CGT 581 G Procedural Methods Fractals

Size: px
Start display at page:

Download "CGT 581 G Procedural Methods Fractals"

Transcription

1 CGT 581 G Procedural Methods Fractals Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics Technology Procedural Techniques Model is generated by a piece of code. Model is not represented as data! The generation can take some time and of course the data can be pre calculated Procedural Techniques Three huge (vague) classes: Fractals Particle systems Grammars Used when shape cannot be represented as a surface (fire, water, smoke, flock of birds, explosions, model of mountain, grass, clouds, plants, facades, cities, etc.) The Mandelbrot Set the big logo The Mandelbrot set Discovered in 1970 by Benoit Mandelbrot It is a non linear deterministic fractal It is graph of a solution of a dynamic system Benoit Mandelbrot Used for Simulation of Natural Phenomena

2 The Mandelbrot Set Take the equation where: and are complex numbers and Explore complex numbers from the complex plane The Mandelbrot Set there are two kinds of points: for, (stable points) for certain and greater (unstable points) Measure the speed of divergence of the i.e., measure when (predefined value) The Mandelbrot Set a) stable points displayed in black b) unstable points The Mandelbrot Set Zooming into the Mandelbrot set for every point c in the plane <-2-2i>, <2+2i> do set z=0+i0 set n=0 while (n<max) and ( z <2) do z=z 2 +c end of while if (n==max) Draw Point(Black) else Draw Point(Color(n)) end of for

3 The Mandelbrot Set Zooming into the Mandelbrot set The Mandelbrot Set Zooming into the Mandelbrot set The Mandelbrot Set Zooming into the Mandelbrot set The Mandelbrot Set Zooming into the Mandelbrot set

4 The Mandelbrot Set Dimensions Dimension how long is the coast of Corsica? A stick of 500m will give 700km (not very precise) A stick of 100m will give 1200km (?) What if we use length equal to? The length will be Dimensions How long is the coast of Corsica? applied sticks of length times the total length is stick of the length and we need pieces if we need Dimensions In the case of Corsica we need to use formula to get reasonable results What is this D? (Richardson)

5 Dimensions How long is the coast of Corsica? Having we get Dimensions For a line segment we need to set it the case of Corsica needs to be non integer with (i.e., getting the stick shorter) we get The D is so called Hausdorff dimension Sometimes called fractal dimension Fractals (usually) do not have dimensions Fractals Fractals fractal is a set that is self similar, it is a set that is copy of itself here is transformation scales down Scale must be average contraction Fractals Vaguely Fractal is a set that is geometrically complex and its structure is given by repetition of a certain shape at different scales. Fractal is a set that has Hausdorff s dimension greater than its dimension topological

6 Fractals Classification Linear Deterministic Fractals Classification Deterministic (or exact) fractals Non deterministic or random fractals Depends on the type of self similarity (exact, random) Non-linear Fractals Non-deterministic Linear rotation, scale, translation, shear Non linear the others Depends on the used transformations Dimensions Special cases If we use just ONE transformation with fixed and repetitions the fractal dimension is Linear Deterministic Fractals The Cantor s discontinuum (published in 1883) 1) Take a line segment 2) Sale it 1/3x 3) Make two copies at the ends 4) Do it recursively (Georg Cantor )

7 Linear Deterministic Fractals What is the dimension of the Cantor s discontinuum? scale new pieces for this we can use formula this object is something between a point and a line Linear Deterministic Fractals The Koch s snowflake 1) Take a line segment 2) Erase the mid third (similar to Cantor) 3) Create equilateral triangle 4) Repeat this recursively Scale,, Properties: does not have derivative infinite length zero area the area inside is non zero and non infinity (Helge von Koch ) Linear Deterministic Fractals Linear Deterministic Fractals The Sierpinsky gasket 1) Take a triangle 2) Erase mid triangle 3) Repeat this recursively (Wacław Franciszek Sierpiński ) The Menger sponge 1) Take a cube 2) Erase mid cross of cubes 3) Repeat this recursively (Karl Menger ) Scale not plane, not line Note the similarity with Pascal triangle Dust of points.

8 Linear Deterministic Fractals The Peano curve 1) Take a line segment 2) Substitute it by the lines from the image 3) Repeat recursively on each line segment space filling curve (Guiseppe Peano ) Non Linear Deterministic Fractals Quaternions if we apply the formula in quaternion space (hypercomplex numbers 4D) Non Linear Deterministic Fractals Linear Non Deterministic Fractals Involve random numbers and linear transformations Motivation: What would you hear if you increase the speed of playing music? Noise? The speed change is scaling Daniel White In other words: How large is this stone? 10cm? 1m? 10m?

