synchronization Event Ordering Mutual Exclusion Atomicity Concurrency Control Deadlock Handling Election Algorithms Reaching Agreement 18.2

More information

Selected Questions. Exam 2 Fall 2006

Selected Questions. Exam 2 Fall 2006 Selected Questions Exam 2 Fall 2006 Page 1 Question 5 The clock in the clock tower in the town of Chronos broke. It was repaired but now the clock needs to be set. A train leaves for the nearest town,

More information

wait with priority An enhanced version of the wait operation accepts an optional priority argument:

wait with priority An enhanced version of the wait operation accepts an optional priority argument: wait with priority An enhanced version of the wait operation accepts an optional priority argument: syntax: .wait the smaller the value of the parameter, the highest the priority

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006 Operating Systems Comprehensive Exam Spring 2006 Student ID # 3/16/2006 You must complete all of part I (60%) You must complete two of the three sections in part II (20% each) In Part I, circle or select

More information

Chapter 18: Distributed

Chapter 18: Distributed Chapter 18: Distributed Synchronization, Silberschatz, Galvin and Gagne 2009 Chapter 18: Distributed Synchronization Event Ordering Mutual Exclusion Atomicity Concurrency Control Deadlock Handling Election

More information

Clock Synchronization. Synchronization. Clock Synchronization Algorithms. Physical Clock Synchronization. Tanenbaum Chapter 6 plus additional papers

Clock Synchronization. Synchronization. Clock Synchronization Algorithms. Physical Clock Synchronization. Tanenbaum Chapter 6 plus additional papers Clock Synchronization Synchronization Tanenbaum Chapter 6 plus additional papers Fig 6-1. In a distributed system, each machine has its own clock. When this is the case, an event that occurred after another

More information

Several of these problems are motivated by trying to use solutiions used in `centralized computing to distributed computing

Several of these problems are motivated by trying to use solutiions used in `centralized computing to distributed computing Studying Different Problems from Distributed Computing Several of these problems are motivated by trying to use solutiions used in `centralized computing to distributed computing Problem statement: Mutual

More information

Last Class: Naming. Today: Classical Problems in Distributed Systems. Naming. Time ordering and clock synchronization (today)

Last Class: Naming. Today: Classical Problems in Distributed Systems. Naming. Time ordering and clock synchronization (today) Last Class: Naming Naming Distributed naming DNS LDAP Lecture 12, page 1 Today: Classical Problems in Distributed Systems Time ordering and clock synchronization (today) Next few classes: Leader election

More information

CONTENTS. Computer-System Structures

CONTENTS. Computer-System Structures CONTENTS PART ONE OVERVIEW Chapter 1 Introduction 1.1 What Is an Operating System? 3 1.2 Simple Batch Systems 6 1.3 Multiprogrammed Batched Systems 8 1.4 Time-Sharing Systems 9 1.5 Personal-Computer Systems

More information

Synchronization. Distributed Systems IT332

Synchronization. Distributed Systems IT332 Synchronization Distributed Systems IT332 2 Outline Clock synchronization Logical clocks Election algorithms Mutual exclusion Transactions 3 Hardware/Software Clocks Physical clocks in computers are realized

More information

Synchronization. Clock Synchronization

Synchronization. Clock Synchronization Synchronization Clock Synchronization Logical clocks Global state Election algorithms Mutual exclusion Distributed transactions 1 Clock Synchronization Time is counted based on tick Time judged by query

More information

Crossbar switch. Chapter 2: Concepts and Architectures. Traditional Computer Architecture. Computer System Architectures. Flynn Architectures (2)

Crossbar switch. Chapter 2: Concepts and Architectures. Traditional Computer Architecture. Computer System Architectures. Flynn Architectures (2) Chapter 2: Concepts and Architectures Computer System Architectures Disk(s) CPU I/O Memory Traditional Computer Architecture Flynn, 1966+1972 classification of computer systems in terms of instruction

More information

Advanced Topics in Distributed Systems. Dr. Ayman A. Abdel-Hamid. Computer Science Department Virginia Tech

Advanced Topics in Distributed Systems. Dr. Ayman A. Abdel-Hamid. Computer Science Department Virginia Tech Advanced Topics in Distributed Systems Dr. Ayman A. Abdel-Hamid Computer Science Department Virginia Tech Synchronization (Based on Ch6 in Distributed Systems: Principles and Paradigms, 2/E) Synchronization

More information

6.852: Distributed Algorithms Fall, Class 12

6.852: Distributed Algorithms Fall, Class 12 6.852: Distributed Algorithms Fall, 2009 Class 12 Today s plan Weak logical time and vector timestamps Consistent global snapshots and stable property detection. Applications: Distributed termination.

