INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) FRACTALS: A RESEARCH. Dr. MAMTA RANI 1, SALONI 2

Size: px
Start display at page:

Download "INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) FRACTALS: A RESEARCH. Dr. MAMTA RANI 1, SALONI 2"

Transcription

1 INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN ISSN (Print) ISSN (Online) Volume 4, Issue 4, July-August (2013), pp IAEME: Journal Impact Factor (2013): (Calculated by GISI) IJCET I A E M E FRACTALS: A RESEARCH Dr. MAMTA RANI 1, SALONI 2 1 Department of Mathematics, Statistics & Computer Science, Central University of Rajasthan, Patni College, Kishangarh, Ajmer, Rajasthan, India 2 Department of MCA, Krishna Engg. College, 95, Loni Road Mohan Nagar, Ghaziabad, India, ABSTRACT Fractal research is a fairly new field of interest and has wide range of applications in science and engineering. Inspired by the study of Mandelbrot, I have reviewed the key research work that has undertaken in the field of Fractals. I have surveyed various aspects of fractals, its characteristics, Fractal Geometry and how the fractal dimension is calculated. Different techniques for generating the fractals are also explored. Fractals are self similar objects and they are classified according to their self similarity. So I have also reviewed various types of fractals. New approaches in fractal graphics are also studied along with its scope, importance and applications in real life. Keywords: fractals, dimension, classification, generation, Superior Iteration Method 1. INTRODUCTION Large number of people believes that the geometry of nature is centred on simple figures such as a lines, circles, conic sections, polygons, sphere, and quadratic surfaces and so on. For example, tires of the vehicle are circular, Solar system moves around the sun in elliptical orbit. Poles are cylindrical, etc. Have we ever thought, what is the shape of a mountain? Can we describe the structure of animals and plants? How can the networks of veins that supply blood be described by classical geometry? Many objects in nature, which are so complicated and irregular that it is hopeless to use classical geometry to model them. To analyze many of these questions fractals and mathematical chaos are appropriate tools. The mathematics behind fractals began to take shape in the 17 th century when mathematician and philosopher Leibniz considered recursive self-similarity (although he made the mistake of thinking that only the straight line was self-similar in this sense). In 1872 Karl Weierstrass gave an example of a function whose graph would today be considered fractal, with property of being everywhere continuous but nowhere differentiable. 289

2 In 1904, Helge von Koch, dissatisfied with Weierstrass's very abstract and analytic definition, gave a more geometric definition of a similar function, which is now called the Koch curve. Waclaw Sierpinski constructed his triangle in 1915 and one year later his carpet. In 1918, Bertrand Russell recognized a "supreme beauty" within the emerging mathematics of fractals. The idea of self-similar curves was taken further by Paul Pierre Levy, who, in his 1938 paper Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole described a new fractal curve, the Levy C curve. Georg Cantor also gave examples of subsets of the real line with unusual properties - these Cantor sets are also now recognized as fractals. Iterated functions in the complex plane were investigated in the late 19th and early 20th centuries by Henri Poincare, Felix Klein, Pierre Fatou and Gaston Julia. In the 1960s, Benoit Mandelbrot started investigating self-similarity in papers such as How Long Is the Coast of Britain? [8]. Statistical Self-Similarity and Fractional Dimension, which built on earlier work by Lewis Fry Richardson. Finally, in 1975 Mandelbrot coined the word fractal to denote an object whose Hausdorff - Besicovitch dimension is greater than its topological dimension. 2. FRACTALS Fractal is a set, which is self-similar under magnification. A fractal is "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole [9]. The term "fractal" was coined by Beno Art Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion [3]. Because fractals appear similar at all levels of magnification, fractals are often considered to be infinitely complex (in informal terms). Natural objects that approximate fractals to a degree include clouds, mountain ranges, lightning bolts, coastlines, snowflakes, various vegetables (cauliflower and broccoli), and animal coloration patterns. However, not all self-similar objects are fractals for example, the real line (a straight line) is formally self-similar but fails to have other fractal characteristics; for instance, it is regular enough to be described in Euclidean terms[1]. Classical Euclidean geometry works with objects which exist in integer dimensions: zerodimensional points, one-dimensional lines and curves, two-dimensional surfaces like planes, and three-dimensional solid objects such as balls and blocks (think spheres and cubes). However, many things in nature are better described as having a dimension which is not a whole number, because of a property called self-similarity: if you magnify some part of the object, you will find that part is identical to the whole object, on a smaller scale. A common example is a fern branch, where each leaf resembles the entire branch in miniature (Fig.1). Fig.1: A fractal fern leaf The fern leaf, when pressed flat, is part of a two-dimensional plane, and appears to take up two-dimensional space, even though any individual point on the fern appears to be simply part of a one-dimensional curve that helps make up the leaf. One may argue that the fern's dimension is then 290

3 somewhere between one and two: it doesn't really take up two-dimensional space in the same way the interior of a square does, but it does take up more than just the one dimension of a simple curve. Such an object is said to have fractal dimension, by virtue of its self-similarity, and such objects are said to be fractal. While a straight line has a dimension of exactly one, a fractal curve will have a dimension between one and two, depending on how much space it takes up as it curves and twists. The more a fractal curve fills up a plane, the closer it approaches two dimensions. In the same manner of thinking, a fractal surface (like, say, the surface of a cloud) will cover a dimension somewhere between two and three. Hence, a fractal landscape which consists of a hill covered with tiny bumps would be closer to two dimensions, while a landscape composed of a rough surface with many average sized hills would be much closer to the third dimension. Self-similarity, in its strictest interpretation (also called scale invariance), implies that a fractal object has an infinite level of detail, as no matter how much you magnify the fractal, you will see the same amount of detail[4]. 2.1 The Difference between Non-Fractal and Fractal Objects Non-Fractal: As a non-fractal object is magnified, no new features are revealed (Fig.2). Fig. 2: Non-Fractal Object Fractal: As a fractal object is magnified, even finer new features are revealed. The shapes of the smaller features are kind-of-like the shapes of the larger features(fig.3). 2.2 Characteristics of a Fractal Fig. 3: Fractal Object i. The construction of a Fractal is based on an iterative (or recursive) process(fig.4). Fig. 4: Construction of Sierpinski s triangle 291

4 ii. A Fractal is infinitely complex. It can be magnified infinitely (Fig.5). Fig. 5: Magnification of Mendelbrot Set iii. Upon magnification of a Fractal, we can find subsets of it that look like the whole figure. This feature is called self similarity. An object is self-similar only if you can break the object down into an arbitrary number of small pieces, and each of those pieces is a replica of the entire structure. Some examples of self-similarity follow. The red outlining indicates a few of the selfsimilarities of the object. (Fig.6). Fig. 6. Self-similarities of the object iv. The dimension of a Fractal is typically a non-integer and hence has non-integer complexity. 3. FRACTAL GEOMETRY While the classical Euclidean geometry works with objects which exist in integer dimensions, fractal geometry deals with objects in non-integer dimensions. Euclidean geometry is a description lines, ellipses, circles, etc. Fractal geometry, however, is described in algorithms- a set of instructions on how to create a fractal. The world as we know it is made up of objects which exist in integer dimensions, single dimensional points, one dimensional lines and curves, two dimension plane figures like circles and squares and three dimensional solid objects such as spheres and cubes. However, many things in nature are described better with dimension being part of the way between two whole numbers. While a straight line has a dimension of exactly one, a fractal curve will have a dimension between one and two, depending on how much space it takes up as it curves and twists. The more a fractal fills up a plane, the closer it approaches two dimensions. In the same manner of thinking, a wavy fractal scene will cover a dimension somewhere between two and three. Hence, a fractal landscape which consists of a hill covered with tiny bumps would be closer to two dimensions, while a landscape composed of a rough surface with many average sized hills would be much closer to the third dimension [6]. 292