9 Linear Non Deterministic Fractals Linear Non Deterministic Fractals The way to model random features in nature is capturing the self similarity with stochastic processes The key for these models are noise functions Noise is (usually) self similar Brownian Motion Brownian motion (Bm) Particles of pollen in water They move because of random hits of molecules of water Brownian Motion 1D Bm simulation: Random hits have Gaussian random number distribution This is also special case of the random walk Bm app

10 Brownian Motion How to get Gaussian Random numbers? Brownian Motion determines how steep the curve is the rand() function generates suppose we have of such numbers the Gaussian random number is: N=1 N=2 N=3 N=4 N=5 N=10 Gauss app Brownian Motion White noise is a random function with a constant power density Discrete samples are uncorrelated with and Brownian Motion 1D Bm simulation (contd.): Let s have that moves a point in the direction it has Gaussian random numbers distribution Gaussian white noise is one of them

11 Brownian Motion the Bm (Brownian function) we accumulate the perturbations W(t) X(t) is The fractal dimension is D=1.5 Bm app Fractional Brownian Motion (fbm) fbm if we scale the Bm in the axis by coefficient we have to scale in the y axis by, where is so called then the fractal dimension of the curve is this curve is called Fractional Brownian Motion or fbm (this is NOT Fractal Brownian Motion) Fractional Brownian Motion (fbm) Fractional Brownian Motion (fbm) fbm fbm has i.e., it is Bm fbm has fbm has higher D means wilder H=0.5 autocorrelation is 0 H<0.5 autocorrelation is positive H>0.5 autocorrelation is negative

12 Linear Non Deterministic Fractals In order to generate nice fractals, we need fbm The above described function is good The Midpoint Displacement Algorithm the MDP is the key algorithm for fractals 1) Take a line segment 2) Find its midpoint (center) 3) Move it randomly in the direction 4) Apply this step to all lines recursively But it does not provide adaptive results The Midpoint Displacement Algorithm The random numbers distribution has its and. Scale down the by two in every iteration. Divide the Gaussian random numbers by two The Midpoint Displacement Algorithm If we divide in each step by is the Hurst exponent we will get fbm with dimension

13 The Midpoint Displacement Algorithm Properties easy to implement it is interpolation of two points, so it is also called Fractal interpolation just division by two and random numbers call quite realistic The Midpoint Displacement Algorithm Two dimensional fbm works with 2D arrays it is called fbm surface dimension is, where so the The Midpoint Displacement Algorithm 2D fbm on quadrilaterals (diamond square) The Midpoint Displacement Algorithm 2D fbm on quadrilaterals (diamond square) having four points P 0,P 1,P 2,P 3 1) Evaluate the midpoint 2) Evaluate points on the edges 3) Evaluate points in the middle 4) Ad 2) etc... MDP app

14 Random Faults Random Faults Another method for generating fbm 1. take an object 2. divide it into two parts 3. increase the elevation of one and decrease the other one (change color, etc.) 4. apply this step many times 5. in each decrease the intensity of changes 2x 6. the limit of this process is fbm Cuda random faults Random Faults Implementation Data: 2D array Algorithm: Do this many times: 1) Generate random line (get two random points) 2) For each point in the 2D array I. Check if it is on the left or right (dot product) II. Increase/decrease the value Random Faults Variations Use any 2D object (circle, square) Randomly alter the area inside/outside

15 Random Faults on a Sphere Random Faults on a Sphere 1) Take sphere and divide it randomly into two hemispheres 2) Assign to each hemisphere different color 3) Apply the step 1 recursively, but decrease the intensity in each step with Perlin Noise Ken Perlin 1985, 2002 Perlin, K. (1985). An image synthesizer. ACM Siggraph Computer Graphics, 19(3), Perlin, K. (2002). Improving noise. ACM Trans. Graph. 21, 3 (July 2002), Academy Award for Technical Achievement 1997 Perlin Noise Properties: Statistically invariant to rotation and translation Continuous Perlin Noise is 1D, 2D, 3D, nd, Limited frequency spectrum Repeatable (returns the same value for the parameters) double noise(double t) //1D case double noise(double x, double) //2D case double noise(double x, double, y, double z)//3d case

16 Perlin Noise Limited frequency spectrum means we can chose the maximum desirable detail Returns value from It is seeded by the input parameter Perlin Noise Algorithm Initialization Divide the space to equally distributed cells with integer coordinates Each cell has a predefined pseudorandom gradient Matt Zucker Matt Zucker Perlin Noise Algorithm Perlin Noise Call: By calling with non integer coordinates,, Find the corresponding cell,,,, Calculate the vector from,, to each vertex The influence of each vertex Matt Zucker is given by its distance Sum the contributions by using sigmoid weighting function 3 2 For large tables hash function is used Matt Zucker

17 Summing Noise Functions Summing Noise Functions Maintains the overall shape where Add details and higher frequencies is called persistence is called noise frequency Summing Noise Functions Summing Noise Functions octaves=1 octaves=2 octaves=3 octaves=7 Paul Bourke

18 Turbulence Start with a simple color ramp Turbulence marble Perturb it by Perlin noise defines the influence (amplitude) of each octave octaves Turbulence wood Subtract the integer part of Perlin noise: Hypertexture Defines properties close to the object surface It is a procedural definition, just perturbs the space Can be displayed by raycasting

19 Hypertexture libnoise Ken Perlin Diffusion Limited Aggregation DLA Diffusion Limited Aggregation DLA 1) Particles (molecules) are floating in the water 2) When a particle approaches an condensation center it is aggregated 3) The process is repeated for many particles The important part is the way the particles travel i.e., random walk Corals, lightings, frozen ice on a window, etc.

