Agent Based Cloud Storage System

Size: px
Start display at page:

Download "Agent Based Cloud Storage System"

Transcription

1 Agent Based Cloud Storage System Prof. Dr. ABDEL-FATTAH HEGAZY *, Prof. Dr. AMR BADR **, MOHAMMED KASSAB * * Department of Computer Science Arab Academy for Science Technology and Maritime Transport Egypt kassab.mohd@ymail.com ** Department of Computer Science Cairo University Egypt Abstract: - Cloud computing technology is envisioned as the next generation architecture of IT Enterprise. It is defined as a set of scalable data servers or chunk servers that provide computing and storage services to clients. The cloud storage is a relatively basic and widely applied service which can provide users with stable, massive data storage space. Our research shows that the architecture of current Cloud Computing System moves from central to distributed one; the reason for such movement is to avoid the bottle neck introduces since all data chunks must be indexed by a master index server. In this paper, we propose new cloud storage architecture based on P2P using agents. The system is based on a new architecture with better scalability, fault tolerance and enhanced performance. Keywords: - Cloud Computing, Architecture, Storage, P2P, Agents, Distributed Systems 1 Introduction A cloud computing platform dynamically provisions servers as required. Servers in the cloud can be physical and/or virtual machines. Other computing resources such as network devices, storage area networks, firewall and other security devices are included as well. This paper will focus on the storage service provisioned by the cloud. Some typical cloud systems, such as GFS of Google[1], Elastic Cloud of Amazon[2], Blue Cloud of IBM[3], all have a similar central architecture for storage, with a central entity to index or manage the distributed data storage entities. It is effective to simplify the design and maintenance of the system by a central managed architecture, but the central entity definitely becomes a bottleneck due to the frequent visits. Although systems in practice have used some technique as backup recovery to avoid the probably disaster from the central bottle neck, the flaw from such architecture has not been resolved essentially. To overcome such bottleneck resulting from the central master entity used for indexing, another architecture based on P2P which provides a pure distributed data storage environment without any central entity management is introduced. In this paper, we propose a cloud computing architecture based on agents which provisions the benefits provided by the P2P architecture but with better performance. Rest of the paper is organized as follows, in section 2 we will introduce some related work about cloud storage system and P2P storage system. In section 3 of this paper, we describe a typical scenario to explain the architecture of our proposed cloud computing storage environment. In section 4, there is an introduction to the prototype used. In section 5, we illustrate our results. Section 6 is conclusion and proposal for future work. 2 Related Works In this section, we shall introduce some related work regarding cloud computing system and P2P storage architecture. 2.1 Google File System (Single Master) The first to give prominence to the term could compute (and maybe to coin it) was Google s CEO Eric Schmidt, in late 2006[4]. Computing platform [5] which was first developed for the most important application of Google search service[6] and now has extended to other applications. Google cloud computing infrastructure has four systems which are independent of and closely linked to each other. They are Google File System for distributed file storage, MapReduce program model for parallel Google applications[6], Chubby for distributed lock mechanism[7] and BigTable for Google large-scale distributed ISSN: X 240 ISBN:

2 database[8].a GFS cluster consists of a single master and multiple chunk servers and is accessed by multiple clients, as shown in Fig. 1[1]. Files are divided into fixed-size chunks. Chunk servers store chunks on local disks as Linux files and read or write chunk data specified by a chunk handle and byte range. For reliability, each chunk is replicated on multiple chunk servers and hence the replicas must be synchronized in order to maintain consistency. The master maintains all file system metadata. This includes the namespace, access control information, the mapp.ing from files to chunks, and the current locations of chunk. When a client wants to visit some data on a chunk server, it will first send a request to the Master, and the master then replies with the corresponding chunk handle and locations of the replicas. The client then sends a request to one of the replicas and fetches the data wanted.[1] Fig. 1 Architecture of Google File System The above architecture is clearly based on a master indexed storage system. The defect of such central based index architecture is that the GFS master becomes the bottle neck of the system since any request must be originated from the master index before being directed to the target chunk server, leaving such burden on the GFS master. 2.2 P2P Storage System The distributed P2P network indexed by DHT can resolve the problems of bottle neck resulting from central index system. Since the management is distributed equality to every peer in the network, there is no bottle neck any more, but with new alternatives, new problems arise. The new problem is how to maintain the consistency of the replicas in case of read/write operations. Some P2P systems for distributed storage have been developed now, such as Oasis[9], OM[10] and Sigma[11]. They keep the replica consistency in different ways and index the data resource by DHT. In the following section, we will discuss a cloud storage system based on P2P Cloud Based on P2P Architecture The architecture captioned in the next Fig. 2[12] is divided into three roles. The client application is responsible for the data request from the cloud. A gateway represents the entity which can direct the request/response between the client application and the cloud and lead the request to the nearest node on the network. Finally, the chunk server is the entity which is served as the data resource node and P2P node as well. Each chunk server has three function module interfaces. As illustrated in the Fig. below, an index module which is responsible for the global resource index which is assigned by DHT. Rout module, to pass a lookup request by a next hop routing table. Finally, the data or chunk module which provides the data resource stored on the local machine. Fig.2 Cloud Based on P2P Architecture ISSN: X 241 ISBN:

3 Following Fig. 3[12] shows that in the index module, there is a chain containing the data index information pointers to all the data blocks with the same name ID will be linked in a sub-chain. A pointer contains the address of a data block and the update version number of that block.[12] Fig. 3 Index Module Details 3 Cloud Based on Agents OE-P2P 3.1 Architecture Even Sub-Cloud Client Gateway Odd Sub-Cloud Agent Agent Chunk Server Chunk Server Fig.4 Cloud Storage Based on Agent OE-P2P 3.2 Work Flow In this section, we will present the system working flow with a typical scenario. Before a client can perform the work, data blocks and the corresponding replica should be uploaded to the Chunk Servers. Selection of the chunk servers for storage is the same with the traditional P2P cloud computing platform. 1. Client sends a request for a data block with logic identifier to the Gateway. 2. Gateway analyze the request, parse the identifier of the data block in the request, such as logic address, and change it to 128 bits logic ID by DHT algorithm which can be recognized by chunk servers agents on the OE-P2P network. 3. Gateway will direct the search request data package to any of the sub-clouds based on the logic ID. In case the logic ID is even the search request data package will be directed to the nearest node on the even subcloud, otherwise the search request data package will be addressed to the nearest node on the odd sub-cloud. 4. Gateway constructs an OE-P2P search request data package including the logic ID, and sends the request to the chunk server s agents OE-P2P network. 5. The OE-P2P search request package routed among the chunk servers following the OE-P2P search protocol such as Chord[13], Can[13], Pastry[13], and Tapestry[13]. The chunk servers agents now act as a routing nodes of OE-P2P and the routing interface will be taken used of. 6. The request reaches the server which contains the index information of the logic ID in searching. 7. The index includes all the pointers of the data replica with the same ID. The chunk server agent now acts as an index server and the index function interface will play its role. The chunk server will select the latest pointer by its version number, if there are more than one candidate, the server should select the nearest node by comparing the IP address of the client and the data server, then return the best address to the client. 8. When the client gets the best address, it will then send its request to the address of the chunk server which contains the data block. Now the chunk server acts as a data provider as the traditional cloud storage platform does. 3.3 Replication In our case the cloud provides storage as a service to users SaaS[14], a frequently met problem is write/read for mutual exclusion. In a central managed system as GFS, this can be resolved by using lock mechanism, but in distributed system, it will be more complicated. In this section, we will ISSN: X 242 ISBN:

4 discuss the replica consistency control. Here is an example for writing consistency in our P2P cloud storage system: 1. Client finds the chunk server node which contains the indexed information of the target data block. 2. Client tell the index node that it will do write operation. 3. The index node check the chain of replicas state to see whether there is another writing being processed. The state of the chain is lock or unlock. If the state of the pointer with the latest version is unlock, the index node will allow that write operation by returning the chunk server address of the latest version (if there are multiple candidates, the index node should select the nearest node to the client by comparing the IP addresses), and change the state to lock; If lock, the index node will queue the requests until the state reverts to unlock or is timed out, the first write request in the queue then can be carried out. 4. Client gets the address of the newest version, connects that chunk server, write the update data to the block, then sends message to the index node to notify that the write operation has finished. 5. When the index node receives the finish message, the version number of the pointer to the just modified block will be incremented by 1. Then a procedure of consistency update to all the replicas will be start. 6. After a replica server finishes update, it will send an update response messages to the index node and the version in its pointer in the chain will be increased by the index node. 7. When all the pointers in the chain have updated to the newest version, the state of the chain will be set unlock. If the period of lock state is overtime, the state of the chain will reset unlock by force and will be state here will be timed out. When the chain has set unlock, any delayed update response messages will be discarded and the version of the corresponding pointer in the chain will remain unaffected. This prevents the system from waiting indefinitely if there is something wrong with some replica servers in case of update. Since the version of the data block on the delayed server is old, no client will visit that server for the old data later unless its update is confirmed. An agent-scheduling routine[15] is taken in consideration to make sure that all replicas are to be of the same version and avoid inconsistencies. The procedure in carried out on a regular time interval where all replicas are updated to the same version number. We developed a prototype simulation system based on all three architectures discussed in this paper. The design is as follows: Operating system used is Windows XP. The simulator was developed using C#.Net. The number of chunk servers, clients, operation types (read/write) and number of operations are entered as parameters to the system. 5 Results We implemented all three architectures and we considered a LAN setting, where latencies on each node are taken in consideration in our simulation. Our simulation was fed with varying number of clients in order to test both response time and throughput. Our test environment was composed of 5 servers accommodating 50 files distributed randomly and the numbers of clients were entered as a parameter ranging as 10, 50, 100, 200 & 400 where all clients each accessed 10 files applying both read/write operations. Fig.5: Average response time during write operation In Fig. 5 we demonstrate that with increasing number of clients, OE-P2P shows better response time during write mode. Google s result showed highest response time due to the bottle-neck resulted from the centralized architecture, whereas P2P search space was higher compared to the number of chunk servers of OE-P2P. 4 Prototype System ISSN: X 243 ISBN:

5 Fig.8: Average throughput during read operation Fig. 8 illustrates that all three architectures show similar results for the number of bytes read since no delay occurs as the agent scheduled replication procedure was not used to maintain replicas in case of read operation. Fig.6: Average throughput during write operation In Fig. 6 OE-P2P and P2P show higher number of bytes written due to the agent scheduled replication procedure used to maintain consistencies among replicas, compared with Google, but OE-P2P showed better results due to less search space compared to P2P. Fig.7: Average response time during read operation In Fig. 7 we demonstrate that with increasing number of clients, OE-P2P shows lowest response time during read mode compared with P2P and Google as OE-P2P was free from the bottle neck from which Google suffered and smaller search space compared to P2P. 6 Conclusion The experimental results confirm that OE-P2P shows better results compared to both Google & P2P architectures in terms of response time, due to the fact that OE-P2P was defect from the bottle neck resulting from the centralized architecture of Google as well as the fact that OE-P2P divided the search space resulting in higher response time as illustrated above. But Google showed better results in terms of throughput in write operation. We show that as the number of clients increase, the response time increases for both Google and P2P compared to OE-P2P, whereas Google and OE-P2P shows better throughput for increasing number of clients compared to P2P. 7 References [1]Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. On Operating Systems Principles. New York: ACM Press, 2003.pp [2]Boss G, Malladi P, Quan D, Legregni L, Hall H.Cloud computing. IBM White Paper, dw/wes/hipods/cloud_computing_wp_final_8ct.pdf [3]Amazon. Amazon elastic compute cloud(amazonec2) [4]Francesco Maria Aymerich, Gianni Fenu, Simone Surcis. An Approach to a Cloud Computing Network, ICADIWT, 2008 pp [5]Barroso LA, Dean J, Hölzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2): PP [6]Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp on Operating System Design and Implementation. Berkeley: USENIX Association, pp [7]Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, pp [8]Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, pp ISSN: X 244 ISBN:

6 [9]Oasis:M. Rodrig, and A. Lamarca, Decentralized Weighted Voting for P2P Data Management, in Proc. of the 3rd ACM International Workshop on Data Engineering for Wireless and Mobile Access, 2003, pp [10]OM:H. Yu. and A. Vahdat, Consistent and Automatic Replica Regeneration, in Proc. of First Symposium on Networked Systems Design and Implementation (NSDI '04), [11]Sigma:S. Lin, Q. Lian, M. Chen, and Z. Zhang, A practical distributed mutual exclusion protocol in dynamic peer-to- peer systems, in Proc. of 3 rd International Workshop on Peer-to-Peer Systems (IPTPS 04), [12] Ke Xu 1, Meina Song 2, Xiaoqi Zhang 3, Junde Song4,"A Cloud Computing Platform Based on P2P" ITIME '09 IEEE International Symposium on IT in Medicine & Education, pp [13] RafitIzhak-Ratzin, Improving the BitTorrent Protocol Using Different Incentive Techniques, University of California, LA, Doctor of Philosophy in Computer Science, 2010 [14] A white paper produced by the Cloud Computing Use Case Discussion Group, 2009 Cloud Computing Use Cases, Version 2.0, [15]E. Sarhan, A. Ghalwash, M.Khafagy, Agent Based Replication for Scaling Back-End Databases of Dynamic Content Web Sites, 12 th WSEAS International Conference on COMPUTERS, Heraklion, Greece, pp ISSN: X 245 ISBN:

Lessons Learned While Building Infrastructure Software at Google

Lessons Learned While Building Infrastructure Software at Google Lessons Learned While Building Infrastructure Software at Google Jeff Dean jeff@google.com Google Circa 1997 (google.stanford.edu) Corkboards (1999) Google Data Center (2000) Google Data Center (2000)

More information

Bigtable. Presenter: Yijun Hou, Yixiao Peng

Bigtable. Presenter: Yijun Hou, Yixiao Peng Bigtable Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber Google, Inc. OSDI 06 Presenter: Yijun Hou, Yixiao Peng

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google* 정학수, 최주영 1 Outline Introduction Design Overview System Interactions Master Operation Fault Tolerance and Diagnosis Conclusions

More information

Staggeringly Large File Systems. Presented by Haoyan Geng

Staggeringly Large File Systems. Presented by Haoyan Geng Staggeringly Large File Systems Presented by Haoyan Geng Large-scale File Systems How Large? Google s file system in 2009 (Jeff Dean, LADIS 09) - 200+ clusters - Thousands of machines per cluster - Pools

More information

Google File System, Replication. Amin Vahdat CSE 123b May 23, 2006

Google File System, Replication. Amin Vahdat CSE 123b May 23, 2006 Google File System, Replication Amin Vahdat CSE 123b May 23, 2006 Annoucements Third assignment available today Due date June 9, 5 pm Final exam, June 14, 11:30-2:30 Google File System (thanks to Mahesh

More information

Analyzing and Improving Load Balancing Algorithm of MooseFS

Analyzing and Improving Load Balancing Algorithm of MooseFS , pp. 169-176 http://dx.doi.org/10.14257/ijgdc.2014.7.4.16 Analyzing and Improving Load Balancing Algorithm of MooseFS Zhang Baojun 1, Pan Ruifang 1 and Ye Fujun 2 1. New Media Institute, Zhejiang University

More information

Google File System (GFS) and Hadoop Distributed File System (HDFS)

Google File System (GFS) and Hadoop Distributed File System (HDFS) Google File System (GFS) and Hadoop Distributed File System (HDFS) 1 Hadoop: Architectural Design Principles Linear scalability More nodes can do more work within the same time Linear on data size, linear

More information

The Google File System

The Google File System October 13, 2010 Based on: S. Ghemawat, H. Gobioff, and S.-T. Leung: The Google file system, in Proceedings ACM SOSP 2003, Lake George, NY, USA, October 2003. 1 Assumptions Interface Architecture Single

More information

CLOUD-SCALE FILE SYSTEMS

CLOUD-SCALE FILE SYSTEMS Data Management in the Cloud CLOUD-SCALE FILE SYSTEMS 92 Google File System (GFS) Designing a file system for the Cloud design assumptions design choices Architecture GFS Master GFS Chunkservers GFS Clients

More information

GFS: The Google File System. Dr. Yingwu Zhu

GFS: The Google File System. Dr. Yingwu Zhu GFS: The Google File System Dr. Yingwu Zhu Motivating Application: Google Crawl the whole web Store it all on one big disk Process users searches on one big CPU More storage, CPU required than one PC can

More information

GFS Overview. Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures

GFS Overview. Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures GFS Overview Design goals/priorities Design for big-data workloads Huge files, mostly appends, concurrency, huge bandwidth Design for failures Interface: non-posix New op: record appends (atomicity matters,

More information

The Google File System

The Google File System The Google File System By Ghemawat, Gobioff and Leung Outline Overview Assumption Design of GFS System Interactions Master Operations Fault Tolerance Measurements Overview GFS: Scalable distributed file