5 3.1 Fractal Dimension There are many definitions of dimension which give a non-integer or fractal dimension. These dimensions are particularly useful in characterizing fractal objects. Here we will concentrate on the similarity dimension, denoted by D s, to characterize the construction of regular fractal objects. The concept of dimension [16] is closely associated with that of scaling. Consider the line, surface and solid divided up respectively by self-similar sub-lengths, sub-areas and sub-volumes of side length ε. In the following derivation assume that the length L, area A, and volume V, are all equal to unity. Consider first the line. If the line is divided into N smaller self-similar segments, each ε in length, then ε is in fact the scaling ratio, i.e. ε /L= ε since L=1. Thus L=Nε =1 i.e. the unit line is composed of N self-similar parts scaled by ε =1/N. A=N ε 2 =1 Now consider the unit area. If we divide the area again into N segments each ε 2 in area, then i.e. the unit surface is composed of N self-similar parts scaled by ε= 1/N 1/2. Applying similar logic, we obtaining for a unit volume V=N ε 3 =1 i.e. the unit solid is N self-similar parts scaled by ε=1/n 1/3 Examining expressions we see that the exponent of ε in each case is a measure of the (similarity) dimension of the object, and we have in general N ε Ds =1 Using logarithms leads to the expression, log(n ε Ds ) =log 1=0 log N+ D s log ε =0 log N = - D s log or log N= D s log(1/ ε) D s = /ε (1) Here the subscript s denotes the similarity dimension. The above equation may also be used to produce dimension estimates of fractal objects where D s is non-integer. 293

6 For Example: i. Cantor Set: Fig.7: Construction of the Cantor Set From Fig.7 we see that the left-hand third of the set contains an identical copy of the set. There are two such identical copies of the set contained within the set, thus N=2 and ε =. According to equation 1 the similarity dimension is then D s = / / = = Thus, for the cantor set, D s is less than one greater than zero. In fact it has a non-integer similarity dimension of due to the fractal structure of the object. Instead of considering each sub-interval of the cantor set scaled down by one-third we could have looked at each subinterval scaled down by one-ninth. As in the Fig.7 there are four such segments, each an identical copy of the set. In this case N=4 and ε =1/9 and again this leads to a similarity dimension of D s = D s = / / = = = = = = D s = = = = Where the scaling constant, c depends on the scale used to identify the self-similarity of the object. 294

7 ii. The Koch curve The Koch curve is simply constructed using an iterative procedure beginning with the initiator of the set as the unit line segment (step k=0 in the Fig. 8). The unit line segment is divided into thirds and the middle third removed. The middle third is then replaced with two equal segments, both one-third in length, which form an equilateral triangle (step k=1); this step is the generator of the curve. At the next step (k=2), the middle third is removed from each of the four segments and each is replaced with two equal segments as before. This process is repeated an infinite number of times to produce the Koch curve. The Koch curve is a fractal object possessing a fractal dimension. Each smaller segment of the Koch curve is an exact replica of the whole curve. At each scale there are four sub-segments making up the curve, each one a one third reduction of the original curve. Thus, N=4, ε= and the similarity dimension based on expression D s = /ε = That is, the Koch curve has a dimension greater than that of the unit line and less than that of the unit area. Fig. 8: Construction of the Koch Curve iii. The Menger sponge So far we have looked at construction on the line (cantor set) and in the plane (Koch curve). The Menger sponge is constructed in 3D space. The initiator in the construction is a cube. The first iteration towards the final fractal object, the generator, is formed by drilling through the middle segment of each face. This leaves a pre fractal composed of twenty smaller cubes each scaled down by one-third. These cubes are then drilled out leaving 400 cubes scaled down by one-ninth from the original cube. Repeated iteration of this construction process leads to the Menger sponge. The similarity dimension of the Menger sponge is 295

8 D s = /ε = = Fig.9: Construction of Menger Sponge 4. GENERATION OF FRACTALS Common techniques for generating fractals are: i. Escape-time fractals ii. Iterated function systems iii. Random fractals i. Escape Time fractals Escape-time fractals are defined by a recurrence relation at each point in a space. It use a formula or recurrence relation at each point in a space (such as the complex plane); usually quasi-self-similar; also known as "orbit" fractals. The Mandelbrot set M is defined by a family of complex quadratic polynomials f c : C C (1) given by f c = z 2 + c (2) where c is a complex parameter. For each c, one considers the behaviour of the sequence (0, f c (0), f c (fc (0)), f c (f c (f c (0))),...) (3) Thus, we map all the points in which the sequence (0, c, c 2 + c, (c 2 + c) 2 + c,...), c C (4) does not escape to infinity. 296

9 Examples of escape time fractals Burning Ship fractal(fig. 10a), Nova fractal(fig. 10b) and Lyapunov fractal(fig. 10c) ). (a) (b) (c) Fig. 10: Examples of escape time fractals ii. Iterated Function System These fractals have a fixed geometric replacement rule. One of them is the Menger sponge. Examples of Iterated function System Koch snowflake, Cantor set, Haferman carpet, Sierpinski carpet(fig. 11), Sierpinski gasket, Peano curve(fig. 11), Harter-Heighway dragon curve, T-Square, Menger sponge Sierpinski carpet Peano curve construction Fig. 11: Examples of Iterated Function System iii. Random Fractals These kinds of fractals are generated in a more random way, like the trajectories of Brownian motion. These are generated by stochastic rather than deterministic processes. Examples of these types are trajectories of the Brownian motion, Lacvy flight, fractal landscapes and the Brownian tree. Random fractal is shown by the following figure: Fig. 12: Fractal Terrain 297

10 4. CLASSIFICATION OF FRACTALS Fractals can be classified according to their self-similarity. There are three types of selfsimilarity found in fractals: i. Exact self-similarity ii. Quasi-self-similarity iii. Statistical self-similarity i. Exact self-similarity This is the strongest type of self-similarity where fractal appears identical at different scales. Fractals defined by iterated function systems often display exact self similarity. E.g. Koch Snowflake which is a fractal that begins with an equilateral triangle and then replaces the middle third of every line segment with a pair of line segments that form an equilateral(fig. 12). Fig. 12: Koch Snowflake ii. Quasi self-similarity Fractal appears approximately (but not exactly) identical at different scales. This is a loose form of self-similarity. Quasi-self-similar fractals contain small copies of the entire fractal in distorted and degenerate forms. Fractals defined by recurrence relations are usually quasi-self similar but not exactly self-similar. e.g., the Mandelbrot set's satellites are approximations of the entire set, but not exact copies, as shown in Fig.13. Fig.13: Basic Mandelbrot set, Six times magnification of the Mandelbrot set, Hundred times magnification, Two Thousand times magnification iii. Statistical self-similarity These type of fractals repeat a pattern stochastically so numerical or statistical measures are preserved across scales. This is the weakest type of self-similarity. Random fractals are examples of fractals which are statistically self-similar, but neither exactly nor quasi-self similar. e.g., the wellknown example of the coastline of Britain.(Fig.14) 298

11 Fig. 14: coastline of Britain 5. NEW APPROACH IN FRACTAL GRAPHICS In 2002, Rani introduced superior iterations in the study of fractals [14]. This was a new iterative approach to study fractal models, which was found superior to the conventional Peano- Picard iterative approach. Rani called the new gallery of fractals superior fractals. Subsequently, In 2002 Rani and other workers used the superior approach and generated escape-time fractals [14,15] fractals via iterated function systems[4] and strange attractors[15]. SUPERIOR ITERATION METHOD Iteration methods are one way to achieve the self-similarity exhibited by fractals. Basically, this is done by using two types of feedback machines, one-step machines and two-step machines [12]. Both types of machines can be characterized by iterative procedures. One-step feedback machines are characterized by Peano-Picard iterations (generally called Picard or function iterations) represented by the formula +1 = f( ), where f can be any function of x. Definition (Picard Orbit) Let X be a non-empty set of numbers and f: X X. For a point in X, the Picard orbit (generally called orbit) of f is the set of all iterates of the point, that is: O(f, ) = { : = f( ), n = 1, 2,...}. The orbit of f at the initial point, O(f, ), is the sequence { ( )}. For a long time, fractal theory was based on one-step feedback machines; all the fractal models were studied in the Picard orbit until the two-step feedback machine was introduced by Rani in In two-step feedback machines, the output is computed by the formula = g (, ), which requires two numbers as input and returns a new number. For example, the Fibonacci numbers are generated using g (, ) = +. (Rani, 2002) characterized the two-step feedback machine by superior iterates in fractal graphics and generated superior fractals. It was a new approach in computation, visualization and analysis of fractal models. The following is the definition of superior iterates. Definition (Superior iterates) Let X be a non-empty set of real numbers and f : X X. For an X, construct a sequence { } in the following manner: 299