20 Diffusion Limited Aggregation DLA Diffusion Limited Aggregation DLA Corals app

CGT 511 Procedural Methods

CGT 511 Procedural Methods 3D object representation CGT 511 Procedural Methods Volume representation Voxels 3D object representation Boundary representation Wire frame Procedural Fractals Bedřich Beneš, Ph.D. Purdue University Department

More information

Fractals Week 10, Lecture 19

Fractals Week 10, Lecture 19 CS 430/536 Computer Graphics I Fractals Week 0, Lecture 9 David Breen, William Regli and Maim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Dreel University http://gicl.cs.dreel.edu

More information

Fractal Geometry. Prof. Thomas Bäck Fractal Geometry 1. Natural Computing Group

Fractal Geometry. Prof. Thomas Bäck Fractal Geometry 1. Natural Computing Group Fractal Geometry Prof. Thomas Bäck Fractal Geometry 1 Contents Introduction The Fractal Geometry of Nature - Self-Similarity - Some Pioneering Fractals - Dimension and Fractal Dimension Scope of Fractal

More information

Fractal Geometry. LIACS Natural Computing Group Leiden University

Fractal Geometry. LIACS Natural Computing Group Leiden University Fractal Geometry Contents Introduction The Fractal Geometry of Nature Self-Similarity Some Pioneering Fractals Dimension and Fractal Dimension Cellular Automata Particle Systems Scope of Fractal Geometry

More information

Fractals and Multi-Layer Coloring Algorithms

Fractals and Multi-Layer Coloring Algorithms Fractals and Multi-Layer Coloring Algorithms Javier Barrallo and Santiago Sanchez Mathematics, Physics and Computer Science The University of the Basque Country School of Architecture. Plaza Onati, 2.

More information

Fractals. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Fractals. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Fractals Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Geometric Objects Man-made objects are geometrically simple (e.g., rectangles,

More information

7. Stochastic Fractals

7. Stochastic Fractals Stochastic Fractals Christoph Traxler Fractals-Stochastic 1 Stochastic Fractals Simulation of Brownian motion Modelling of natural phenomena, like terrains, clouds, waves,... Modelling of microstructures,

More information

Mathematics 350 Section 6.3 Introduction to Fractals

Mathematics 350 Section 6.3 Introduction to Fractals Mathematics 350 Section 6.3 Introduction to Fractals A fractal is generally "a rough or fragmented geometric shape that is self-similar, which means it can be split into parts, each of which is (at least

More information

Fractals & Iterative Function Systems

Fractals & Iterative Function Systems CS 543: Computer Graphics Fractals & Iterative Function Systems Robert W. Lindeman Associate Professor Department of Computer Science Worcester Polytechnic Institute gogo@wpi.edu (with lots of help from

More information

Session 27: Fractals - Handout

Session 27: Fractals - Handout Session 27: Fractals - Handout Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line. Benoit Mandelbrot (1924-2010)

More information

Procedural modeling and shadow mapping. Computer Graphics CSE 167 Lecture 15

Procedural modeling and shadow mapping. Computer Graphics CSE 167 Lecture 15 Procedural modeling and shadow mapping Computer Graphics CSE 167 Lecture 15 CSE 167: Computer graphics Procedural modeling Height fields Fractals L systems Shape grammar Shadow mapping Based on slides

More information

Fractals: a way to represent natural objects

Fractals: a way to represent natural objects Fractals: a way to represent natural objects In spatial information systems there are two kinds of entity to model: natural earth features like terrain and coastlines; human-made objects like buildings

More information

Hei nz-ottopeitgen. Hartmut Jürgens Dietmar Sau pe. Chaos and Fractals. New Frontiers of Science

Hei nz-ottopeitgen. Hartmut Jürgens Dietmar Sau pe. Chaos and Fractals. New Frontiers of Science Hei nz-ottopeitgen Hartmut Jürgens Dietmar Sau pe Chaos and Fractals New Frontiers of Science Preface Authors VU X I Foreword 1 Mitchell J. Feigenbaum Introduction: Causality Principle, Deterministic

More information

Clouds, biological growth, and coastlines are

Clouds, biological growth, and coastlines are L A B 11 KOCH SNOWFLAKE Fractals Clouds, biological growth, and coastlines are examples of real-life phenomena that seem too complex to be described using typical mathematical functions or relationships.

More information

Fractal Coding. CS 6723 Image Processing Fall 2013

Fractal Coding. CS 6723 Image Processing Fall 2013 Fractal Coding CS 6723 Image Processing Fall 2013 Fractals and Image Processing The word Fractal less than 30 years by one of the history s most creative mathematician Benoit Mandelbrot Other contributors:

More information

Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013

Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013 Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013 Background Fractal geometry is one of the most important developments in mathematics in the second half of the 20th century. Fractals

More information

Discovering. Algebra. An Investigative Approach. Condensed Lessons for Make-up Work

Discovering. Algebra. An Investigative Approach. Condensed Lessons for Make-up Work Discovering Algebra An Investigative Approach Condensed Lessons for Make-up Work CONDENSED L E S S O N 0. The Same yet Smaller Previous In this lesson you will apply a recursive rule to create a fractal

More information

1 Overview. EPFL 14 th Apr, /6. Michaël Defferrard Pierre Fechting Vu Hiep Doan

1 Overview. EPFL 14 th Apr, /6. Michaël Defferrard Pierre Fechting Vu Hiep Doan 1/6 1 Overview This report presents our advancement on the rst part of the project : terrain generation using procedural methods. Figure 1 shows an example of what our actual code base is able to generate.