More information

Process Synchroniztion Mutual Exclusion & Election Algorithms

Process Synchroniztion Mutual Exclusion & Election Algorithms Process Synchroniztion Mutual Exclusion & Election Algorithms Paul Krzyzanowski Rutgers University November 2, 2017 1 Introduction Process synchronization is the set of techniques that are used to coordinate

More information

Distributed Systems. Chapman & Hall/CRC. «H Taylor S* Francis Croup Boca Raton London New York

Distributed Systems. Chapman & Hall/CRC. «H Taylor S* Francis Croup Boca Raton London New York Distributed Systems An Algorithmic Approach Sukumar Ghosh University of Iowa Iowa City, U.S.A. Chapman & Hall/CRC «H Taylor S* Francis Croup Boca Raton London New York Chapman & Hall/CRC is an imprint

More information

Distributed Algorithmic

Distributed Algorithmic Distributed Algorithmic Master 2 IFI, CSSR + Ubinet Françoise Baude Université de Nice Sophia-Antipolis UFR Sciences Département Informatique baude@unice.fr web site : deptinfo.unice.fr/~baude/algodist

More information

11/7/2018. Event Ordering. Module 18: Distributed Coordination. Distributed Mutual Exclusion (DME) Implementation of. DME: Centralized Approach

11/7/2018. Event Ordering. Module 18: Distributed Coordination. Distributed Mutual Exclusion (DME) Implementation of. DME: Centralized Approach Module 18: Distributed Coordination Event Ordering Event Ordering Mutual Exclusion Atomicity Concurrency Control Deadlock Handling Election Algorithms Reaching Agreement Happened-before relation (denoted

More information

PART B UNIT II COMMUNICATION IN DISTRIBUTED SYSTEM PART A

PART B UNIT II COMMUNICATION IN DISTRIBUTED SYSTEM PART A CS6601 DISTRIBUTED SYSTEMS QUESTION BANK UNIT 1 INTRODUCTION 1. What is a distributed system? 2. Mention few examples of distributed systems. 3. Mention the trends in distributed systems. 4. What are backbones

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Midterm Review Midterm in class on Monday Covers material through scheduling and deadlock Based upon lecture material and modules of the book indicated on

More information

CSE 5306 Distributed Systems

CSE 5306 Distributed Systems CSE 5306 Distributed Systems Fault Tolerance Jia Rao http://ranger.uta.edu/~jrao/ 1 Failure in Distributed Systems Partial failure Happens when one component of a distributed system fails Often leaves

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (5 th Week) (Advanced) Operating Systems 5. Concurrency: Mutual Exclusion and Synchronization 5. Outline Principles

More information

Synchronization Part 2. REK s adaptation of Claypool s adaptation oftanenbaum s Distributed Systems Chapter 5 and Silberschatz Chapter 17

Synchronization Part 2. REK s adaptation of Claypool s adaptation oftanenbaum s Distributed Systems Chapter 5 and Silberschatz Chapter 17 Synchronization Part 2 REK s adaptation of Claypool s adaptation oftanenbaum s Distributed Systems Chapter 5 and Silberschatz Chapter 17 1 Outline Part 2! Clock Synchronization! Clock Synchronization Algorithms!

More information

CSE 5306 Distributed Systems. Fault Tolerance

CSE 5306 Distributed Systems. Fault Tolerance CSE 5306 Distributed Systems Fault Tolerance 1 Failure in Distributed Systems Partial failure happens when one component of a distributed system fails often leaves other components unaffected A failure

More information

The Information Structure of Distributed Mutual Exclusion Algorithms

The Information Structure of Distributed Mutual Exclusion Algorithms The Information Structure of Distributed Mutual Exclusion Algorithms BEVERLY A. SANDERS University of Maryland The concept of an information structure is introduced as a unifying principle behind several

More information

CSE 120. Summer, Inter-Process Communication (IPC) Day 3. Inter-Process Communication (IPC) Scheduling Deadlock. Instructor: Neil Rhodes

CSE 120. Summer, Inter-Process Communication (IPC) Day 3. Inter-Process Communication (IPC) Scheduling Deadlock. Instructor: Neil Rhodes CSE 120 Summer, 2005 Inter-Process Communication (IPC) Day 3 Inter-Process Communication (IPC) Scheduling Deadlock Instructor: Neil Rhodes Inter-Process Communication Cooperating processes must communicate

More information

CSE 380 Computer Operating Systems

CSE 380 Computer Operating Systems CSE 380 Computer Operating Systems Instructor: Insup Lee University of Pennsylvania Fall 2003 Lecture Note: Distributed Systems 1 Introduction to Distributed Systems Why do we develop distributed systems?