12 f + 1 f + 1 f + 1 Where 0 < 1 and { } is convergent away from 0. The sequence { } constructed this way is called a superior sequence of iterates, denoted by SO f,,. At 1, SO f,, reduces to O f,. This procedure was essentially given by Mann [10] and Krasnosel skii was the first to study it for 1 in Since the results obtained in fractal modelling via Mann iterates are the super set of 2 their corresponding fractal models in the Picard orbit, Rani called the same superior iterates[14]. Researchers have since developed superior fractal models for, n = 1, 2... for various values of. 6. REAL-LIFE RELEVANCE, IMPORTANCE & APPLICATIONS OF FRACTALS Fractals have and are being used in many different ways. Both artist and scientist are intrigued by the many values of fractals. Fractals are being used in applications ranging from image compression to finance. We are still only beginning to realize the full importance and usefulness of fractal geometry. One of the largest relationships with real-life is the similarity between fractals and objects in nature. The resemblance many fractals and their natural counter-parts is so large that it cannot be overlooked. Mathematical formulas are used to model self-similiar natural forms. The pattern is repeated at a large scale and patterns evolve to mimic large scale real world objects. One of the most useful applications of fractals and fractal geometry is in image compression. It is also one of the more controversial ideas. The basic concept behind fractal image compression is to take an image and express it as an iterated system of functions. The image can be quickly displayed, and at any magnification with infinite levels of fractal detail. The largest problem behind this idea is deriving the system of functions which describe an image. One of the more trivial applications of fractals is their visual effect. Fractals have been used commercially in the film industry, in films such as Star Wars and Star Trek. Fractal images are used as an alternative to costly elaborate sets to produce fantasy landscapes. Another seemingly unrelated application of fractals and chaos is in music. Some music, including that of Back and Mozart, can be stripped down so that is contains as little as 1/64th of its notes and still retain the essence of the composer. Many new software applications are and have been developed which contain chaotic filters, similar to those which change the speed, or the pitch of music. Fractal geometry also has an application to biological analysis. Fractal and chaos phenomena specific to non-linear systems are widely observed in biological systems. A study has established an analytical method based on fractals and chaos theory for two patterns: the dendrite pattern of cells 300

13 during development in the cerebellum and the firing pattern of intercellular potential. Variation in the development of the dendrite stage was evaluated with a fractal dimension [7]. 6.1 Applications in various fields DATA COMPRESSION In December 1992, Microsoft released a compact disk entitled the Encarta Encyclopaedia. It contains thousands of articles, 7000 photographs, 100 animations, and 800 colour maps. All of this is in less than 600 megabytes of data. It was possible only by the fractals and the answer lies in the mathematics of fractal data compression. DIFFUSION Fractals can be used to describe the spreading of substances, such as gases diffusing or oil spilling in water. In order to make a diffusion fractal, we need to start from the centre and spread the points outwards. The way this is done is by randomly moving points around the screen, similarly to real-life molecules Brownian motion. When a point hits the centre point, we make it stay there permanently. When some other point hits either the centre point, or the new point, we make it stay as well. Similarly, this can be used to model not only diffusion, but the spilling of oil in water as well. ECONOMY In economy, perhaps the most important thing is to be able to predict more or less accurately what will happen to the market after some time. Until very recently, the dominant theory that was used for this was the so called Portfolio Theory. According to it, the probability of various changes of the market can be shown using the standard Bell curve. Here we can show the relation between change in price and the probability of the changes. Now with the concept of this curve we can predict the forthcoming fluctuations in the market. The standard Bell curve is shown by the following Fig.15. Fig.15: Standard Bell curve Assuming this theory is accurate; we can conclude that very small changes happen most often, while very big changes happen extremely rarely. However, this is not true in practice. While on the bell curve, one can observe the probability of rapid changes to approach zero, they can, be seen almost every month at the real market. Recently, in about 20 years after discovering fractals, Benoit Mandelbrot introduced a new fractal theory that can be used much more efficiently than the Portfolio Theory to analyze the market. Consider taking a year of market activity and graphing the price for every month. We will get a broken line with some rises and falls. Now, if we take one of the month and graph in a more detailed way with every week shown, we will get a very similar line with some rises and falls. If we make it more and more detail by showing every day, every hour and even every minute or second, We will still get the same, only smaller, rises and falls. There is the Brownian self-similarity, Mandelbrot came up with a method of creating fractals that fit the above description. 301

14 FRACTAL ANTENNA A fractal antenna (Fig. 16) is an antenna that uses a fractal, self-similar design maximize the length, or increase the perimeter (on inside sections or the outer structure), of material that can receive or transmit electromagnetic radiation within a given total surface area or volume. Such fractal antennas are also referred to as multilevel and space filling curves, but the key aspect lies in their repetition of a motif over two or more scale sizes, or 'iterations'. For this reason, fractal antennas are very compact, are multiband or wideband, and have useful applications in cellular telephone and microwave communications. Fig. 16: An example of a fractal antenna: a space-filling curve called a Minkowski Island NEWTON S METHOD Besides exotic applications in nature, fractals have important mathematical applications as well. One of them is in the analysis of the Newton s method, which is used for approximating roots of an equation. For example, it can be used to solve an equation x n = 1, where n is some positive integer. One of the roots of this equation is always 1, and if n is even -1 is also one of the roots. The rest of the roots are complex numbers. If we graph these numbers on a complex plane, we will see that they are equally spaced on the unit circle. The Newton s method is based on making a guess of the root and then iterating a certain formula to change that number (it is the method used by computers). The number we will end up with is the root that is the closest to the guess, unless we are unlucky enough to pick a number that is equidistant from two different roots. In such case the number will jump around chaotically and create fractal shapes if we graph it. The fractal will have a different number of "chaos lines" depending on the number of roots (the value of n determines the number of roots). CHEMICAL REACTIONS: We are probably familiar with the concept of forward and backward reactions. Most reactions are accompanied by a backward reaction, in which the products turn back into the reactants. At equilibrium, the rates of these reactions become equal and the overall composition of the system does not change. However, the fact that is usually missed here is that talking about the rates of reactions we are talking about average rates, since the rates depend on the movement of particles, which involves a lot of chance. Sometimes, however, the rates become different for a short interval of time and the composition of the system changes. We might guess, these changes would be very chaotic. Maybe if we view every three consecutive concentrations of a substance as coordinates of a point in space. We can get something that is fractal in shape. Such fractal would be a strange attractor 302

15 because we know that this is the type of fractals based on changing numbers. Indeed, fractal shapes were found after graphing many different systems, even such common ones as hydrogen and oxygen reacting to make water. One of the scientists who tried to study this mathematically was Otto Rossler. He came up with three formulas that could model chemical reactions. When these three formulas are used to create a strange attractor, they create the famous 3-dimensional Rossler Attractor. Fig. 17: Rossler Attractor HUMAN BODY Fractals, being a math topic, are very important in real life also. We will find out that our organs are made of fractals too. Lungs The first place where this is found is in the pulmonary system, which we use to breathe. The pulmonary system is composed of tubes, through which the air passes into microscopic sacks called alveoli. The main tube of the system is trachea, which splits into two smaller tubes that lead to different lungs, called the bronchi. The bronchi are in turn split into smaller tubes, which are even further split. This splitting continues further and further until the smallest tubes, called the bronchioles which lead into the alveoli. This description is similar to that of a typical fractal, especially a fractal canopy, which is formed by splitting lines. The endpoints of the pulmonary tubes, the alveoli, are extremely close to each other. The property of endpoints being interconnected is another property of fractal canopies. Blood Vessels Similarly to bronchial tubes, splitting can also be found in blood vessels. Arteries, for example start with the aorta, which splits into smaller blood vessels. The smaller ones split as well, and the splitting continues until the capillaries, which, just like alveoli, are extremely close to each other. Because of this, blood vessels can also be described by fractal canopies. Brain The surface of the brain, where the highest level of thinking takes place contains a large number of folds. Because of this, a human, who is the most intellectually advanced animal, has the most folded surface of the brain as well. Instead of 2, which is the dimension of a smooth surface, the surface of a brain has a dimension greater than 2. In humans, it is obviously the highest, being as large as between Here s another topic for science fiction: super-intelligent beings with a fractal brain of dimension up to