More information

FRACTALS The term fractal was coined by mathematician Benoit Mandelbrot A fractal object, unlike a circle or any regular object, has complexity at all scales Natural Fractal Objects Natural fractals

More information

CS 543: Computer Graphics Lecture 3 (Part I): Fractals. Emmanuel Agu

CS 543: Computer Graphics Lecture 3 (Part I): Fractals. Emmanuel Agu CS 543: Computer Graphics Lecture 3 (Part I: Fractals Emmanuel Agu What are Fractals? Mathematical expressions Approach infinity in organized way Utilizes recursion on computers Popularized by Benoit Mandelbrot

More information

Computer Graphics (CS 543) Lecture 2c: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 2c: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543 Lecture c: Fractals Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI What are Fractals? Mathematical expressions to generate pretty pictures Evaluate

More information

Constrained Diffusion Limited Aggregation in 3 Dimensions

Constrained Diffusion Limited Aggregation in 3 Dimensions Constrained Diffusion Limited Aggregation in 3 Dimensions Paul Bourke Swinburne University of Technology P. O. Box 218, Hawthorn Melbourne, Vic 3122, Australia. Email: pdb@swin.edu.au Abstract Diffusion

More information

Chapter 12: Fractal Geometry The Koch Snowflake and Self-Similarity

Chapter 12: Fractal Geometry The Koch Snowflake and Self-Similarity Chapter 12: Fractal Geometry 12.1 The Koch Snowflake and Self-Similarity Geometric Fractal Our first example of a geometric fractal is a shape known as the Koch snowflake, named after the Swedish mathematician

More information

Chapel Hill Math Circle: Symmetry and Fractals

Chapel Hill Math Circle: Symmetry and Fractals Chapel Hill Math Circle: Symmetry and Fractals 10/7/17 1 Introduction This worksheet will explore symmetry. To mathematicians, a symmetry of an object is, roughly speaking, a transformation that does not

More information

Scientific Calculation and Visualization

Scientific Calculation and Visualization Scientific Calculation and Visualization Topic Iteration Method for Fractal 2 Classical Electrodynamics Contents A First Look at Quantum Physics. Fractals.2 History of Fractal.3 Iteration Method for Fractal.4

More information

Fractals. Materials. Pencil Paper Grid made of triangles

Fractals. Materials. Pencil Paper Grid made of triangles Fractals Overview: Fractals are new on the mathematics scene, however they are in your life every day. Cell phones use fractal antennas, doctors study fractal-based blood flow diagrams to search for cancerous

More information

Computer Graphics 4731 Lecture 5: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics 4731 Lecture 5: Fractals. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics 4731 Lecture 5: Fractals Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI What are Fractals? Mathematical expressions to generate pretty pictures Evaluate

More information

Textures III. Week 10, Wed Mar 24

Textures III. Week 10, Wed Mar 24 University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munzner Textures III Week 10, Wed Mar 24 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 News signup sheet for P3 grading Mon/today/Fri

More information

Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008

Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008 Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008 What is a fractal? A fractal is a geometric figure, often characterized as being self-similar : irregular, fractured, fragmented, or loosely connected

More information

CSE 167: Lecture #17: Procedural Modeling. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #17: Procedural Modeling. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #17: Procedural Modeling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Important dates: Final project outline

More information

Real-Time Procedural Effects. John Spitzer Director of European Developer Technology NVIDIA Corporation

Real-Time Procedural Effects. John Spitzer Director of European Developer Technology NVIDIA Corporation Real-Time Procedural Effects John Spitzer Director of European Developer Technology NVIDIA Corporation Overview What are procedural modeling and texturing? Advantages and disadvantages When to use procedural

More information

Lecture 8: Modelling Urban Morphology:

Lecture 8: Modelling Urban Morphology: SCHOOL OF GEOGRAPHY Lecture 8: Modelling Urban Morphology: Fractal Geometry, Relations to CA, And Urban Form Outline What are Fractals? Definitions and Properties Scaling and Links to Fractal Patterns

More information

2.) From the set {A, B, C, D, E, F, G, H}, produce all of the four character combinations. Be sure that they are in lexicographic order.

2.) From the set {A, B, C, D, E, F, G, H}, produce all of the four character combinations. Be sure that they are in lexicographic order. Discrete Mathematics 2 - Test File - Spring 2013 Exam #1 1.) RSA - Suppose we choose p = 5 and q = 11. You're going to be sending the coded message M = 23. a.) Choose a value for e, satisfying the requirements

More information

16 - Other Topics. The Stencil Buffer. Erosion. Fragment Discarding. Multi-Texturing + +

16 - Other Topics. The Stencil Buffer. Erosion. Fragment Discarding. Multi-Texturing + + CSc 155 Advanced Computer Graphics 16- Other Topics The Stencil Buffer An additional per-pixel buffer typically used to direct OpenGL to behave differently depending on what is in the buffer Useful for

More information

FRACTALS AND THE SIERPINSKI TRIANGLE

FRACTALS AND THE SIERPINSKI TRIANGLE FRACTALS AND THE SIERPINSKI TRIANGLE Penelope Allen-Baltera Dave Marieni Richard Oliveira Louis Sievers Hingham High School Marlborough High School Ludlow High School Trinity High School The purpose of

More information

CS 563 Advanced Topics in Computer Graphics Chapter 31 Noise Based Textures. by Scott Ingram