More information

An Efficient Distributed B-tree Index Method in Cloud Computing

An Efficient Distributed B-tree Index Method in Cloud Computing Send Orders for Reprints to reprints@benthamscience.ae The Open Cybernetics & Systemics Journal, 214, 8, 32-38 32 Open Access An Efficient Distributed B-tree Index Method in Cloud Computing Huang Bin 1,*

More information

IMPLEMENTATION OF INFORMATION RETRIEVAL (IR) ALGORITHM FOR CLOUD COMPUTING: A COMPARATIVE STUDY BETWEEN WITH AND WITHOUT MAPREDUCE MECHANISM *

IMPLEMENTATION OF INFORMATION RETRIEVAL (IR) ALGORITHM FOR CLOUD COMPUTING: A COMPARATIVE STUDY BETWEEN WITH AND WITHOUT MAPREDUCE MECHANISM * Journal of Contemporary Issues in Business Research ISSN 2305-8277 (Online), 2012, Vol. 1, No. 2, 42-56. Copyright of the Academic Journals JCIBR All rights reserved. IMPLEMENTATION OF INFORMATION RETRIEVAL

More information

Cassandra- A Distributed Database

Cassandra- A Distributed Database Cassandra- A Distributed Database Tulika Gupta Department of Information Technology Poornima Institute of Engineering and Technology Jaipur, Rajasthan, India Abstract- A relational database is a traditional

More information

Distributed File Systems II

Distributed File Systems II Distributed File Systems II To do q Very-large scale: Google FS, Hadoop FS, BigTable q Next time: Naming things GFS A radically new environment NFS, etc. Independence Small Scale Variety of workloads Cooperation

More information

Distributed Systems. Lec 10: Distributed File Systems GFS. Slide acks: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Distributed Systems. Lec 10: Distributed File Systems GFS. Slide acks: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Distributed Systems Lec 10: Distributed File Systems GFS Slide acks: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung 1 Distributed File Systems NFS AFS GFS Some themes in these classes: Workload-oriented

More information

Distributed Systems. 05r. Case study: Google Cluster Architecture. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems. 05r. Case study: Google Cluster Architecture. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 05r. Case study: Google Cluster Architecture Paul Krzyzanowski Rutgers University Fall 2016 1 A note about relevancy This describes the Google search cluster architecture in the mid

More information

CSE-E5430 Scalable Cloud Computing Lecture 9

CSE-E5430 Scalable Cloud Computing Lecture 9 CSE-E5430 Scalable Cloud Computing Lecture 9 Keijo Heljanko Department of Computer Science School of Science Aalto University keijo.heljanko@aalto.fi 15.11-2015 1/24 BigTable Described in the paper: Fay

More information

The Google File System. Alexandru Costan

The Google File System. Alexandru Costan 1 The Google File System Alexandru Costan Actions on Big Data 2 Storage Analysis Acquisition Handling the data stream Data structured unstructured semi-structured Results Transactions Outline File systems

More information

Recap. CSE 486/586 Distributed Systems Google Chubby Lock Service. Paxos Phase 2. Paxos Phase 1. Google Chubby. Paxos Phase 3 C 1

Recap. CSE 486/586 Distributed Systems Google Chubby Lock Service. Paxos Phase 2. Paxos Phase 1. Google Chubby. Paxos Phase 3 C 1 Recap CSE 486/586 Distributed Systems Google Chubby Lock Service Steve Ko Computer Sciences and Engineering University at Buffalo Paxos is a consensus algorithm. Proposers? Acceptors? Learners? A proposer

More information

Decentralized Approach for Balancing Load in Dynamic Cloud Environment

Decentralized Approach for Balancing Load in Dynamic Cloud Environment Decentralized Approach for Balancing Load in Dynamic Cloud Environment Karthick Smiline Britto.J 1, PrittoPaul.P 2 ME, Department of CSE, Velammal Engineering College, Anna University, Chennai, India 1

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung December 2003 ACM symposium on Operating systems principles Publisher: ACM Nov. 26, 2008 OUTLINE INTRODUCTION DESIGN OVERVIEW

More information

A New HadoopBased Network Management System with Policy Approach

A New HadoopBased Network Management System with Policy Approach Computer Engineering and Applications Vol. 3, No. 3, September 2014 A New HadoopBased Network Management System with Policy Approach Department of Computer Engineering and IT, Shiraz University of Technology,

More information

big picture parallel db (one data center) mix of OLTP and batch analysis lots of data, high r/w rates, 1000s of cheap boxes thus many failures

big picture parallel db (one data center) mix of OLTP and batch analysis lots of data, high r/w rates, 1000s of cheap boxes thus many failures Lecture 20 -- 11/20/2017 BigTable big picture parallel db (one data center) mix of OLTP and batch analysis lots of data, high r/w rates, 1000s of cheap boxes thus many failures what does paper say Google

More information

ΕΠΛ 602:Foundations of Internet Technologies. Cloud Computing

ΕΠΛ 602:Foundations of Internet Technologies. Cloud Computing ΕΠΛ 602:Foundations of Internet Technologies Cloud Computing 1 Outline Bigtable(data component of cloud) Web search basedonch13of thewebdatabook 2 What is Cloud Computing? ACloudis an infrastructure, transparent

More information

Recap. CSE 486/586 Distributed Systems Google Chubby Lock Service. Recap: First Requirement. Recap: Second Requirement. Recap: Strengthening P2

Recap. CSE 486/586 Distributed Systems Google Chubby Lock Service. Recap: First Requirement. Recap: Second Requirement. Recap: Strengthening P2 Recap CSE 486/586 Distributed Systems Google Chubby Lock Service Steve Ko Computer Sciences and Engineering University at Buffalo Paxos is a consensus algorithm. Proposers? Acceptors? Learners? A proposer

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff and Shun Tak Leung Google* Shivesh Kumar Sharma fl4164@wayne.edu Fall 2015 004395771 Overview Google file system is a scalable distributed file system