16 Membranes The surface folding similar to that of a brain was found in many other surfaces, such as the ones inside the cell on mitochondria, which is used for obtaining energy and the endoplasmic reticulum, which is used for transporting materials. The same kind of folding was found in the nasal membrane, which allows sensing smells better by increasing the sensing surface. However, in humans this membrane is less fractal than in other animals, which makes them less sensitive to smells. POPULATION GROWTH We hear about the rapid growth of population in developing countries the all the time. With the problems that it is constantly causing, it is rather obvious how important it is to analyze the population growth. Last century, Thomas Malthus came with a theory in which he said that with every generation, the population increases a certain amount of times depending on the growth rate. Mathematically, if we make r the percent growth rate, and P be the old population, then our formula will become New (P) = (1+ r) P (1) For example, if r = 1/2 the population will increase 50%, or become 1.5 times larger. However, something about this theory seems not right. According to this theory, the population will increase infinitely. However, the population is really limited by natural resources, such as space and food. Let s pretend the maximum possible population the environment can hold is 1, so P is a number from 0 to 1. As the population gets closer to 1, the growth rate is going to decrease and get close to 0. We can achieve this by multiplying the growth rate by (1 P). This way, as P is getting closer to 1, the growth rate will be multiplied by a number that is getting close to 0. We now determined that the growth rate should really be r (1 P). If we use it in the above formula, we get New (P) = [1 + r (1 P)] P (2) If we now do some algebra New (P) = [1 + r rp] P or New (P) = P + rp rp2 or New (P) = (1 + r). P rp2 We will now use this formula. Knowing this formula, it is easy to determine what the population becomes after a long period of time. For example, when r is between 0 and 2, the population becomes 1 and stays there, no matter what it was at the beginning. When it is 2.25, it will always end up jumping between 1.17 and When r is 2.5, it ends up jumping between 1.22, 0.54, 1.16 and When it is 2.5, it ends up jumping between 8 values, and when r gets higher, it jumps between 16 values. As we increase r, the number of these values doubles. We call this bifurcation. So this will give us a fractal pattern as well. 304

17 Weather Weather behaves very unpredictably. Sometimes, it changes very smoothly from day to day. Other times, however, it changes very rapidly. Although weather forecasts are often accurate, there is never an absolute chance of them being right. Indeed, weather can create fractal patterns. This was discovered by Edward Lorenz, who was mathematically studying the weather patterns. Lorenz came up with three formulas that could model the changes of the weather. When these formulas are used to create a 3D strange attractor, they form the famous Lorenz Attractor: Landscapes Fractal landscapes are a very classic application of fractals. If we look at a mountain, we will not find its shape being a cone, but instead we will find a more complicated shape with some smaller hills and valleys. Looking at every hill, we will find it to be composed of even smaller hills and valleys. Even if we pick up a small rock from the mountain, we will find it to be similar to the entire mountain a property of fractals which we defined as self-similarity. To form a 3D landscape out of a fractal, all we have to do is assign a height to every point depending on the color and draw a picture with those heights. Usually plasma fractals are used for the landscapes because they give the most realistic pictures. Fractal Art Pictures like this are one of the applications of fractals. It is an example of abstract art, which can be used for various decorative purposes when the colors are chosen appropriately. The natural intricate designs of fractals allow the artist not to worry about shapes, but only take care of other things such as colors, shading and 3D effects. A simple 2-dimensional strange attractor, for example, can be turned into something very different like this: Plants: Most plants show some form of branching. This happens when the main stem (of trunk) splits into a number of branches. Each of those branches splits into smaller branches, and this kind of splitting continues until the smallest branches. A tree branch looks similar to the entire tree and a fern leaf looks almost identical to the entire fern. This property, called self-similarity is one of the most important properties of fractals. Because of numerous ways branching can be achieved geometrically, there are several ways of creating models of plants as well. One classic way of creating fractal plants is by means of l-systems. Lindenmayer, who is the founder of l-systems, introduced them in a book called The Algorithmic Beauty of Plants, where he first used them to create models of plants. Another way of creating fractal plants is using fractal canopies or Pythagoras trees. Benoit Mandelbrot, the founder of fractals has first noticed the properties of fractals on the coast of Britain. He realized that no matter how small a piece of the coast is, it will still have its own bays, harbors, and capes. Basing himself on Richardson s data, he was able to prove that many coasts as well as borderlines are fractal. Richardson searched many encyclopedias to find data about the lengths of certain borderlines. He found enormous differences in data from different countries. For example, Portugal claimed its border with Spain to be 1214 km, while Spain claimed it to be 987 km. Portugal, as a smaller country would definitely measure its border more accurately. Thus, we know that the increase of accuracy increased the measurement... which is one of the properties of fractals! This happens because fractals are figures with an infinite amount of detail, and measuring more accurately adds more of these details, which adds to the overall size. Mandelbrot claimed that the difference in the two measurements were due to the fact that Spain used a "yardstick" that was bigger than Portugal s. If, for example, Spain measured the border with a 2 kilometer yardstick, its measurement would be less exact than Portugal, which used a 1 kilometer yardstick. If we graph log(total length) against log(length of yardstick), we get lines with negative slopes since the total length decreases with the increase of the size of the yardstick: 305

18 Fig.18: Graph to find fractal dimension of the coasts and borders Using this graph, we can find fractal dimensions of the coasts and borders. Simple models of coasts can be made with base-motif fractals that use polygons for the bases. Such fractals are also called Koch Islands. Special Effects Computer graphics has been one of the earliest applications of fractals. Indeed, fractals can achieve realism, beauty and require very small storage space because of easy compression. Very beautiful fractal landscapes were published as far back as in Mandelbrot s Fractal Geometry of Nature. 7. CONCLUSION In this survey paper we have attempted to review the concept of fractals. Fractals are irregular geometric objects made of parts that are in some way similar to the whole. These figures and the study of them, Fractal geometry, allow the connection between math and nature. In this paper fractal Geometry is explained by calculating fractal dimension of various fractal objects. Various fractal generation techniques are also discussed along with its classification which depends upon selfsimilarity. New approaches in fractal graphics are also studied giving the brief review on superior fractals which can be used to analyze and generate new fractals. There are hundreds of applications of fractals from different aspects. In this paper we have also described some of the practical applications of fractals. REFERENCES 1. M. F. Barnsley and R. Hawley, Fractals Everywhere (Boston: Academic Press Professional, 1993). 2. Beck Christian, Physical meaning for Mandelbrot and Julia sets (Physica D Vol. 125, No. 3-4, pp ) Briggs Johnl, Fractals: The Patterns of Chaos, pp. 148, Munesh Chandra and Mamta Rani, Categorization of fractal plants, Chaos Solitons Fractals, 41, 2009, Falconer Kenneth, Fractal Geometry: Mathematical Foundations and Applications (John Wiley & Sons, Ltd. xxv, 2003). 6. Frame Michael, Mandelbrot B.B. and Neger Nial. Fractal Geometry 306

19 Mandelbrot B.B. (1967) How long is the coast of Britain?, Statistical self similarity and fractional dimension Science Vol. 156, pp B. B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman and Company, 1982). 10. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4, 1953, Ashish Negi and Rani Mamta, A new approach to dynamic noise on superior Mandelbrot set, Chaos Solitons Fractals, 36, 2008, Peitgen Heinz-Otto, Jurgens Hartmut and Saupe Dietmar, Chaos and Fractals: New frontiers of science, Second edition, (Springer-Verlag, New York, 2004). 13. Mamta Rani, Vinod Kumar and Saurabh Goel, A new approach to pattern recognition in fractal ferns, Proc. International conference in software engineering & computer systems, icsecs 09, Kuantan, Malaysia, Mamta Rani, Iterative Procedures in Fractals and Chaos Ph.D. Thesis, Gurukula Kangri Vishwavidyalaya, Mamta Rani, Fractals in Vedic heritage and fractal carpets, Proc. of the National Seminar on History, Heritage and Development of Mathematical Sciences, Oct , 2003; Published by Dr. S. P. M. Govt. Degree College, Allahabad, March 2005, Paul S Addison, Fractals And Chaos-An illustrated Course, (Overseas Press India Private limited, First India addition 2005). 17. Hitashi and Sugandha Sharma, Fractal Image Compression Scheme using Biogeography Based Optimization on Color Images, International Journal of Computer Engineering & Technology (IJCET), Volume 3, Issue 2, 2012, pp , ISSN Print: , ISSN Online: Sanjay V Khobragade and Anitha V R, Design and Simulation of Fractal Tree Antenna for Wireless Application, International Journal of Electronics and Communication Engineering & Technology (IJECET), Volume 3, Issue 1, 2012, pp , ISSN Print: , ISSN Online: Jagadeesha.S, Vani R.M and P.V Hunugund, Stacked Plus Shape Fractal Antenna for Wireless Application, International Journal of Electronics and Communication Engineering & Technology (IJECET), Volume 3, Issue 1, 2012, pp , ISSN Print: , ISSN Online:

Fixed Point Iterative Techniques An Application to Fractals

Fixed Point Iterative Techniques An Application to Fractals Fixed Point Iterative Techniques An Application to Fractals Narayan Partap 1 and Prof. Renu Chugh 2 1 Amity Institute of Applied Sciences, Amity University, Noida, India 2 Department of Mathematics, M.D.