CS 563 Advanced Topics in Computer Graphics Chapter 31 Noise Based Textures. by Scott Ingram CS 563 Advanced Topics in Computer Graphics Chapter 31 Noise Based Textures by Scott Ingram Introduction Why? Noise based textures tend to look more natural owing to the randomness of the texture Might

More information

Texture-Mapping Tricks. How Bad Does it Look? We've Seen this Sort of Thing Before. Sampling Texture Maps

Texture-Mapping Tricks. How Bad Does it Look? We've Seen this Sort of Thing Before. Sampling Texture Maps Texture-Mapping Tricks Filtering Textures Textures and Shading Bump Mapping Solid Textures How Bad Does it Look? Let's take a look at what oversampling looks like: Click and drag the texture to rotate

More information

CSE 167: Lecture #15: Procedural Modeling. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #15: Procedural Modeling. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #15: Procedural Modeling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Monday, Nov 26: Midterm review in

More information

Scope and Sequence for the New Jersey Core Curriculum Content Standards

Scope and Sequence for the New Jersey Core Curriculum Content Standards Scope and Sequence for the New Jersey Core Curriculum Content Standards The following chart provides an overview of where within Prentice Hall Course 3 Mathematics each of the Cumulative Progress Indicators

More information

More Texture Mapping. Texture Mapping 1/46

More Texture Mapping. Texture Mapping 1/46 More Texture Mapping Texture Mapping 1/46 Perturbing Normals Texture Mapping 2/46 Perturbing Normals Instead of fetching a texture for color, fetch a new perturbed normal vector Creates the appearance

More information

Generation of 3D Fractal Images for Mandelbrot and Julia Sets

Generation of 3D Fractal Images for Mandelbrot and Julia Sets 178 Generation of 3D Fractal Images for Mandelbrot and Julia Sets Bulusu Rama #, Jibitesh Mishra * # Department of Computer Science and Engineering, MLR Institute of Technology Hyderabad, India 1 rama_bulusu@yahoo.com

More information

GTPS Curriculum Mathematics Grade 8

GTPS Curriculum Mathematics Grade 8 4.2.8.B2 Use iterative procedures to generate geometric patterns: Fractals (e.g., the Koch Snowflake); Self-similarity; Construction of initial stages; Patterns in successive stages (e.g., number of triangles

More information

Fractals. Fractals. Beautiful designs of infinite structure and complexity Qualities of Fractals:

Fractals. Fractals. Beautiful designs of infinite structure and complexity Qualities of Fractals: Fractals Fractals Beautiful designs of infinite structure and complexity Qualities of Fractals: Fractional dimension Self similarity Complex structure at all scales Chaotic dynamical behavior Simple generation

More information

Fun with Fractals Saturday Morning Math Group

Fun with Fractals Saturday Morning Math Group Fun with Fractals Saturday Morning Math Group Alistair Windsor Fractals Fractals are amazingly complicated patterns often produced by very simple processes. We will look at two different types of fractals

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

Rendering Smoke & Clouds

Rendering Smoke & Clouds Rendering Smoke & Clouds Game Design Seminar 2007 Jürgen Treml Talk Overview 1. Introduction to Clouds 2. Virtual Clouds based on physical Models 1. Generating Clouds 2. Rendering Clouds using Volume Rendering

More information

Space Filling: A new algorithm for procedural creation of game assets

Space Filling: A new algorithm for procedural creation of game assets Space Filling: A new algorithm for procedural creation of game assets Paul Bourke ivec@uwa, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, West Australia 6009. Email: paul.bourke@uwa.edu.au

More information

Interpolation and Basis Fns

Interpolation and Basis Fns CS148: Introduction to Computer Graphics and Imaging Interpolation and Basis Fns Topics Today Interpolation Linear and bilinear interpolation Barycentric interpolation Basis functions Square, triangle,,

More information

Fractals, Fibonacci numbers in Nature 17 mai 2015

Fractals, Fibonacci numbers in Nature 17 mai 2015 1 Sommaire 1 Sommaire... 1 2 Presentation... 1 3 Fractals in nature... 3 3.1 The Von Koch curve... 3 3.2 The Sierpinski triangle... 3 3.3 The Sierpinski carpet... 3 3.4 Hilbert s fractal... 4 3.5 Cantor

More information

Fractals and the Chaos Game

Fractals and the Chaos Game Math: Outside the box! Fractals and the Chaos Game Monday February 23, 2009 3:30-4:20 IRMACS theatre, ASB 10900 Randall Pyke Senior Lecturer Department of Mathematics, SFU A Game. Is this a random walk?

More information

Fractal Dimension and the Cantor Set

Fractal Dimension and the Cantor Set Fractal Dimension and the Cantor Set Shailesh A Shirali Shailesh Shirali is Director of Sahyadri School (KFI), Pune, and also Head of the Community Mathematics Centre in Rishi Valley School (AP). He has

More information

Outline. Solid models and fractals. Constructive solid geometry. Constructive solid geometry COM3404. Richard Everson

Outline. Solid models and fractals. Constructive solid geometry. Constructive solid geometry COM3404. Richard Everson Outline Solid models and fractals COM School of Engineering, Computer Science and Mathematics University of Exeter Constructive solid geometry Fractals Dimension s Landscape generation L-systems R.M.Everson@exeter.ac.uk