More information

Chapter 6 Synchronization (2)

Chapter 6 Synchronization (2) DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 6 Synchronization (2) Plan Clock synchronization in distributed systems Physical clocks Logical

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

Operating Systems Comprehensive Exam. Spring Student ID # 2/17/2011

Operating Systems Comprehensive Exam. Spring Student ID # 2/17/2011 Operating Systems Comprehensive Exam Spring 2011 Student ID # 2/17/2011 You must complete all of Section I You must complete two of the problems in Section II If you need more space to answer a question,

More information

DISTRIBUTED SYSTEMS. Second Edition. Andrew S. Tanenbaum Maarten Van Steen. Vrije Universiteit Amsterdam, 7'he Netherlands PEARSON.

DISTRIBUTED SYSTEMS. Second Edition. Andrew S. Tanenbaum Maarten Van Steen. Vrije Universiteit Amsterdam, 7'he Netherlands PEARSON. DISTRIBUTED SYSTEMS 121r itac itple TAYAdiets Second Edition Andrew S. Tanenbaum Maarten Van Steen Vrije Universiteit Amsterdam, 7'he Netherlands PEARSON Prentice Hall Upper Saddle River, NJ 07458 CONTENTS

More information

Outline. Definition of a Distributed System Goals of a Distributed System Types of Distributed Systems

Outline. Definition of a Distributed System Goals of a Distributed System Types of Distributed Systems Distributed Systems Outline Definition of a Distributed System Goals of a Distributed System Types of Distributed Systems What Is A Distributed System? A collection of independent computers that appears

More information

Ye-In Chang. National Sun Yat-Sen University. Kaohsiung, Taiwan. Republic of China. Abstract

Ye-In Chang. National Sun Yat-Sen University. Kaohsiung, Taiwan. Republic of China. Abstract A Simulation Study on Distributed Mutual Exclusion 1 Ye-In Chang Dept. of Applied Mathematics National Sun Yat-Sen University Kaohsiung, Taiwan Republic of China fe-mail: changyi@math.nsysu.edu.twg ftel:

More information

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. UNIT I PART A (2 marks)

DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK. UNIT I PART A (2 marks) DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Subject Code : IT1001 Subject Name : Distributed Systems Year / Sem : IV / VII UNIT I 1. Define distributed systems. 2. Give examples of distributed systems

More information

Deadlock Prevention, Avoidance, and Detection

Deadlock Prevention, Avoidance, and Detection Deadlock Prevention, Avoidance, and Detection The Deadlock problem In a computer system deadlocks arise when members of a group of processes which hold resources are blocked indefinitely from access to

More information

R13 SET - 1 2. Answering the question in Part-A is compulsory 1 a) Define Operating System. List out the objectives of an operating system. [3M] b) Describe different attributes of the process. [4M] c)

More information

DISTRIBUTED MUTEX. EE324 Lecture 11

DISTRIBUTED MUTEX. EE324 Lecture 11 DISTRIBUTED MUTEX EE324 Lecture 11 Vector Clocks Vector clocks overcome the shortcoming of Lamport logical clocks L(e) < L(e ) does not imply e happened before e Goal Want ordering that matches causality

More information

Verteilte Systeme/Distributed Systems Ch. 5: Various distributed algorithms

Verteilte Systeme/Distributed Systems Ch. 5: Various distributed algorithms Verteilte Systeme/Distributed Systems Ch. 5: Various distributed algorithms Holger Karl Computer Networks Group Universität Paderborn Goal of this chapter Apart from issues in distributed time and resulting

More information

Synchronization. Chapter 5

Synchronization. Chapter 5 Synchronization Chapter 5 Clock Synchronization In a centralized system time is unambiguous. (each computer has its own clock) In a distributed system achieving agreement on time is not trivial. (it is