More information

Fractal Coding. CS 6723 Image Processing Fall 2013

Fractal Coding. CS 6723 Image Processing Fall 2013 Fractal Coding CS 6723 Image Processing Fall 2013 Fractals and Image Processing The word Fractal less than 30 years by one of the history s most creative mathematician Benoit Mandelbrot Other contributors:

More information

Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013

Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013 Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013 Background Fractal geometry is one of the most important developments in mathematics in the second half of the 20th century. Fractals

More information

Session 27: Fractals - Handout

Session 27: Fractals - Handout Session 27: Fractals - Handout Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line. Benoit Mandelbrot (1924-2010)

More information

Fractal Geometry. LIACS Natural Computing Group Leiden University

Fractal Geometry. LIACS Natural Computing Group Leiden University Fractal Geometry Contents Introduction The Fractal Geometry of Nature Self-Similarity Some Pioneering Fractals Dimension and Fractal Dimension Cellular Automata Particle Systems Scope of Fractal Geometry

More information

Mathematics 350 Section 6.3 Introduction to Fractals

Mathematics 350 Section 6.3 Introduction to Fractals Mathematics 350 Section 6.3 Introduction to Fractals A fractal is generally "a rough or fragmented geometric shape that is self-similar, which means it can be split into parts, each of which is (at least

More information

Fractal Geometry. Prof. Thomas Bäck Fractal Geometry 1. Natural Computing Group

Fractal Geometry. Prof. Thomas Bäck Fractal Geometry 1. Natural Computing Group Fractal Geometry Prof. Thomas Bäck Fractal Geometry 1 Contents Introduction The Fractal Geometry of Nature - Self-Similarity - Some Pioneering Fractals - Dimension and Fractal Dimension Scope of Fractal

More information

Uttarkhand Technical University, J.B.Institute of Technology, Uttarakhand Technical University, Dehradun, INDIA Dehradun, INDIA Dehradun, INDIA

Uttarkhand Technical University, J.B.Institute of Technology, Uttarakhand Technical University, Dehradun, INDIA Dehradun, INDIA Dehradun, INDIA Volume 3, Issue 12, December 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analysis of

More information

Exploring the Effect of Direction on Vector-Based Fractals

Exploring the Effect of Direction on Vector-Based Fractals BRIDGES Mathematical Connections in Art, Music, and Science Exploring the Effect of Direction on Vector-Based Fractals Magdy Ibrahim and Robert J. Krawczyk College of Architecture Dlinois Institute of

More information

Generation of 3D Fractal Images for Mandelbrot and Julia Sets

Generation of 3D Fractal Images for Mandelbrot and Julia Sets 178 Generation of 3D Fractal Images for Mandelbrot and Julia Sets Bulusu Rama #, Jibitesh Mishra * # Department of Computer Science and Engineering, MLR Institute of Technology Hyderabad, India 1 rama_bulusu@yahoo.com

More information

New Mandelbrot and Julia Sets for Transcendental Function

New Mandelbrot and Julia Sets for Transcendental Function New Mandelbrot and Julia Sets for Transcendental Function Suraj Singh Panwar #1, Mr.Pawan Kumar Mishra *2 # M.Tech. - CSE, Scholar, Faculty of Technology, Computer Science and Engineering Department, Uttarakhand

More information

FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE

FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE ISSN 2320-9143 40 International Journal of Advance Research, IJOAR.org Volume 1, Issue 3, March 2013, Online: ISSN 2320-9143 FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE Soumya Prakash Sahu, Indian

More information

Fractals and Multi-Layer Coloring Algorithms

Fractals and Multi-Layer Coloring Algorithms Fractals and Multi-Layer Coloring Algorithms Javier Barrallo and Santiago Sanchez Mathematics, Physics and Computer Science The University of the Basque Country School of Architecture. Plaza Onati, 2.

More information

Construction of 3D Mandelbrot Set and Julia Set

Construction of 3D Mandelbrot Set and Julia Set Construction of 3D Mandelbrot Set and Julia Set Ankit Garg Assistant Professor Amity University, Haryana Manesar, Gurgaon Akshat Agrawal Assistant Professor Amity University, Haryana Manesar, Gurgaon Ashish

More information

Lecture 3: Some Strange Properties of Fractal Curves

Lecture 3: Some Strange Properties of Fractal Curves Lecture 3: Some Strange Properties of Fractal Curves I have been a stranger in a strange land. Exodus 2:22 1. Fractal Strangeness Fractals have a look and feel that is very different from ordinary curves.

More information

FRACTALS The term fractal was coined by mathematician Benoit Mandelbrot A fractal object, unlike a circle or any regular object, has complexity at all scales Natural Fractal Objects Natural fractals

More information

Some geometries to describe nature

Some geometries to describe nature Some geometries to describe nature Christiane Rousseau Since ancient times, the development of mathematics has been inspired, at least in part, by the need to provide models in other sciences, and that

More information

Fractals in Nature and Mathematics: From Simplicity to Complexity

Fractals in Nature and Mathematics: From Simplicity to Complexity Fractals in Nature and Mathematics: From Simplicity to Complexity Dr. R. L. Herman, UNCW Mathematics & Physics Fractals in Nature and Mathematics R. L. Herman OLLI STEM Society, Oct 13, 2017 1/41 Outline

More information

Fractal Analysis. By: Mahnaz EtehadTavakol

Fractal Analysis. By: Mahnaz EtehadTavakol Fractal Analysis By: Mahnaz EtehadTavakol A fractal a non-regular geometric shape can be split into parts which posses self similarity Naturally Occurring Fractal A special type of broccoli, this cruciferous

More information

An Introduction to Fractals

An Introduction to Fractals An Introduction to Fractals Sarah Hardy December 10, 2018 Abstract Fractals can be defined as an infinitely complex pattern that is self-similar, that is contains replicas of itself of varying sizes, across

More information

Sunil Shukla et al, Int.J.Computer Technology & Applications,Vol 4 (2), STUDY OF NEWBIE FRACTAL CONTROLLED BY LOG FUNCTION

Sunil Shukla et al, Int.J.Computer Technology & Applications,Vol 4 (2), STUDY OF NEWBIE FRACTAL CONTROLLED BY LOG FUNCTION ISSN:9-6093 STUDY OF NEWBIE FRACTAL CONTROLLED BY LOG FUNCTION Sunil Shukla Ashish Negi Department of Computer Science Department of Computer Science & Engineering Omkarananda Institute of Management G.B

More information

Fractal Dimension and the Cantor Set

Fractal Dimension and the Cantor Set Fractal Dimension and the Cantor Set Shailesh A Shirali Shailesh Shirali is Director of Sahyadri School (KFI), Pune, and also Head of the Community Mathematics Centre in Rishi Valley School (AP). He has

More information

Hei nz-ottopeitgen. Hartmut Jürgens Dietmar Sau pe. Chaos and Fractals. New Frontiers of Science

Hei nz-ottopeitgen. Hartmut Jürgens Dietmar Sau pe. Chaos and Fractals. New Frontiers of Science Hei nz-ottopeitgen Hartmut Jürgens Dietmar Sau pe Chaos and Fractals New Frontiers of Science Preface Authors VU X I Foreword 1 Mitchell J. Feigenbaum Introduction: Causality Principle, Deterministic

More information

Stat 45: Our Fractal World? Topics for Today. Lecture 1: Getting Started. David Donoho Statistics Department Stanford University. Sierpinski Gaskets

Stat 45: Our Fractal World? Topics for Today. Lecture 1: Getting Started. David Donoho Statistics Department Stanford University. Sierpinski Gaskets Stat 45N: Our Fractal World? Lecture 1 1 Stat 45N: Our Fractal World? Lecture 1 2 Stat 45: Our Fractal World? Topics for Today Lecture 1: Getting Started What Are They? David Donoho Statistics Department