More information

Grade 9 Math Terminology

Grade 9 Math Terminology Unit 1 Basic Skills Review BEDMAS a way of remembering order of operations: Brackets, Exponents, Division, Multiplication, Addition, Subtraction Collect like terms gather all like terms and simplify as

More information

CSE 167: Introduction to Computer Graphics Lecture #16: Procedural Modeling

CSE 167: Introduction to Computer Graphics Lecture #16: Procedural Modeling CSE 167: Introduction to Computer Graphics Lecture #16: Procedural Modeling Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Reduced office hours today and tomorrow

More information

<The von Koch Snowflake Investigation> properties of fractals is self-similarity. It means that we can magnify them many times and after every

<The von Koch Snowflake Investigation> properties of fractals is self-similarity. It means that we can magnify them many times and after every Jiwon MYP 5 Math Ewa Puzanowska 18th of Oct 2012 About Fractal... In geometry, a fractal is a shape made up of parts that are the same shape as itself and are of

More information

Construction of 3D Mandelbrot Set and Julia Set

Construction of 3D Mandelbrot Set and Julia Set Construction of 3D Mandelbrot Set and Julia Set Ankit Garg Assistant Professor Amity University, Haryana Manesar, Gurgaon Akshat Agrawal Assistant Professor Amity University, Haryana Manesar, Gurgaon Ashish

More information

Lecture 3: Some Strange Properties of Fractal Curves

Lecture 3: Some Strange Properties of Fractal Curves Lecture 3: Some Strange Properties of Fractal Curves I have been a stranger in a strange land. Exodus 2:22 1. Fractal Strangeness Fractals have a look and feel that is very different from ordinary curves.

More information

Advanced Rendering Techniques

Advanced Rendering Techniques Advanced Rendering Techniques Lecture 19 Perlin Noise Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Lecture notes available in http://www.ic.uff.br/~laffernandes/teaching/2012.1/topicos_rendering

More information

Exploring Fractals through Geometry and Algebra. Kelly Deckelman Ben Eggleston Laura Mckenzie Patricia Parker-Davis Deanna Voss

Exploring Fractals through Geometry and Algebra. Kelly Deckelman Ben Eggleston Laura Mckenzie Patricia Parker-Davis Deanna Voss Exploring Fractals through Geometry and Algebra Kelly Deckelman Ben Eggleston Laura Mckenzie Patricia Parker-Davis Deanna Voss Learning Objective and skills practiced Students will: Learn the three criteria

More information

Interpolation and Basis Fns

Interpolation and Basis Fns CS148: Introduction to Computer Graphics and Imaging Interpolation and Basis Fns Topics Today Interpolation Linear and bilinear interpolation Barycentric interpolation Basis functions Square, triangle,,

More information

Solid models and fractals

Solid models and fractals Solid models and fractals COM3404 Richard Everson School of Engineering, Computer Science and Mathematics University of Exeter R.M.Everson@exeter.ac.uk http://www.secamlocal.ex.ac.uk/studyres/com304 Richard

More information

MPM 1D Learning Goals and Success Criteria ver1 Sept. 1, Learning Goal I will be able to: Success Criteria I can:

MPM 1D Learning Goals and Success Criteria ver1 Sept. 1, Learning Goal I will be able to: Success Criteria I can: MPM 1D s and ver1 Sept. 1, 2015 Strand: Number Sense and Algebra (NA) By the end of this course, students will be able to: NA1 Demonstrate an understanding of the exponent rules of multiplication and division,

More information

Noise Course Overview Jim Whitehead. UC Santa Cruz School of Engineering courses.soe.ucsc.edu/courses/cmps265/spring14/01

Noise Course Overview Jim Whitehead. UC Santa Cruz School of Engineering courses.soe.ucsc.edu/courses/cmps265/spring14/01 Noise Course Overview Jim Whitehead UC Santa Cruz School of Engineering courses.soe.ucsc.edu/courses/cmps265/spring14/01 ejw@cs.ucsc.edu 31 Mar 2014 Computer generation Assume that there exists: One or

More information

1-5 Parent Functions and Transformations

1-5 Parent Functions and Transformations Describe the following characteristics of the graph of each parent function: domain, range, intercepts, symmetry, continuity, end behavior, and intervals on which the graph is increasing/decreasing. 1.

More information

Lecture 6: Fractals from Iterated Function Systems. He draweth also the mighty with his power: Job 24:22

Lecture 6: Fractals from Iterated Function Systems. He draweth also the mighty with his power: Job 24:22 Lecture 6: Fractals from Iterated Function Systems He draweth also the mighty with his power: Job 24:22 1. Fractals by Iteration The Sierpinski gasket and the Koch snowflake can both be generated in LOGO

More information

AN ALGORITHM TO GENERATE MODELS OF SNOWFLAKES

AN ALGORITHM TO GENERATE MODELS OF SNOWFLAKES AN ALGORITHM TO GENERATE MODELS OF SNOWFLAKES PHILIP CHUNG, COLIN BLOOMFIELD Abstract. In this paper we will describe our method of creating a computer algorithm to generate two-dimensional representations

More information

DLA Simulations. Jasraj Singh Kohli Gregory Raustad Peter Del Rosso

DLA Simulations. Jasraj Singh Kohli Gregory Raustad Peter Del Rosso DLA Simulations Jasraj Singh Kohli Gregory Raustad Peter Del Rosso Aim To Use Monte-Carlo Method (Random Walkers)/DLA to simulate growth pattern of an air bubble expanding in a Newtonian fluid. To understand