More information

Distributed Mutual Exclusion Algorithms

Distributed Mutual Exclusion Algorithms Chapter 9 Distributed Mutual Exclusion Algorithms 9.1 Introduction Mutual exclusion is a fundamental problem in distributed computing systems. Mutual exclusion ensures that concurrent access of processes

More information

Chapter 1: Distributed Systems: What is a distributed system? Fall 2013

Chapter 1: Distributed Systems: What is a distributed system? Fall 2013 Chapter 1: Distributed Systems: What is a distributed system? Fall 2013 Course Goals and Content n Distributed systems and their: n Basic concepts n Main issues, problems, and solutions n Structured and

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 5: Concurrency Control Topics Data Database design Queries Decomposition Localization Optimization Transactions Concurrency control Reliability

More information

Fault Tolerance. Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure behavior

Fault Tolerance. Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure behavior Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure

More information

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Fault Tolerance Dr. Yong Guan Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Outline for Today s Talk Basic Concepts Process Resilience Reliable

More information

殷亚凤. Synchronization. Distributed Systems [6]

殷亚凤. Synchronization. Distributed Systems [6] Synchronization Distributed Systems [6] 殷亚凤 Email: yafeng@nju.edu.cn Homepage: http://cs.nju.edu.cn/yafeng/ Room 301, Building of Computer Science and Technology Review Protocols Remote Procedure Call

More information

Architectural Support. Processes. OS Structure. Threads. Scheduling. CSE 451: Operating Systems Spring Module 28 Course Review

Architectural Support. Processes. OS Structure. Threads. Scheduling. CSE 451: Operating Systems Spring Module 28 Course Review Architectural Support CSE 451: Operating Systems Spring 2012 Module 28 Course Review Ed Lazowska lazowska@cs.washington.edu Allen Center 570 Privileged instructions what are they? how does the CPU know

More information

Distributed Algorithms Reliable Broadcast

Distributed Algorithms Reliable Broadcast Distributed Algorithms Reliable Broadcast Alberto Montresor University of Trento, Italy 2016/04/26 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Contents

More information

CSE 5306 Distributed Systems

CSE 5306 Distributed Systems CSE 5306 Distributed Systems Consistency and Replication Jia Rao http://ranger.uta.edu/~jrao/ 1 Reasons for Replication Data is replicated for the reliability of the system Servers are replicated for performance

More information

Networks and distributed computing

Networks and distributed computing Networks and distributed computing Abstractions provided for networks network card has fixed MAC address -> deliver message to computer on LAN -> machine-to-machine communication -> unordered messages

More information

CS 43: Computer Networks. 08:Network Services and Distributed Systems 19 September

CS 43: Computer Networks. 08:Network Services and Distributed Systems 19 September CS 43: Computer Networks 08:Network Services and Distributed Systems 19 September Reading Quiz Lecture 8 -Slide 2 Last class Inter-process communication using message passing How send and recv buffers

More information

Concurrent & Distributed 7Systems Safety & Liveness. Uwe R. Zimmer - The Australian National University

Concurrent & Distributed 7Systems Safety & Liveness. Uwe R. Zimmer - The Australian National University Concurrent & Distributed 7Systems 2017 Safety & Liveness Uwe R. Zimmer - The Australian National University References for this chapter [ Ben2006 ] Ben-Ari, M Principles of Concurrent and Distributed Programming

More information

(MCQZ-CS604 Operating Systems)

(MCQZ-CS604 Operating Systems) command to resume the execution of a suspended job in the foreground fg (Page 68) bg jobs kill commands in Linux is used to copy file is cp (Page 30) mv mkdir The process id returned to the child process

More information

Operating Systems EDA092, DIT 400 Exam

Operating Systems EDA092, DIT 400 Exam Chalmers University of Technology and Gothenburg University Operating Systems EDA092, DIT 400 Exam 2015-04-14 Date, Time, Place: Tuesday 2015/04/14, 14:00 18:00, Väg och vatten -salar Course Responsible:

More information

Distributed Operating Systems. Distributed Synchronization

Distributed Operating Systems. Distributed Synchronization 2 Distributed Operating Systems Distributed Synchronization Steve Goddard goddard@cse.unl.edu http://www.cse.unl.edu/~goddard/courses/csce855 1 Synchronization Coordinating processes to achieve common

More information

Distributed Systems. Lec 9: Distributed File Systems NFS, AFS. Slide acks: Dave Andersen