More information

Efficient Map Reduce Model with Hadoop Framework for Data Processing

Efficient Map Reduce Model with Hadoop Framework for Data Processing Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 4, April 2015,

More information

The MapReduce Framework

The MapReduce Framework The MapReduce Framework In Partial fulfilment of the requirements for course CMPT 816 Presented by: Ahmed Abdel Moamen Agents Lab Overview MapReduce was firstly introduced by Google on 2004. MapReduce

More information

Dynamically Estimating Reliability in a Volunteer-Based Compute and Data-Storage System

Dynamically Estimating Reliability in a Volunteer-Based Compute and Data-Storage System Dynamically Estimating Reliability in a Volunteer-Based Compute and Data-Storage System Muhammed Uluyol University of Minnesota Abstract Although cloud computing is a powerful tool for analyzing large

More information

Survey on Novel Load Rebalancing for Distributed File Systems

Survey on Novel Load Rebalancing for Distributed File Systems Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IJCSMC, Vol. 2, Issue.

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK EFFICIENT DATA PROCESSING IN PEER NETWORK USING CLOUD COMPUTING SHILPA VASANTRAO

More information

Google File System. By Dinesh Amatya

Google File System. By Dinesh Amatya Google File System By Dinesh Amatya Google File System (GFS) Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung designed and implemented to meet rapidly growing demand of Google's data processing need a scalable

More information

Datacenter replication solution with quasardb

Datacenter replication solution with quasardb Datacenter replication solution with quasardb Technical positioning paper April 2017 Release v1.3 www.quasardb.net Contact: sales@quasardb.net Quasardb A datacenter survival guide quasardb INTRODUCTION

More information

This material is covered in the textbook in Chapter 21.

This material is covered in the textbook in Chapter 21. This material is covered in the textbook in Chapter 21. The Google File System paper, by S Ghemawat, H Gobioff, and S-T Leung, was published in the proceedings of the ACM Symposium on Operating Systems

More information

GOOGLE FILE SYSTEM: MASTER Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung

GOOGLE FILE SYSTEM: MASTER Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung ECE7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective (Winter 2015) Presentation Report GOOGLE FILE SYSTEM: MASTER Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung

More information

Yuval Carmel Tel-Aviv University "Advanced Topics in Storage Systems" - Spring 2013

Yuval Carmel Tel-Aviv University Advanced Topics in Storage Systems - Spring 2013 Yuval Carmel Tel-Aviv University "Advanced Topics in About & Keywords Motivation & Purpose Assumptions Architecture overview & Comparison Measurements How does it fit in? The Future 2 About & Keywords

More information

QADR with Energy Consumption for DIA in Cloud

QADR with Energy Consumption for DIA in Cloud Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,

More information

Authors : Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung Presentation by: Vijay Kumar Chalasani

Authors : Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung Presentation by: Vijay Kumar Chalasani The Authors : Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung Presentation by: Vijay Kumar Chalasani CS5204 Operating Systems 1 Introduction GFS is a scalable distributed file system for large data intensive

More information

CPSC 426/526. Cloud Computing. Ennan Zhai. Computer Science Department Yale University

CPSC 426/526. Cloud Computing. Ennan Zhai. Computer Science Department Yale University CPSC 426/526 Cloud Computing Ennan Zhai Computer Science Department Yale University Recall: Lec-7 In the lec-7, I talked about: - P2P vs Enterprise control - Firewall - NATs - Software defined network

More information

GFS: The Google File System

GFS: The Google File System GFS: The Google File System Brad Karp UCL Computer Science CS GZ03 / M030 24 th October 2014 Motivating Application: Google Crawl the whole web Store it all on one big disk Process users searches on one

More information

Introduction Data Model API Building Blocks SSTable Implementation Tablet Location Tablet Assingment Tablet Serving Compactions Refinements

Introduction Data Model API Building Blocks SSTable Implementation Tablet Location Tablet Assingment Tablet Serving Compactions Refinements Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber Google, Inc. M. Burak ÖZTÜRK 1 Introduction Data Model API Building

More information

CS /15/16. Paul Krzyzanowski 1. Question 1. Distributed Systems 2016 Exam 2 Review. Question 3. Question 2. Question 5.

CS /15/16. Paul Krzyzanowski 1. Question 1. Distributed Systems 2016 Exam 2 Review. Question 3. Question 2. Question 5. Question 1 What makes a message unstable? How does an unstable message become stable? Distributed Systems 2016 Exam 2 Review Paul Krzyzanowski Rutgers University Fall 2016 In virtual sychrony, a message

More information

Abstract. 1. Introduction. 2. Design and Implementation Master Chunkserver

Abstract. 1. Introduction. 2. Design and Implementation Master Chunkserver Abstract GFS from Scratch Ge Bian, Niket Agarwal, Wenli Looi https://github.com/looi/cs244b Dec 2017 GFS from Scratch is our partial re-implementation of GFS, the Google File System. Like GFS, our system

More information

Huge Data Analysis and Processing Platform based on Hadoop Yuanbin LI1, a, Rong CHEN2

Huge Data Analysis and Processing Platform based on Hadoop Yuanbin LI1, a, Rong CHEN2 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017) Huge Data Analysis and Processing Platform based on Hadoop Yuanbin LI1, a, Rong CHEN2 1 Information Engineering

More information

Survey on MapReduce Scheduling Algorithms

Survey on MapReduce Scheduling Algorithms Survey on MapReduce Scheduling Algorithms Liya Thomas, Mtech Student, Department of CSE, SCTCE,TVM Syama R, Assistant Professor Department of CSE, SCTCE,TVM ABSTRACT MapReduce is a programming model used

More information

Distributed File Systems. Directory Hierarchy. Transfer Model

Distributed File Systems. Directory Hierarchy. Transfer Model Distributed File Systems Ken Birman Goal: view a distributed system as a file system Storage is distributed Web tries to make world a collection of hyperlinked documents Issues not common to usual file