More information

Birkdale High School - Higher Scheme of Work

Birkdale High School - Higher Scheme of Work Birkdale High School - Higher Scheme of Work Module 1 - Integers and Decimals Understand and order integers (assumed) Use brackets and hierarchy of operations (BODMAS) Add, subtract, multiply and divide

More information

NUMB3RS Activity: I It Itera Iteration. Episode: Rampage

NUMB3RS Activity: I It Itera Iteration. Episode: Rampage Teacher Page 1 NUMB3RS Activity: I It Itera Iteration Topic: Iterative processes Grade Level: 9-12 Objective: Examine random iterative processes and their outcomes Time: about 45 minutes Materials: TI-83/84

More information

CS324e -Elements of Graphics and Visualization. Fractals and 3D Landscapes

CS324e -Elements of Graphics and Visualization. Fractals and 3D Landscapes CS324e -Elements of Graphics and Visualization Fractals and 3D Landscapes Fractals A geometric figure in which smaller parts share characteristics of the entire figure a detailed pattern that repeats itself

More information

A simple problem that has a solution that is far deeper than expected!

A simple problem that has a solution that is far deeper than expected! The Water, Gas, Electricity Problem A simple problem that has a solution that is far deeper than expected! Consider the diagram below of three houses and three utilities: water, gas, and electricity. Each

More information

Exploring the Effect of Direction on Vector-Based Fractals

Exploring the Effect of Direction on Vector-Based Fractals BRIDGES Mathematical Connections in Art, Music, and Science Exploring the Effect of Direction on Vector-Based Fractals Magdy Ibrahim and Robert J. Krawczyk College of Architecture Dlinois Institute of

More information

COASTLINES AND FRACTAL GEOMETRY: ESTIMATING LENGTH AND GENERATING ISLANDS. Miranda Bradshaw Dallas Pullen Math 365 Wright 5/8/12

COASTLINES AND FRACTAL GEOMETRY: ESTIMATING LENGTH AND GENERATING ISLANDS. Miranda Bradshaw Dallas Pullen Math 365 Wright 5/8/12 COASTLINES AND FRACTAL GEOMETRY: ESTIMATING LENGTH AND GENERATING ISLANDS Miranda Bradshaw Dallas Pullen Math 365 Wright 5/8/12 Introduction The first connections that were made between coastlines and

More information

White Paper. Perlin Fire. February 2007 WP _v01

White Paper. Perlin Fire. February 2007 WP _v01 White Paper Perlin Fire February 2007 WP-03012-001_v01 Document Change History Version Date Responsible Reason for Change 01 AT, CK Initial release Go to sdkfeedback@nvidia.com to provide feedback on Perlin

More information

Fun with Fractals and Functions. CHAMP at University of Houston March 2, 2015 Houston, Texas

Fun with Fractals and Functions. CHAMP at University of Houston March 2, 2015 Houston, Texas Fun with Fractals and Functions CHAMP at University of Houston March 2, 2015 Houston, Texas Alice Fisher afisher@rice.edu Director of Technology Applications & Integration at Rice University School Mathematics

More information

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A Top-Down Approach with Shader-Based

More information

Definitions. Modeling. Primitives. Creating a model of an object, usually out of a collection of simpler primitives

Definitions. Modeling. Primitives. Creating a model of an object, usually out of a collection of simpler primitives Modeling 1 Definitions Modeling Creating a model of an object, usually out of a collection of simpler primitives Primitives A basic shape handled directly the rendering system 2 Boundary Representation

More information

Literature Review. Bruce Alcock. A Procedural, Minimal Input, Natural Terrain Plug-in for Blender. Supervisors: Kevin Glass and Shaun Bangay

Literature Review. Bruce Alcock. A Procedural, Minimal Input, Natural Terrain Plug-in for Blender. Supervisors: Kevin Glass and Shaun Bangay Literature Review Bruce Alcock A Procedural, Minimal Input, Natural Terrain Plug-in for Blender Supervisors: Kevin Glass and Shaun Bangay Abstract This review examines methods of terrain representation,

More information

A space filling algorithm for generating procedural geometry and texture

A space filling algorithm for generating procedural geometry and texture A space filling algorithm for generating procedural geometry and texture Paul Bourke ivec@uwa, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, West Australia 6009. Email: paul.bourke@uwa.edu.au

More information

The Geometry of Solids

The Geometry of Solids CONDENSED LESSON 10.1 The Geometry of Solids In this lesson you will Learn about polyhedrons, including prisms and pyramids Learn about solids with curved surfaces, including cylinders, cones, and spheres

More information

Some geometries to describe nature

Some geometries to describe nature Some geometries to describe nature Christiane Rousseau Since ancient times, the development of mathematics has been inspired, at least in part, by the need to provide models in other sciences, and that

More information

Mathematics Numbers: Percentages. Science and Mathematics Education Research Group

Mathematics Numbers: Percentages. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Mathematics Numbers: Percentages Science and Mathematics Education Research Group Supported by UBC Teaching

More information

Simi imilar Shapes lar Shapes Nesting Squares Poly lyhedr hedra and E a and Euler ler s Form s Formula ula

Simi imilar Shapes lar Shapes Nesting Squares Poly lyhedr hedra and E a and Euler ler s Form s Formula ula TABLE OF CONTENTS Introduction......................................................... 5 Teacher s Notes....................................................... 6 NCTM Standards Alignment Chart......................................

