EPC Enacted: Integration in an Industrial Toolbox and Use Against a Railway Application

Size: px
Start display at page:

Download "EPC Enacted: Integration in an Industrial Toolbox and Use Against a Railway Application"

Transcription

1 EPC Enacted: Integration in an Industrial Toolbox and Use Against a Railway Application E. Mezzetti, M. Fernandez, A. Bardizbanyan I. Agirre, J. Abella, T. Vardanega, F. Cazorla, * This project Real-Time and the research Systems leading to these Symposium results has received funding from the European Community s Seventh Framework Programme [FP7 / ] under grant agreement n

2 Reliable Measurement-based Estimates Common goal of Meas-based approaches Derive high-quality WCET estimates From analysis-time measurements Hold at operation MBPTA is no different Executable MBPTA Extreme Valye Theory Exceedance Probability Execution time Threshold e.g Time Traces Analysis time pwcet Operation 2 Extended Path Coverage Enacted - RTAS 2016

3 High-quality pwcet estimates Probability (log scale) Execution time 3 Extended Path Coverage Enacted - RTAS 2016

4 High-quality pwcet estimates Probability (log scale) Analysis-time Distribution Execution time 3 Extended Path Coverage Enacted - RTAS 2016

5 High-quality pwcet estimates Probability (log scale) Analysis-time Distribution Execution time 3 Extended Path Coverage Enacted - RTAS 2016

6 High-quality pwcet estimates Probability (log scale) Operation-time Distribution (afterthought) Analysis-time Distribution Execution time 3 Extended Path Coverage Enacted - RTAS 2016

7 High-quality pwcet estimates Probability (log scale) Operation-time Distribution (afterthought) Analysis-time Distribution Execution time 3 Extended Path Coverage Enacted - RTAS 2016

8 High-quality pwcet estimates Probability (log scale) Operation-time Distribution (afterthought) Analysis-time Distribution Execution time 3 Extended Path Coverage Enacted - RTAS 2016

9 High-quality pwcet estimates Probability (log scale) Operation-time Distribution (afterthought) Analysis-time Distribution Execution time 3 Extended Path Coverage Enacted - RTAS 2016

10 The PROXIMA MBPTA approach Representativeness of pwcet estimates By controlling all sources of execution time variability HW/SW High-level (easier) Low-level (harder) Cannot rely on users to fully control lower-level aspects Demand their control to analysis tool and/or platform Upperbounding and randomization Representativeness can be probabilistically 16 After N runs the probability of not capturing random events with high impact on exec time is below a certain threshold (e.g., 10e 12 ) 4 Extended Path Coverage Enacted - RTAS 2016

11 Path-representativeness Inherent limitation of measurement-based approaches Bounds are only valid for the set of paths and execution conditions for which observations were collected The same applies to MBPTA Extended Path coverage 15 Measurements collected over a subset of the program paths EPC... EPC Synthetic measurements for unobserved paths MBPTA Exceedance Probability Execution time pwcet "Fully representative" distribution for all paths in a program obtained from both observed AND synthetic observations EPC Representativeness gap Distribution valid only for observed paths NO EPC 5 Extended Path Coverage Enacted - RTAS 2016

12 EPC nuts and bolts Automatically derive synthetic end-to-end observations By recombining partial timing information (e.g., basic block level) Cannot naively sum up maximum-observed values They are relative to particular path with cache/core-level dependencies Might not have observed basic blocks along their worst-case path Path-independence Execution times (ET) can be made independent from the path through which they have been collected EPC exploits probabilistic path independence at basic blocks level Path-independent ET can be combined to construct representative execution times for end-to-end (unobserved) paths 6 Extended Path Coverage Enacted - RTAS 2016

13 Probabilistic path independence Path-independent execution times for a basic block Values does not depend on a particular path Summing up a penalty or padding to each observed ET to compensate for any positive effect due to a specific path (e.g., cache behavior) On time-randomized single-core architectures Randomized caches are the main source of variability L ATP(@ A, φ) = hit L miss P hit (@ A, φ) P miss (@ A, φ) Probabilistic padding of ATPs To negatively compensate potential positive effects of variability (e.g., a cache hit) on a specific path L ATP(@ A ) = hit L miss P hit (@ A ) P miss (@ A ) 7 Extended Path Coverage Enacted - RTAS 2016

14 Probabilistic path independence Path-independent execution times for a basic block Values does not depend on a particular path Summing up a penalty or padding to each observed ET to compensate for any positive effect due to a specific path (e.g., cache behavior) On time-randomized single-core architectures Randomized caches are the main source of variability L ATP(@ A, φ) = hit L miss P hit (@ A, φ) P miss (@ A, φ) Probabilistic padding of ATPs To negatively compensate potential positive effects of variability (e.g., a cache hit) on a specific path L ATP(@ A ) = hit L miss Not an option P hit (@ A ) P miss (@ A ) 7 Extended Path Coverage Enacted - RTAS 2016