More information

! Design constraints. " Component failures are the norm. " Files are huge by traditional standards. ! POSIX-like

! Design constraints.  Component failures are the norm.  Files are huge by traditional standards. ! POSIX-like Cloud background Google File System! Warehouse scale systems " 10K-100K nodes " 50MW (1 MW = 1,000 houses) " Power efficient! Located near cheap power! Passive cooling! Power Usage Effectiveness = Total

More information

Cloud Computing CS

Cloud Computing CS Cloud Computing CS 15-319 Distributed File Systems and Cloud Storage Part I Lecture 12, Feb 22, 2012 Majd F. Sakr, Mohammad Hammoud and Suhail Rehman 1 Today Last two sessions Pregel, Dryad and GraphLab

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung SOSP 2003 presented by Kun Suo Outline GFS Background, Concepts and Key words Example of GFS Operations Some optimizations in

More information

CA485 Ray Walshe Google File System

CA485 Ray Walshe Google File System Google File System Overview Google File System is scalable, distributed file system on inexpensive commodity hardware that provides: Fault Tolerance File system runs on hundreds or thousands of storage

More information

SOLVING LOAD REBALANCING FOR DISTRIBUTED FILE SYSTEM IN CLOUD

SOLVING LOAD REBALANCING FOR DISTRIBUTED FILE SYSTEM IN CLOUD 1 SHAIK SHAHEENA, 2 SD. AFZAL AHMAD, 3 DR.PRAVEEN SHAM 1 PG SCHOLAR,CSE(CN), QUBA ENGINEERING COLLEGE & TECHNOLOGY, NELLORE 2 ASSOCIATE PROFESSOR, CSE, QUBA ENGINEERING COLLEGE & TECHNOLOGY, NELLORE 3

More information

Applications of Paxos Algorithm

Applications of Paxos Algorithm Applications of Paxos Algorithm Gurkan Solmaz COP 6938 - Cloud Computing - Fall 2012 Department of Electrical Engineering and Computer Science University of Central Florida - Orlando, FL Oct 15, 2012 1

More information

Cloud Scale Storage Systems. Yunhao Zhang & Matthew Gharrity

Cloud Scale Storage Systems. Yunhao Zhang & Matthew Gharrity Cloud Scale Storage Systems Yunhao Zhang & Matthew Gharrity Two Beautiful Papers Google File System SIGOPS Hall of Fame! pioneer of large-scale storage system Spanner OSDI 12 Best Paper Award! Big Table

More information

Column Stores and HBase. Rui LIU, Maksim Hrytsenia

Column Stores and HBase. Rui LIU, Maksim Hrytsenia Column Stores and HBase Rui LIU, Maksim Hrytsenia December 2017 Contents 1 Hadoop 2 1.1 Creation................................ 2 2 HBase 3 2.1 Column Store Database....................... 3 2.2 HBase

More information

CSE 444: Database Internals. Lectures 26 NoSQL: Extensible Record Stores

CSE 444: Database Internals. Lectures 26 NoSQL: Extensible Record Stores CSE 444: Database Internals Lectures 26 NoSQL: Extensible Record Stores CSE 444 - Spring 2014 1 References Scalable SQL and NoSQL Data Stores, Rick Cattell, SIGMOD Record, December 2010 (Vol. 39, No. 4)

More information

Today CSCI Coda. Naming: Volumes. Coda GFS PAST. Instructor: Abhishek Chandra. Main Goals: Volume is a subtree in the naming space

Today CSCI Coda. Naming: Volumes. Coda GFS PAST. Instructor: Abhishek Chandra. Main Goals: Volume is a subtree in the naming space Today CSCI 5105 Coda GFS PAST Instructor: Abhishek Chandra 2 Coda Main Goals: Availability: Work in the presence of disconnection Scalability: Support large number of users Successor of Andrew File System

More information

Scalable Transactions for Web Applications in the Cloud

Scalable Transactions for Web Applications in the Cloud Scalable Transactions for Web Applications in the Cloud Zhou Wei 1,2, Guillaume Pierre 1 and Chi-Hung Chi 2 1 Vrije Universiteit, Amsterdam, The Netherlands zhouw@few.vu.nl, gpierre@cs.vu.nl 2 Tsinghua

More information

Google File System 2

Google File System 2 Google File System 2 goals monitoring, fault tolerance, auto-recovery (thousands of low-cost machines) focus on multi-gb files handle appends efficiently (no random writes & sequential reads) co-design

More information

Google File System. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google fall DIP Heerak lim, Donghun Koo

Google File System. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google fall DIP Heerak lim, Donghun Koo Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google 2017 fall DIP Heerak lim, Donghun Koo 1 Agenda Introduction Design overview Systems interactions Master operation Fault tolerance

More information

Amazon AWS-Solution-Architect-Associate Exam

Amazon AWS-Solution-Architect-Associate Exam Volume: 858 Questions Question: 1 You are trying to launch an EC2 instance, however the instance seems to go into a terminated status immediately. What would probably not be a reason that this is happening?