More information

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Chapter 9 Geometry Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 2 WHAT YOU WILL LEARN Transformational geometry,

More information

Overview. Hierarchy. Level of detail hierarchy Texture maps Procedural shading and texturing Texture synthesis and noise.

Overview. Hierarchy. Level of detail hierarchy Texture maps Procedural shading and texturing Texture synthesis and noise. Overview Level of detail hierarchy Texture maps Procedural shading and texturing Texture synthesis and noise Hierarchy Physics Computer Graphics Geometrical optics Macro-structures Transport Micro-structures

More information

FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE

FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE ISSN 2320-9143 40 International Journal of Advance Research, IJOAR.org Volume 1, Issue 3, March 2013, Online: ISSN 2320-9143 FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE Soumya Prakash Sahu, Indian

More information

2D Drawing Primitives

2D Drawing Primitives THE SIERPINSKI GASKET We use as a sample problem the drawing of the Sierpinski gasket an interesting shape that has a long history and is of interest in areas such as fractal geometry. The Sierpinski gasket

More information

Fractals in Nature and Mathematics: From Simplicity to Complexity

Fractals in Nature and Mathematics: From Simplicity to Complexity Fractals in Nature and Mathematics: From Simplicity to Complexity Dr. R. L. Herman, UNCW Mathematics & Physics Fractals in Nature and Mathematics R. L. Herman OLLI STEM Society, Oct 13, 2017 1/41 Outline

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

Random Numbers Random Walk

Random Numbers Random Walk Random Numbers Random Walk Computational Physics Random Numbers Random Walk Outline Random Systems Random Numbers Monte Carlo Integration Example Random Walk Exercise 7 Introduction Random Systems Deterministic

More information

Does it Look Square? Hexagonal Bipyramids, Triangular Antiprismoids, and their Fractals

Does it Look Square? Hexagonal Bipyramids, Triangular Antiprismoids, and their Fractals Does it Look Square? Hexagonal Bipyramids, Triangular Antiprismoids, and their Fractals Hideki Tsuiki Graduate School of Human and Environmental Studies Kyoto University Yoshida-Nihonmatsu, Kyoto 606-8501,

More information

A NON-TRIGONOMETRIC, PSEUDO AREA PRESERVING, POLYLINE SMOOTHING ALGORITHM

A NON-TRIGONOMETRIC, PSEUDO AREA PRESERVING, POLYLINE SMOOTHING ALGORITHM A NON-TRIGONOMETRIC, PSEUDO AREA PRESERVING, POLYLINE SMOOTHING ALGORITHM Wayne Brown and Leemon Baird Department of Computer Science The United States Air Force Academy 2354 Fairchild Dr., Suite 6G- USAF

More information

Making Plant-Like Fractals on GSP by Mike M c Garry

Making Plant-Like Fractals on GSP by Mike M c Garry Making Plant-Like Fractals on GSP by Mike M c Garry athenianmike@yahoo.com Important Idea #1: Control Points When you make a new line segment, circle, etc. on GSP, the points that determine it when it

More information

CGT 581 G Geometric Modeling Curves

CGT 581 G Geometric Modeling Curves CGT 581 G Geometric Modeling Curves Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics Technology Curves What is a curve? Mathematical definition 1) The continuous image of an interval

More information

The Koch curve in three dimensions

The Koch curve in three dimensions The Koch curve in three dimensions Eric Baird The paper describes an approach to extending the Koch curve into three dimensions. An intermediate stage is a two-dimensional Koch leaf, a shape with zero

More information

Lecture 6: Fractals from Iterated Function Systems. He draweth also the mighty with his power: Job 24:22

Lecture 6: Fractals from Iterated Function Systems. He draweth also the mighty with his power: Job 24:22 Lecture 6: Fractals from Iterated Function Systems He draweth also the mighty with his power: Job 24:22 1. Generating Fractals by Iterating Transformations The Sierpinski gasket and the Koch snowflake

More information

GTPS Curriculum Grade 6 Math

GTPS Curriculum Grade 6 Math 14 days 4.16A2 Demonstrate a sense of the relative magnitudes of numbers. 4.1.6.A.7 Develop and apply number theory concepts in problem solving situations. Primes, factors, multiples Common multiples,

More information

In this lesson, students build fractals and track the growth of fractal measurements using tables and equations. Enduring Understanding

In this lesson, students build fractals and track the growth of fractal measurements using tables and equations. Enduring Understanding LessonTitle: Fractal Functions Alg 5.8 Utah State Core Standard and Indicators Algebra Standards 2, 4 Process Standards 1-5 Summary In this lesson, students build fractals and track the growth of fractal

More information

Number Sense and Operations Curriculum Framework Learning Standard

Number Sense and Operations Curriculum Framework Learning Standard Grade 5 Expectations in Mathematics Learning Standards from the MA Mathematics Curriculum Framework for the end of Grade 6 are numbered and printed in bold. The Franklin Public School System s grade level

More information

Applications. 44 Stretching and Shrinking

Applications. 44 Stretching and Shrinking Applications 1. Look for rep-tile patterns in the designs below. For each design, tell whether the small quadrilaterals are similar to the large quadrilateral. Explain. If the quadrilaterals are similar,

More information