15 Over-approximating the worst-case ATP ATP Cumulative ATP 1 0 P hit (@ A, φ) P hit (@ A ) P + hit(@ A ) L hit P miss (@ A, φ) P miss (@ A ) L miss P + miss (@ A ) L miss+pad P + miss+pad (@ A ) ATP(@ A, φ) ATP + (@ A ) ATP(@ A ) 1 0 P + hit(@ A )+ P + miss(@ A ) P hit (@ A, φ) P hit (@ A ) P + hit(@ A ) L hit L miss L miss+pad 8 Extended Path Coverage Enacted - RTAS 2016

16 Probabilistic padding... Reuse distance and unique accesses Example 4-ways Random A B mapping to same cache set Focus on basic blocks bb 3 PPAD(@ A, φ 0 ) and PPAD(@ A, φ 1 B bb 0 bb 1 bb B P pad (@ A, φ) = { 0 if uphit (@ A, φ) = 0 1 P hit(@ A ) up hit (@ A, φ) A bb 3 P hit (@ A ) = 1 P miss (@ A ) = = 3 4 up hit (@ A, φ 0 ) = 1 (same for φ 1 A bb 4 bb C Probability of applying a padding to bb 3 is P pad (@ A, φ 0 ) = P pad (@ A, φ 1 ) = 1 C bb Extended Path Coverage Enacted - RTAS 2016

17 Meeting EPC requirements 10 Extended Path Coverage Enacted - RTAS 2016

18 EPC Process Requirements Preparation Collection Processing Computation Instrumentation at basic block level Adequate tracing throughput Tracing memory accesses and random seed information Augmented exec time profiles Generation of synthetic paths 11 Extended Path Coverage Enacted - RTAS 2016

19 EPC Process Requirements Preparation Collection Processing Computation Instrumentation at basic block level Adequate tracing throughput Tracing memory accesses and random seed information Augmented exec time profiles Generation of synthetic paths 11 Extended Path Coverage Enacted - RTAS 2016

20 EPC Process Requirements Preparation Collection Processing Computation Instrumentation at basic block level Adequate tracing throughput Tracing memory accesses and random seed information Augmented exec time profiles + Library Generation of synthetic paths Automated Tool Collect artificial execution times by iterating over all the basic blocks in each unobserved path Consider only a subset of all possible paths Pruning based on known flow facts 11 Extended Path Coverage Enacted - RTAS 2016

21 EPC Process Requirements Preparation Collection Processing Computation Instrumentation at basic block level Adequate tracing throughput Tracing memory accesses and random seed information Augmented exec time profiles Generation of synthetic paths Computation as baseline MBPTA approach 11 Extended Path Coverage Enacted - RTAS 2016

22 Evaluation Qualitative and quantitative assessment PROXIMA Platform FPGA implementation based on LEON3/NGMP Processor family 4 cores (EPC evaluated on single-core scenario) Cache hierarchy Separate 16KB 4-way set-associative L1 caches for instruction and data (write-through, no write allocate) Random-Modulo placement and Random 16 Shared 128KB 4-way unified L2 cache, write-back policy AMBA AHB bus connects cores to private caches, L2 and DRAM memory controller Synthetic example and industrial use case 12 Extended Path Coverage Enacted - RTAS 2016

23 Synthetic example Fully-controlled example Clear mapping paths inputs Full path coverage as a reference input vector v 1 v 2 v 3 v 4 entry v 1 true v 1 false v 2 true v 2 false v 3 true v 3 false v 4 true exit v 4 false basic block coverage worst-case path 13 Extended Path Coverage Enacted - RTAS 2016

24 Synthetic example Max pwcet full coverage HWM full coverage Max pwcet EPC 2 paths Max pwcet EPC 4 paths Max pwcet EPC 8 paths Max pwcet EPC 8 paths (WCP included) Exceedance probability Cycles Test MOET % 10 3 % 10 6 % 10 9 % % Full p EPC % p EPC p EPC W-8p EPC Extended Path Coverage Enacted - RTAS 2016

25 Industrial case study setcs SIL4 Application from railway domain Supervision of train traveled distance and speed Sensors, monitoring systems and emergency actuators (brakes) 50 branches, 90 procedures (for 300 proc calls), 120 BB setcs EVC_TMR Position/ Speed Sensors Balise Transmission Module (BTM) Driver Machine Interface (DMI) EVC_Node3 EVC_Node2 EVC_Node1 Odometry System (OMS) Speed & Position Emergency Brake Control (ES) Service Brake Control (SS) Emerg. Brake Serv. Brake Warning Voter V V V Safety Relay (I) Safety Relay (II) Electric Braking System Pneumatic Braking System 15 Extended Path Coverage Enacted - RTAS 2016