More information

CGT 581 G Procedural Methods Fractals

CGT 581 G Procedural Methods Fractals CGT 581 G Procedural Methods Fractals Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics Technology Procedural Techniques Model is generated by a piece of code. Model is not represented

More information

Fractals. Materials. Pencil Paper Grid made of triangles

Fractals. Materials. Pencil Paper Grid made of triangles Fractals Overview: Fractals are new on the mathematics scene, however they are in your life every day. Cell phones use fractal antennas, doctors study fractal-based blood flow diagrams to search for cancerous

More information

Fractals Week 10, Lecture 19

Fractals Week 10, Lecture 19 CS 430/536 Computer Graphics I Fractals Week 0, Lecture 9 David Breen, William Regli and Maim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Dreel University http://gicl.cs.dreel.edu

More information

Study of Fractal Antennas and Characterization

Study of Fractal Antennas and Characterization Study of Fractal Antennas and Characterization Department of Physics M.M.P.G. College, Fatehabad (Haryana) Abstract-Fractal geometry involves a repetitive generating methodology that results in contours

More information

Fractals. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Fractals. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Fractals Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Geometric Objects Man-made objects are geometrically simple (e.g., rectangles,

More information

Chapter 12: Fractal Geometry The Koch Snowflake and Self-Similarity

Chapter 12: Fractal Geometry The Koch Snowflake and Self-Similarity Chapter 12: Fractal Geometry 12.1 The Koch Snowflake and Self-Similarity Geometric Fractal Our first example of a geometric fractal is a shape known as the Koch snowflake, named after the Swedish mathematician

More information

MAADHYAM. Nurturing Gifted Minds. Printed Under Gifted Education Abhiyaan An Initiative By The Office Of Principal Scientific Advisor To The

MAADHYAM. Nurturing Gifted Minds. Printed Under Gifted Education Abhiyaan An Initiative By The Office Of Principal Scientific Advisor To The MAADHYAM Nurturing Gifted Minds Printed Under Gifted Education Abhiyaan An Initiative By The Office Of Principal Scientific Advisor To The 1 Government Of India INTRODUCTION TO FRACTALS When you see a

More information

Section 9.5. Tessellations. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 9.5. Tessellations. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 9.5 Tessellations What You Will Learn Tessellations 9.5-2 Tessellations A tessellation (or tiling) is a pattern consisting of the repeated use of the same geometric figures to entirely cover a

More information

<The von Koch Snowflake Investigation> properties of fractals is self-similarity. It means that we can magnify them many times and after every

<The von Koch Snowflake Investigation> properties of fractals is self-similarity. It means that we can magnify them many times and after every Jiwon MYP 5 Math Ewa Puzanowska 18th of Oct 2012 About Fractal... In geometry, a fractal is a shape made up of parts that are the same shape as itself and are of

More information

Scientific Calculation and Visualization

Scientific Calculation and Visualization Scientific Calculation and Visualization Topic Iteration Method for Fractal 2 Classical Electrodynamics Contents A First Look at Quantum Physics. Fractals.2 History of Fractal.3 Iteration Method for Fractal.4

More information

Discrete Dynamical Systems: A Pathway for Students to Become Enchanted with Mathematics

Discrete Dynamical Systems: A Pathway for Students to Become Enchanted with Mathematics Discrete Dynamical Systems: A Pathway for Students to Become Enchanted with Mathematics Robert L. Devaney, Professor Department of Mathematics Boston University Boston, MA 02215 USA bob@bu.edu Abstract.

More information

Iterated Functions Systems and Fractal Coding

Iterated Functions Systems and Fractal Coding Qing Jun He 90121047 Math 308 Essay Iterated Functions Systems and Fractal Coding 1. Introduction Fractal coding techniques are based on the theory of Iterated Function Systems (IFS) founded by Hutchinson

More information

Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008

Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008 Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008 What is a fractal? A fractal is a geometric figure, often characterized as being self-similar : irregular, fractured, fragmented, or loosely connected

More information

Fun with Fractals Saturday Morning Math Group

Fun with Fractals Saturday Morning Math Group Fun with Fractals Saturday Morning Math Group Alistair Windsor Fractals Fractals are amazingly complicated patterns often produced by very simple processes. We will look at two different types of fractals

More information

COMPUTER ANALYSIS OF FRACTAL SETS

COMPUTER ANALYSIS OF FRACTAL SETS Proceedings of the Czech Japanese Seminar in Applied Mathematics 2006 Czech Technical University in Prague, September 14-17, 2006 pp. 1 8 COMPUTER ANALYSIS OF FRACTAL SETS PETR PAUŠ1 Abstract. This article

More information

A Review of Fractals Properties: Mathematical Approach

A Review of Fractals Properties: Mathematical Approach Science Journal of Applied Mathematics and Statistics 2017; 5(3): 98-105 http://www.sciencepublishinggroup.com/j/sjams doi: 10.11648/j.sjams.20170503.11 ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online)

More information

Introduction to fractal geometry: Definition, concept, and applications

Introduction to fractal geometry: Definition, concept, and applications University of Northern Iowa UNI ScholarWorks Presidential Scholars Theses (1990 2006) University Honors Program 1992 Introduction to fractal geometry: Definition, concept, and applications Mary Bond University

More information

Website.

Website. Admin stuff Questionnaire Name Email Math courses taken so far General academic trend (major) General interests What about Chaos interests you the most? What computing experience do you have? Website www.cse.ucsc.edu/classes/ams146/spring05/index.html

More information

Fractals: a way to represent natural objects

Fractals: a way to represent natural objects Fractals: a way to represent natural objects In spatial information systems there are two kinds of entity to model: natural earth features like terrain and coastlines; human-made objects like buildings

More information

Complexity is around us. Part one: the chaos game

Complexity is around us. Part one: the chaos game Complexity is around us. Part one: the chaos game Dawid Lubiszewski Complex phenomena like structures or processes are intriguing scientists around the world. There are many reasons why complexity is a

More information

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Chapter 9 Geometry Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 2 WHAT YOU WILL LEARN Transformational geometry,

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): 2321-0613 A Review Analysis of Different Geometries on Fractal Antenna with Various Feeding Techniques

More information

Gentle Introduction to Fractals

Gentle Introduction to Fractals Gentle Introduction to Fractals www.nclab.com Contents 1 Fractals Basics 1 1.1 Concept................................................ 1 1.2 History................................................ 2 1.3

More information

Chapter 1 Introduction

Chapter 1 Introduction Page 1 Chapter 1 Introduction 1.1 Introduction The twin subjects of fractal geometry and chaotic dynamics have been behind an enormous change in the way scientists and engineers perceive, and subsequently

More information

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2012 Lecture 28 November 8, 2012

CS 4300 Computer Graphics. Prof. Harriet Fell Fall 2012 Lecture 28 November 8, 2012 CS 4300 Computer Graphics Prof. Harriet Fell Fall 2012 Lecture 28 November 8, 2012 1 Today s Topics Fractals Mandelbrot Set Julia Sets L-Systems 2 Fractals The term fractal was coined in 1975 by Benoît

More information

Clouds, biological growth, and coastlines are

Clouds, biological growth, and coastlines are L A B 11 KOCH SNOWFLAKE Fractals Clouds, biological growth, and coastlines are examples of real-life phenomena that seem too complex to be described using typical mathematical functions or relationships.