More information

References. What is Bigtable? Bigtable Data Model. Outline. Key Features. CSE 444: Database Internals

References. What is Bigtable? Bigtable Data Model. Outline. Key Features. CSE 444: Database Internals References CSE 444: Database Internals Scalable SQL and NoSQL Data Stores, Rick Cattell, SIGMOD Record, December 2010 (Vol 39, No 4) Lectures 26 NoSQL: Extensible Record Stores Bigtable: A Distributed

More information

Map-Reduce. Marco Mura 2010 March, 31th

Map-Reduce. Marco Mura 2010 March, 31th Map-Reduce Marco Mura (mura@di.unipi.it) 2010 March, 31th This paper is a note from the 2009-2010 course Strumenti di programmazione per sistemi paralleli e distribuiti and it s based by the lessons of

More information

Cost Reduction of Replicated Data in Distributed Database System

Cost Reduction of Replicated Data in Distributed Database System Cost Reduction of Replicated Data in Distributed Database System 1 Divya Bhaskar, 2 Meenu Department of computer science and engineering Madan Mohan Malviya University of Technology Gorakhpur 273010, India

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung ACM SIGOPS 2003 {Google Research} Vaibhav Bajpai NDS Seminar 2011 Looking Back time Classics Sun NFS (1985) CMU Andrew FS (1988) Fault

More information

goals monitoring, fault tolerance, auto-recovery (thousands of low-cost machines) handle appends efficiently (no random writes & sequential reads)

goals monitoring, fault tolerance, auto-recovery (thousands of low-cost machines) handle appends efficiently (no random writes & sequential reads) Google File System goals monitoring, fault tolerance, auto-recovery (thousands of low-cost machines) focus on multi-gb files handle appends efficiently (no random writes & sequential reads) co-design GFS

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part II: Data Center Software Architecture: Topic 1: Distributed File Systems GFS (The Google File System) 1 Filesystems

More information

GFS. CS6450: Distributed Systems Lecture 5. Ryan Stutsman

GFS. CS6450: Distributed Systems Lecture 5. Ryan Stutsman GFS CS6450: Distributed Systems Lecture 5 Ryan Stutsman Some material taken/derived from Princeton COS-418 materials created by Michael Freedman and Kyle Jamieson at Princeton University. Licensed for

More information

Data Replication under Latency Constraints Siu Kee Kate Ho

Data Replication under Latency Constraints Siu Kee Kate Ho Data Replication under Latency Constraints Siu Kee Kate Ho (siho@cs.brown.edu) Abstract To maintain good quality of service, data providers have to satisfy requests within some specified amount of time.

More information

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E.

18-hdfs-gfs.txt Thu Oct 27 10:05: Notes on Parallel File Systems: HDFS & GFS , Fall 2011 Carnegie Mellon University Randal E. 18-hdfs-gfs.txt Thu Oct 27 10:05:07 2011 1 Notes on Parallel File Systems: HDFS & GFS 15-440, Fall 2011 Carnegie Mellon University Randal E. Bryant References: Ghemawat, Gobioff, Leung, "The Google File

More information

Dynamic processing slots scheduling for I/O intensive jobs of Hadoop MapReduce

Dynamic processing slots scheduling for I/O intensive jobs of Hadoop MapReduce Dynamic processing slots scheduling for I/O intensive jobs of Hadoop MapReduce Shiori KURAZUMI, Tomoaki TSUMURA, Shoichi SAITO and Hiroshi MATSUO Nagoya Institute of Technology Gokiso, Showa, Nagoya, Aichi,

More information

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC Distributed Meta-data Servers: Architecture and Design Sarah Sharafkandi David H.C. Du DISC 5/22/07 1 Outline Meta-Data Server (MDS) functions Why a distributed and global Architecture? Problem description

More information

The Google File System

The Google File System The Google File System Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung Google SOSP 03, October 19 22, 2003, New York, USA Hyeon-Gyu Lee, and Yeong-Jae Woo Memory & Storage Architecture Lab. School

More information

Google File System and BigTable. and tiny bits of HDFS (Hadoop File System) and Chubby. Not in textbook; additional information

Google File System and BigTable. and tiny bits of HDFS (Hadoop File System) and Chubby. Not in textbook; additional information Subject 10 Fall 2015 Google File System and BigTable and tiny bits of HDFS (Hadoop File System) and Chubby Not in textbook; additional information Disclaimer: These abbreviated notes DO NOT substitute

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

On the Varieties of Clouds for Data Intensive Computing

On the Varieties of Clouds for Data Intensive Computing On the Varieties of Clouds for Data Intensive Computing Robert L. Grossman University of Illinois at Chicago and Open Data Group Yunhong Gu University of Illinois at Chicago Abstract By a cloud we mean

More information

Distributed Systems Final Exam

Distributed Systems Final Exam 15-440 Distributed Systems Final Exam Name: Andrew: ID December 12, 2011 Please write your name and Andrew ID above before starting this exam. This exam has 14 pages, including this title page. Please

More information

Distributed Filesystem

Distributed Filesystem Distributed Filesystem 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributing Code! Don t move data to workers move workers to the data! - Store data on the local disks of nodes in the

More information

FAST DATA RETRIEVAL USING MAP REDUCE: A CASE STUDY

FAST DATA RETRIEVAL USING MAP REDUCE: A CASE STUDY , pp-01-05 FAST DATA RETRIEVAL USING MAP REDUCE: A CASE STUDY Ravin Ahuja 1, Anindya Lahiri 2, Nitesh Jain 3, Aditya Gabrani 4 1 Corresponding Author PhD scholar with the Department of Computer Engineering,

More information

-Presented By : Rajeshwari Chatterjee Professor-Andrey Shevel Course: Computing Clusters Grid and Clouds ITMO University, St.