26 Industrial case study setcs Experiment conducted at user premises On a very limited set of input vectors (BB coverage) Plain MBPTA results as baseline reference Experiment MOET Test Test Test Test Test Test Test Test Test Test Extended Path Coverage Enacted - RTAS 2016

27 Industrial case study setcs A total of structurally feasible paths User-provided flow facts greatly reduced the amount of paths Only 26 paths were considered semantically relevant 16 of these paths had not been observed at analysis time Experiment MOET SynthTest SynthTest SynthTest SynthTest SynthTest SynthTest SynthTest SynthTest SynthTest SynthTest SynthTest SynthTest SynthTest SynthTest SynthTest SynthTest Increase wrt Worst-Case MBPTA +60% +74% +94% +111% +130% 17 Extended Path Coverage Enacted - RTAS 2016

28 setcs Gauging Overapproximation Cycles (thousands) Unobserved behavior or unnecessary pessimism? Could not collect evidence by executing the EPC WC path By code inspection it exhibit large overlapping with Path7 Overall inflation factor Padding applied to 23% of total BB, AVG increase 10.5% Few exceptions (bad case up to 4x) Pessimism function of execution frequency and relative contribution Basic blocks 18 Extended Path Coverage Enacted - RTAS 2016

29 setcs Gauging Overapproximation Assessing SynthPath12 against Path7 How far are MOET values from cumulative values Suggests SynthPath12 could incur 30% large MOET Remaining 30% originates from padding Pessimism from dirty misses assumption Dynamic references (parameter passing) and always-misses Issues could be cured with larger support to structural information in the analysis tool MOET Max Cumul Min Cumul Max EPC Inflation Test SynthTest Increase 60% 29% 16% 32% 19 Extended Path Coverage Enacted - RTAS 2016

30 Conclusions and future works EPC is an hybrid approach Extends and complements MBPTA For increased representativeness of results Evaluation on full industrial-quality toolchain Realistic requirements at HW and SW level Proved to be computationally feasible Pessimism depends on application structure and code constructs Future directions Extend tool support for contextual information Integrate with existing tools (e.g. SWEET) to automatically derive flow facts 20 Extended Path Coverage Enacted - RTAS 2016

MC2: Multicore and Cache Analysis via Deterministic and Probabilistic Jitter Bounding

MC2: Multicore and Cache Analysis via Deterministic and Probabilistic Jitter Bounding www.bsc.es MC2: Multicore and Cache Analysis via Deterministic and Probabilistic Jitter Bounding Enrique Díaz¹,², Mikel Fernández¹, Leonidas Kosmidis¹, Enrico Mezzetti¹, Carles Hernandez¹, Jaume Abella¹,

More information

EPC: Extended Path Coverage for Measurement-based Probabilistic Timing Analysis

EPC: Extended Path Coverage for Measurement-based Probabilistic Timing Analysis EPC: Extended Path Coverage for Measurement-based Probabilistic Timing Analysis Marco Ziccardi, Enrico Mezzetti and Tullio Vardanega Department of Mathematics University of Padua, Italy Jaume Abella and

More information

CONTENTION IN MULTICORE HARDWARE SHARED RESOURCES: UNDERSTANDING OF THE STATE OF THE ART

CONTENTION IN MULTICORE HARDWARE SHARED RESOURCES: UNDERSTANDING OF THE STATE OF THE ART CONTENTION IN MULTICORE HARDWARE SHARED RESOURCES: UNDERSTANDING OF THE STATE OF THE ART Gabriel Fernandez 1, Jaume Abella 2, Eduardo Quiñones 2, Christine Rochange 3, Tullio Vardanega 4 and Francisco

More information

Lecture 15: Caches and Optimization Computer Architecture and Systems Programming ( )

Lecture 15: Caches and Optimization Computer Architecture and Systems Programming ( ) Systems Group Department of Computer Science ETH Zürich Lecture 15: Caches and Optimization Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 Last time Program

More information

Measurement-Based Timing Analysis of the AURIX Caches

Measurement-Based Timing Analysis of the AURIX Caches Measurement-Based Timing Analysis of the AURIX Caches Leonidas Kosmidis 1,3, Davide Compagnin 2, David Morales 3, Enrico Mezzetti 3, Eduardo Quinones 3, Jaume Abella 3, Tullio Vardanega 2, and Francisco

More information

Systems Programming and Computer Architecture ( ) Timothy Roscoe

Systems Programming and Computer Architecture ( ) Timothy Roscoe Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-0061-00) Timothy Roscoe Herbstsemester 2016 AS 2016 Caches 1 16: Caches Computer Architecture

More information

Cache Memories. From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6.