More information

RAMSEY NUMBERS IN SIERPINSKI TRIANGLE. Vels University, Pallavaram Chennai , Tamil Nadu, INDIA

RAMSEY NUMBERS IN SIERPINSKI TRIANGLE. Vels University, Pallavaram Chennai , Tamil Nadu, INDIA International Journal of Pure and Applied Mathematics Volume 6 No. 4 207, 967-975 ISSN: 3-8080 (printed version); ISSN: 34-3395 (on-line version) url: http://www.ijpam.eu doi: 0.2732/ijpam.v6i4.3 PAijpam.eu

More information

CSC 470 Computer Graphics. Fractals

CSC 470 Computer Graphics. Fractals CSC 47 Computer Graphics Fractals 1 This Week Approaches to Infinity Fractals and Self-Similarity Similarity Iterative Function Systems Lindenmayer Systems Curves Natural Images (trees, landscapes..) Introduction

More information

New Escape Time Koch Curve in Complex Plane

New Escape Time Koch Curve in Complex Plane New Escape Time Koch Curve in Complex Plane Priti Dimri Associate Professor, Department of Computer Science and Engineering G.B Pant Engineering College Pauri Garhwal, 246001 Dharmendra Kumar Associate

More information

Discovering. Algebra. An Investigative Approach. Condensed Lessons for Make-up Work

Discovering. Algebra. An Investigative Approach. Condensed Lessons for Make-up Work Discovering Algebra An Investigative Approach Condensed Lessons for Make-up Work CONDENSED L E S S O N 0. The Same yet Smaller Previous In this lesson you will apply a recursive rule to create a fractal

More information

AN ALGORITHM TO GENERATE MODELS OF SNOWFLAKES

AN ALGORITHM TO GENERATE MODELS OF SNOWFLAKES AN ALGORITHM TO GENERATE MODELS OF SNOWFLAKES PHILIP CHUNG, COLIN BLOOMFIELD Abstract. In this paper we will describe our method of creating a computer algorithm to generate two-dimensional representations

More information

A TECHNOLOGY-ENHANCED FRACTAL/CHAOS COURSE. Taeil Yi University of Texas at Brownsville 80 Fort Brown Brownsville, TX

A TECHNOLOGY-ENHANCED FRACTAL/CHAOS COURSE. Taeil Yi University of Texas at Brownsville 80 Fort Brown Brownsville, TX A TECHNOLOGY-ENHANCED FRACTAL/CHAOS COURSE Taeil Yi University of Texas at Brownsville 80 Fort Brown Brownsville, TX 78520 tyi@utb.edu Abstract Easy construction of fractal figures is the most valuable

More information

THE H FRACTAL SELF-SIMILARITY DIMENSION CALCULATION OF PARDIS TECHNOLOGY PARK IN TEHRAN (IRAN)

THE H FRACTAL SELF-SIMILARITY DIMENSION CALCULATION OF PARDIS TECHNOLOGY PARK IN TEHRAN (IRAN) THE H FRACTAL SELF-SIMILARITY DIMENSION CALCULATION OF PARDIS TECHNOLOGY PARK IN TEHRAN (IRAN) * Saeid Rahmatabadi, Shabnam Akbari Namdar and Maryam Singery Department of Architecture, College of Art and

More information

FRACTALS, FUNCTIONS, and FEEDBACK SYSTEMS

FRACTALS, FUNCTIONS, and FEEDBACK SYSTEMS FRACTALS, FUNCTIONS, and FEEDBACK SYSTEMS Summary: This article describes an investigation into fractals, the methods of creating them, as well as some mathematical considerations about their nature. This

More information

BarnCamp The HTML 5 <canvas> element as seen through a fractal eye: a brief introduction

BarnCamp The HTML 5 <canvas> element as seen through a fractal eye: a brief introduction BarnCamp 2011 The HTML 5 element as seen through a fractal eye: a brief introduction Why? I like Fractals, they're pretty to look at and it amazes me how such beauty can come from a simple little

More information

On Fractal Colouring Algorithms

On Fractal Colouring Algorithms 5 10 July 2004, Antalya, Turkey Dynamical Systems and Applications, Proceedings, pp. 706 711 On Fractal Colouring Algorithms Nergiz Yaz Department of Mathematics, Faculty of Sciences Ankara University,

More information

Chapel Hill Math Circle: Symmetry and Fractals

Chapel Hill Math Circle: Symmetry and Fractals Chapel Hill Math Circle: Symmetry and Fractals 10/7/17 1 Introduction This worksheet will explore symmetry. To mathematicians, a symmetry of an object is, roughly speaking, a transformation that does not

More information

Lecture 8: Modelling Urban Morphology:

Lecture 8: Modelling Urban Morphology: SCHOOL OF GEOGRAPHY Lecture 8: Modelling Urban Morphology: Fractal Geometry, Relations to CA, And Urban Form Outline What are Fractals? Definitions and Properties Scaling and Links to Fractal Patterns

More information

ITERATIVE OPERATIONS IN CONSTRUCTION CIRCULAR AND SQUARE FRACTAL CARPETS

ITERATIVE OPERATIONS IN CONSTRUCTION CIRCULAR AND SQUARE FRACTAL CARPETS ITERATIVE OPERATIONS IN CONSTRUCTION CIRCULAR AND SQUARE FRACTAL CARPETS Dr. Yusra Faisal Al-Irhaim, Marah Mohamed Taha University of Mosul, Iraq ABSTRACT: Carpet designing is not only a fascinating activity

More information

THE DEGREE OF POLYNOMIAL CURVES WITH A FRACTAL GEOMETRIC VIEW

THE DEGREE OF POLYNOMIAL CURVES WITH A FRACTAL GEOMETRIC VIEW 225 THE DEGREE OF POLYNOMIAL CURVES WITH A FRACTAL GEOMETRIC VIEW S. Mohanty 1 and A. Misra 2 1 Department of Computer Science and Applications, Utkal University, Bhubaneswar-751004, INDIA. 2 Silicon Institute

More information

Exploring Fractals through Geometry and Algebra. Kelly Deckelman Ben Eggleston Laura Mckenzie Patricia Parker-Davis Deanna Voss

Exploring Fractals through Geometry and Algebra. Kelly Deckelman Ben Eggleston Laura Mckenzie Patricia Parker-Davis Deanna Voss Exploring Fractals through Geometry and Algebra Kelly Deckelman Ben Eggleston Laura Mckenzie Patricia Parker-Davis Deanna Voss Learning Objective and skills practiced Students will: Learn the three criteria

More information

COASTLINES AND FRACTAL GEOMETRY: ESTIMATING LENGTH AND GENERATING ISLANDS. Miranda Bradshaw Dallas Pullen Math 365 Wright 5/8/12

COASTLINES AND FRACTAL GEOMETRY: ESTIMATING LENGTH AND GENERATING ISLANDS. Miranda Bradshaw Dallas Pullen Math 365 Wright 5/8/12 COASTLINES AND FRACTAL GEOMETRY: ESTIMATING LENGTH AND GENERATING ISLANDS Miranda Bradshaw Dallas Pullen Math 365 Wright 5/8/12 Introduction The first connections that were made between coastlines and

More information

Filling Space with Random Line Segments

Filling Space with Random Line Segments Filling Space with Random Line Segments John Shier Abstract. The use of a nonintersecting random search algorithm with objects having zero width ("measure zero") is explored. The line length in the units

More information

4.3 Discovering Fractal Geometry in CAAD

4.3 Discovering Fractal Geometry in CAAD 4.3 Discovering Fractal Geometry in CAAD Francisco Garcia, Angel Fernandez*, Javier Barrallo* Facultad de Informatica. Universidad de Deusto Bilbao. SPAIN E.T.S. de Arquitectura. Universidad del Pais Vasco.

More information

Koch-Like Fractal Images

Koch-Like Fractal Images Bridges Finland Conference Proceedings Koch-Like Fractal Images Vincent J. Matsko Department of Mathematics University of San Francisco vince.matsko@gmail.com Abstract The Koch snowflake is defined by

More information

Fractal Geometry: History and Theory. Classical Euclidean geometry cannot accurately represent the natural world; fractal geometry is

Fractal Geometry: History and Theory. Classical Euclidean geometry cannot accurately represent the natural world; fractal geometry is Geri Smith Smith 1 MATH H324 College Geometry Dr. Kent Honors Research Paper April 26 th, 2011 Fractal Geometry: History and Theory Classical Euclidean geometry cannot accurately represent the natural

More information

Fractal Geometry and its Correlation to the Efficiency of Biological Structures

Fractal Geometry and its Correlation to the Efficiency of Biological Structures ScholarWorks@GVSU Honors Projects Undergraduate Research and Creative Practice 4-22-2013 Fractal Geometry and its Correlation to the Efficiency of Biological Structures Grand Valley State University Follow

More information

Fractals in Nature. Ivan Sudakov. Mathematics Undergraduate Colloquium University of Utah 09/03/2014.

Fractals in Nature. Ivan Sudakov. Mathematics Undergraduate Colloquium University of Utah 09/03/2014. Chesapeake Bay Mathematics Undergraduate Colloquium University of Utah 09/03/2014 Fractals in Nature Ivan Sudakov www.math.utah.edu/~sudakov www.mathclimate.org References 1. W. Szemplinska-Stupnicka.