Distributed Systems. Lec 9: Distributed File Systems NFS, AFS. Slide acks: Dave Andersen Distributed Systems Lec 9: Distributed File Systems NFS, AFS Slide acks: Dave Andersen (http://www.cs.cmu.edu/~dga/15-440/f10/lectures/08-distfs1.pdf) 1 VFS and FUSE Primer Some have asked for some background

More information

TDDD82 Secure Mobile Systems Lecture 1: Introduction and Distributed Systems Models

TDDD82 Secure Mobile Systems Lecture 1: Introduction and Distributed Systems Models TDDD82 Secure Mobile Systems Lecture 1: Introduction and Distributed Systems Models Mikael Asplund Real-time Systems Laboratory Department of Computer and Information Science Linköping University Based

More information

Specifying and Proving Broadcast Properties with TLA

Specifying and Proving Broadcast Properties with TLA Specifying and Proving Broadcast Properties with TLA William Hipschman Department of Computer Science The University of North Carolina at Chapel Hill Abstract Although group communication is vitally important

More information

Scheduling, Synchronization, cont

Scheduling, Synchronization, cont Multipr cess r/multic re Systems Multiprocessor/Multicore Systems Scheduling, Synchronization, cont Recall: Multiprocessor Scheduling: a problem Problem with communication n between two threads both belong

More information

CSE 5306 Distributed Systems. Consistency and Replication

CSE 5306 Distributed Systems. Consistency and Replication CSE 5306 Distributed Systems Consistency and Replication 1 Reasons for Replication Data are replicated for the reliability of the system Servers are replicated for performance Scaling in numbers Scaling

More information

Silberschatz and Galvin Chapter 18

Silberschatz and Galvin Chapter 18 Silberschatz and Galvin Chapter 18 Distributed Coordination CPSC 410--Richard Furuta 4/21/99 1 Distributed Coordination Synchronization in a distributed environment Ð Event ordering Ð Mutual exclusion

More information

SEGR 550 Distributed Computing. Final Exam, Fall 2011

SEGR 550 Distributed Computing. Final Exam, Fall 2011 SEGR 550 Distributed Computing Final Exam, Fall 2011 (100 points total) 1) This is a take-home examination. You must send your solutions in a PDF or text file to zhuy@seattleu.edu by the deadline. Late

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 5: Concurrency Control Topics Data Database design Queries Decomposition Localization Optimization Transactions Concurrency control Reliability

More information

Chapter 5 Concurrency: Mutual Exclusion and Synchronization

Chapter 5 Concurrency: Mutual Exclusion and Synchronization Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

CS 3723 Operating Systems: Final Review

CS 3723 Operating Systems: Final Review CS 3723 Operating Systems: Final Review Instructor: Dr. Tongping Liu Lecture Outline High-level synchronization structure: Monitor Pthread mutex Conditional variables Barrier Threading Issues 1 2 Monitors

More information

Philadelphia University Faculty of Information Technology Department of Computer Science second semester, 2012/2013.

Philadelphia University Faculty of Information Technology Department of Computer Science second semester, 2012/2013. Philadelphia University Faculty of Information Technology Department of Computer Science second semester, 2012/2013 Course Syllabus Course Title: Advanced Operating Systems Course Level: Master Course

More information

[module 2.2] MODELING CONCURRENT PROGRAM EXECUTION

[module 2.2] MODELING CONCURRENT PROGRAM EXECUTION v1.0 20130407 Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci [module 2.2] MODELING CONCURRENT PROGRAM EXECUTION 1 SUMMARY Making

More information

An Efficient Distributed Mutual Exclusion Algorithm Based on Relative Consensus Voting

An Efficient Distributed Mutual Exclusion Algorithm Based on Relative Consensus Voting An Efficient Distributed Mutual Exclusion Algorithm Based on Relative Consensus Voting Jiannong Cao Hong Kong Polytechnic University Kowloon, Hong Kong csjcao@comp.polyu.edu.hk Jingyang Zhou Nanjing University

More information

CSL373: Lecture 5 Deadlocks (no process runnable) + Scheduling (> 1 process runnable)

CSL373: Lecture 5 Deadlocks (no process runnable) + Scheduling (> 1 process runnable) CSL373: Lecture 5 Deadlocks (no process runnable) + Scheduling (> 1 process runnable) Past & Present Have looked at two constraints: Mutual exclusion constraint between two events is a requirement that

More information