-Presented By : Rajeshwari Chatterjee Professor-Andrey Shevel Course: Computing Clusters Grid and Clouds ITMO University, St. -Presented By : Rajeshwari Chatterjee Professor-Andrey Shevel Course: Computing Clusters Grid and Clouds ITMO University, St. Petersburg Introduction File System Enterprise Needs Gluster Revisited Ceph

More information

The Google File System (GFS)

The Google File System (GFS) 1 The Google File System (GFS) CS60002: Distributed Systems Antonio Bruto da Costa Ph.D. Student, Formal Methods Lab, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur 2 Design constraints

More information

PROCESS SYNCHRONIZATION

PROCESS SYNCHRONIZATION DISTRIBUTED COMPUTER SYSTEMS PROCESS SYNCHRONIZATION Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Process Synchronization Mutual Exclusion Algorithms Permission Based Centralized

More information

A STUDY ON THE TRANSLATION MECHANISM FROM RELATIONAL-BASED DATABASE TO COLUMN-BASED DATABASE

A STUDY ON THE TRANSLATION MECHANISM FROM RELATIONAL-BASED DATABASE TO COLUMN-BASED DATABASE A STUDY ON THE TRANSLATION MECHANISM FROM RELATIONAL-BASED DATABASE TO COLUMN-BASED DATABASE Chin-Chao Huang, Wenching Liou National Chengchi University, Taiwan 99356015@nccu.edu.tw, w_liou@nccu.edu.tw

More information

ZHT A Fast, Reliable and Scalable Zero- hop Distributed Hash Table

ZHT A Fast, Reliable and Scalable Zero- hop Distributed Hash Table ZHT A Fast, Reliable and Scalable Zero- hop Distributed Hash Table 1 What is KVS? Why to use? Why not to use? Who s using it? Design issues A storage system A distributed hash table Spread simple structured

More information

Distributed Systems [Fall 2012]

Distributed Systems [Fall 2012] Distributed Systems [Fall 2012] Lec 20: Bigtable (cont ed) Slide acks: Mohsen Taheriyan (http://www-scf.usc.edu/~csci572/2011spring/presentations/taheriyan.pptx) 1 Chubby (Reminder) Lock service with a

More information

Azure MapReduce. Thilina Gunarathne Salsa group, Indiana University

Azure MapReduce. Thilina Gunarathne Salsa group, Indiana University Azure MapReduce Thilina Gunarathne Salsa group, Indiana University Agenda Recap of Azure Cloud Services Recap of MapReduce Azure MapReduce Architecture Application development using AzureMR Pairwise distance

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [P2P SYSTEMS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Byzantine failures vs malicious nodes

More information

Design & Implementation of Cloud Big table

Design & Implementation of Cloud Big table Design & Implementation of Cloud Big table M.Swathi 1,A.Sujitha 2, G.Sai Sudha 3, T.Swathi 4 M.Swathi Assistant Professor in Department of CSE Sri indu College of Engineering &Technolohy,Sheriguda,Ibrahimptnam

More information

Clustering Lecture 8: MapReduce

Clustering Lecture 8: MapReduce Clustering Lecture 8: MapReduce Jing Gao SUNY Buffalo 1 Divide and Conquer Work Partition w 1 w 2 w 3 worker worker worker r 1 r 2 r 3 Result Combine 4 Distributed Grep Very big data Split data Split data

More information

CS 138: Google. CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 138: Google. CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 138: Google CS 138 XVI 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Google Environment Lots (tens of thousands) of computers all more-or-less equal - processor, disk, memory, network interface

More information

Survey on Incremental MapReduce for Data Mining

Survey on Incremental MapReduce for Data Mining Survey on Incremental MapReduce for Data Mining Trupti M. Shinde 1, Prof.S.V.Chobe 2 1 Research Scholar, Computer Engineering Dept., Dr. D. Y. Patil Institute of Engineering &Technology, 2 Associate Professor,

More information

Data Storage in the Cloud

Data Storage in the Cloud Data Storage in the Cloud KHALID ELGAZZAR GOODWIN 531 ELGAZZAR@CS.QUEENSU.CA Outline 1. Distributed File Systems 1.1. Google File System (GFS) 2. NoSQL Data Store 2.1. BigTable Elgazzar - CISC 886 - Fall

More information

What Is Datacenter (Warehouse) Computing. Distributed and Parallel Technology. Datacenter Computing Architecture

What Is Datacenter (Warehouse) Computing. Distributed and Parallel Technology. Datacenter Computing Architecture What Is Datacenter (Warehouse) Computing Distributed and Parallel Technology Datacenter, Warehouse and Cloud Computing Hans-Wolfgang Loidl School of Mathematical and Computer Sciences Heriot-Watt University,

More information

Distributed File Systems (Chapter 14, M. Satyanarayanan) CS 249 Kamal Singh

Distributed File Systems (Chapter 14, M. Satyanarayanan) CS 249 Kamal Singh Distributed File Systems (Chapter 14, M. Satyanarayanan) CS 249 Kamal Singh Topics Introduction to Distributed File Systems Coda File System overview Communication, Processes, Naming, Synchronization,

More information

Map Reduce Group Meeting

Map Reduce Group Meeting Map Reduce Group Meeting Yasmine Badr 10/07/2014 A lot of material in this presenta0on has been adopted from the original MapReduce paper in OSDI 2004 What is Map Reduce? Programming paradigm/model for

More information

Review On Data Replication with QoS and Energy Consumption for Data Intensive Applications in Cloud Computing

Review On Data Replication with QoS and Energy Consumption for Data Intensive Applications in Cloud Computing Review On Data Replication with QoS and Energy Consumption for Data Intensive Applications in Cloud Computing Ms. More Reena S 1, Prof.Nilesh V. Alone 2 Department of Computer Engg, University of Pune

More information

BigTable A System for Distributed Structured Storage

BigTable A System for Distributed Structured Storage BigTable A System for Distributed Structured Storage Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber Adapted

More information

Outline. INF3190:Distributed Systems - Examples. Last week: Definitions Transparencies Challenges&pitfalls Architecturalstyles

Outline. INF3190:Distributed Systems - Examples. Last week: Definitions Transparencies Challenges&pitfalls Architecturalstyles INF3190:Distributed Systems - Examples Thomas Plagemann & Roman Vitenberg Outline Last week: Definitions Transparencies Challenges&pitfalls Architecturalstyles Today: Examples Googel File System (Thomas)

More information

Batch Inherence of Map Reduce Framework

Batch Inherence of Map Reduce Framework Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 6, June 2015, pg.287

More information