More information

pagina 1 van 5 Location: Food for Thought > The Particle > Unification into a fractal dimension Blaze Labs Research Menu Home Food for Thought EHD Thrusters New Energy Research Experiments Links Contact

More information

Lecture Tessellations, fractals, projection. Amit Zoran. Advanced Topics in Digital Design

Lecture Tessellations, fractals, projection. Amit Zoran. Advanced Topics in Digital Design Lecture Tessellations, fractals, projection Amit Zoran Advanced Topics in Digital Design 67682 The Rachel and Selim Benin School of Computer Science and Engineering The Hebrew University of Jerusalem,

More information

ARi. Amalgamated Research Inc. What are fractals?

ARi. Amalgamated Research Inc. What are fractals? ARi www.arifractal.com What are fractals? Amalgamated Research Inc. A key characteristic of fractals is self-similarity. This means that similar structure is observed at many scales. Figure 1 illustrates

More information

Beautiful Repetitions

Beautiful Repetitions Beautiful Repetitions 5-minute introduction to Iterations & Fractals Gaurish Korpal (gaurish4math.wordpress.com) National Institute of Science Education and Research, Bhubaneswar March 28, 2015 Gaurish

More information

Solid models and fractals

Solid models and fractals Solid models and fractals COM3404 Richard Everson School of Engineering, Computer Science and Mathematics University of Exeter R.M.Everson@exeter.ac.uk http://www.secamlocal.ex.ac.uk/studyres/com304 Richard

More information

Fractals, Fibonacci numbers in Nature 17 mai 2015

Fractals, Fibonacci numbers in Nature 17 mai 2015 1 Sommaire 1 Sommaire... 1 2 Presentation... 1 3 Fractals in nature... 3 3.1 The Von Koch curve... 3 3.2 The Sierpinski triangle... 3 3.3 The Sierpinski carpet... 3 3.4 Hilbert s fractal... 4 3.5 Cantor

More information

Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor.

Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor. Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor. First published: May 17th, 2015. Updated: December, 13th, 2015. Blair D.

More information

Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor.

Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor. Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor. First published: May 17th, 2015. Blair D. Macdonald Abstract The Koch snowflake

More information

Hopalong Fractals. Linear complex. Quadratic complex

Hopalong Fractals. Linear complex. Quadratic complex Hopalong Fractals Hopalong fractals are created by iterating a more or less simple formula in x and y over and over again. In general three types of behaviour can be distinguished. Often the series will

More information

Fractal Art based on The Butterfly Effect of Chaos Theory

Fractal Art based on The Butterfly Effect of Chaos Theory Fractal Art based on The Butterfly Effect of Chaos Theory Yin-Wei Chang and Fay Huang Institute of Computer Science and Information Engineering National Ilan University, Taiwan Abstract. This paper proposes

More information

Computer Graphics 4731 Lecture 5: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics 4731 Lecture 5: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics 4731 Lecture 5: Fractals Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI What are Fractals? Mathematical expressions to generate pretty pictures Evaluate

More information

Computer Graphics (CS 543) Lecture 2c: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 2c: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543 Lecture c: Fractals Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI What are Fractals? Mathematical expressions to generate pretty pictures Evaluate

More information

Planar Graphs and Surfaces. Graphs 2 1/58

Planar Graphs and Surfaces. Graphs 2 1/58 Planar Graphs and Surfaces Graphs 2 1/58 Last time we discussed the Four Color Theorem, which says that any map can be colored with at most 4 colors and not have two regions that share a border having

More information

THE GRAPH OF FRACTAL DIMENSIONS OF JULIA SETS Bünyamin Demir 1, Yunus Özdemir2, Mustafa Saltan 3. Anadolu University Eskişehir, TURKEY

THE GRAPH OF FRACTAL DIMENSIONS OF JULIA SETS Bünyamin Demir 1, Yunus Özdemir2, Mustafa Saltan 3. Anadolu University Eskişehir, TURKEY International Journal of Pure and Applied Mathematics Volume 70 No. 3 2011, 401-409 THE GRAPH OF FRACTAL DIMENSIONS OF JULIA SETS Bünyamin Demir 1, Yunus Özdemir2, Mustafa Saltan 3 1,2,3 Department of

More information

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability 7 Fractions GRADE 7 FRACTIONS continue to develop proficiency by using fractions in mental strategies and in selecting and justifying use; develop proficiency in adding and subtracting simple fractions;

More information

Two- and Three-Dimensional Constructions Based on Leonardo Grids

Two- and Three-Dimensional Constructions Based on Leonardo Grids Rinus Roelofs Lansinkweg 28 7553AL Hengelo THE NETHERLANDS rinus@rinusroelofs.nl Keywords: Leonardo da Vinci, grids, structural patterns, tilings Research Two- and Three-Dimensional Constructions Based

More information

Grade 6 Math Circles. Shapeshifting

Grade 6 Math Circles. Shapeshifting Faculty of Mathematics Waterloo, Ontario N2L 3G1 Plotting Grade 6 Math Circles October 24/25, 2017 Shapeshifting Before we begin today, we are going to quickly go over how to plot points. Centre for Education

More information

Images of some fractals

Images of some fractals Fun with Fractals Dr. Bori Mazzag Redwood Empire Mathematics Tournament March 25, 2006 Images of some fractals What are fractals, anyway? Important aspects of fractals: Self-similarity What are fractals,

More information

Total Choas... Total Chosa

Total Choas... Total Chosa Total Choas... Total Chosa An Honors Thesis (Honors 499) By Christopher J. Butler - Ball State University Muncie, Indiana April 22, 2002 December 2002 ,- Acknowledgments Many thanks go to the mathematics

More information

CS 543: Computer Graphics Lecture 3 (Part I): Fractals. Emmanuel Agu

CS 543: Computer Graphics Lecture 3 (Part I): Fractals. Emmanuel Agu CS 543: Computer Graphics Lecture 3 (Part I: Fractals Emmanuel Agu What are Fractals? Mathematical expressions Approach infinity in organized way Utilizes recursion on computers Popularized by Benoit Mandelbrot

More information

Folding the Dragon Curve Fractal

Folding the Dragon Curve Fractal Bridges 2017 Conference Proceedings Folding the Dragon Curve Fractal Natalija Budinski School "Petro Kuzmjak" Rusinska 63, 25233 Ruski Krstur, SERBIA nbudinski@yahoo.com Miroslav Novta Schneider Electric

More information

Fun with Fractals and Functions. CHAMP at University of Houston March 2, 2015 Houston, Texas

Fun with Fractals and Functions. CHAMP at University of Houston March 2, 2015 Houston, Texas Fun with Fractals and Functions CHAMP at University of Houston March 2, 2015 Houston, Texas Alice Fisher afisher@rice.edu Director of Technology Applications & Integration at Rice University School Mathematics

More information

Space Filling: A new algorithm for procedural creation of game assets

Space Filling: A new algorithm for procedural creation of game assets Space Filling: A new algorithm for procedural creation of game assets Paul Bourke ivec@uwa, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, West Australia 6009. Email: paul.bourke@uwa.edu.au

More information

Equations and Functions, Variables and Expressions

Equations and Functions, Variables and Expressions Equations and Functions, Variables and Expressions Equations and functions are ubiquitous components of mathematical language. Success in mathematics beyond basic arithmetic depends on having a solid working

More information

A Singular Example for the Averaged Mean Curvature Flow

A Singular Example for the Averaged Mean Curvature Flow To appear in Experimental Mathematics Preprint Vol. No. () pp. 3 7 February 9, A Singular Example for the Averaged Mean Curvature Flow Uwe F. Mayer Abstract An embedded curve is presented which under numerical

More information

In this lesson, students build fractals and track the growth of fractal measurements using tables and equations. Enduring Understanding

In this lesson, students build fractals and track the growth of fractal measurements using tables and equations. Enduring Understanding LessonTitle: Fractal Functions Alg 5.8 Utah State Core Standard and Indicators Algebra Standards 2, 4 Process Standards 1-5 Summary In this lesson, students build fractals and track the growth of fractal

More information

Examples of Chaotic Attractors and Their Fractal Dimension

Examples of Chaotic Attractors and Their Fractal Dimension Examples of Chaotic Attractors and Their Fractal Dimension Ulrich A. Hoensch Rocky Mountain College Billings, MT 59102 www.rocky.edu/ hoenschu February 2005 Abstract We present the Sierpinski Triangle

More information

Beautiful fractals help solve wiggly problems 5 July 2016

Beautiful fractals help solve wiggly problems 5 July 2016 Beautiful fractals help solve wiggly problems 5 July 2016 Today, non-mathematicians who happen to be familiar with fractals are more likely aware of their beauty. A fiddlehead fern, a gecko's footpads,

More information