Cache Memories. From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6. Cache Memories From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6. Today Cache memory organization and operation Performance impact of caches The memory mountain Rearranging

More information

Chapter 6 Caches. Computer System. Alpha Chip Photo. Topics. Memory Hierarchy Locality of Reference SRAM Caches Direct Mapped Associative

Chapter 6 Caches. Computer System. Alpha Chip Photo. Topics. Memory Hierarchy Locality of Reference SRAM Caches Direct Mapped Associative Chapter 6 s Topics Memory Hierarchy Locality of Reference SRAM s Direct Mapped Associative Computer System Processor interrupt On-chip cache s s Memory-I/O bus bus Net cache Row cache Disk cache Memory

More information

NoCo: ILP-based Worst-Case Contention Estimation for Mesh Real-Time Manycores

NoCo: ILP-based Worst-Case Contention Estimation for Mesh Real-Time Manycores www.bsc.es NoCo: ILP-based Worst-Case Contention Estimation for Mesh Real-Time Manycores Jordi Cardona 1,2, Carles Hernandez 1, Enrico Mezzetti 1, Jaume Abella 1 and Francisco J.Cazorla 1,3 1 Barcelona

More information

Single-Path Programming on a Chip-Multiprocessor System

Single-Path Programming on a Chip-Multiprocessor System Single-Path Programming on a Chip-Multiprocessor System Martin Schoeberl, Peter Puschner, and Raimund Kirner Vienna University of Technology, Austria mschoebe@mail.tuwien.ac.at, {peter,raimund}@vmars.tuwien.ac.at

More information

The Impact of Write Back on Cache Performance

The Impact of Write Back on Cache Performance The Impact of Write Back on Cache Performance Daniel Kroening and Silvia M. Mueller Computer Science Department Universitaet des Saarlandes, 66123 Saarbruecken, Germany email: kroening@handshake.de, smueller@cs.uni-sb.de,

More information

Locality. CS429: Computer Organization and Architecture. Locality Example 2. Locality Example

Locality. CS429: Computer Organization and Architecture. Locality Example 2. Locality Example Locality CS429: Computer Organization and Architecture Dr Bill Young Department of Computer Sciences University of Texas at Austin Principle of Locality: Programs tend to reuse data and instructions near

More information

Cache memories are small, fast SRAM-based memories managed automatically in hardware. Hold frequently accessed blocks of main memory

Cache memories are small, fast SRAM-based memories managed automatically in hardware. Hold frequently accessed blocks of main memory Cache Memories Cache memories are small, fast SRAM-based memories managed automatically in hardware. Hold frequently accessed blocks of main memory CPU looks first for data in caches (e.g., L1, L2, and

More information

Sireesha R Basavaraju Embedded Systems Group, Technical University of Kaiserslautern

Sireesha R Basavaraju Embedded Systems Group, Technical University of Kaiserslautern Sireesha R Basavaraju Embedded Systems Group, Technical University of Kaiserslautern Introduction WCET of program ILP Formulation Requirement SPM allocation for code SPM allocation for data Conclusion

More information

COSC 6385 Computer Architecture - Memory Hierarchies (I)

COSC 6385 Computer Architecture - Memory Hierarchies (I) COSC 6385 Computer Architecture - Memory Hierarchies (I) Edgar Gabriel Spring 2018 Some slides are based on a lecture by David Culler, University of California, Berkley http//www.eecs.berkeley.edu/~culler/courses/cs252-s05

More information

Enabling TDMA Arbitration in the Context of MBPTA

Enabling TDMA Arbitration in the Context of MBPTA Enabling TDMA Arbitration in the Context of MBPTA Miloš Panić,, Jaume Abella, Eduardo Quiñones, Carles Hernandez, Theo Ungerer, Francisco J. Cazorla, Universitat Politècnica de Catalunya Barcelona Supercomputing

More information

Memory Hierarchy. Maurizio Palesi. Maurizio Palesi 1

Memory Hierarchy. Maurizio Palesi. Maurizio Palesi 1 Memory Hierarchy Maurizio Palesi Maurizio Palesi 1 References John L. Hennessy and David A. Patterson, Computer Architecture a Quantitative Approach, second edition, Morgan Kaufmann Chapter 5 Maurizio

More information

Cache Memory and Performance

Cache Memory and Performance Cache Memory and Performance Cache Performance 1 Many of the following slides are taken with permission from Complete Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective (CS:APP)

More information

CSF Improving Cache Performance. [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005]

CSF Improving Cache Performance. [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005] CSF Improving Cache Performance [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005] Review: The Memory Hierarchy Take advantage of the principle of locality to present the user

More information

Memory Hierarchy. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Memory Hierarchy. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Memory Hierarchy Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Time (ns) The CPU-Memory Gap The gap widens between DRAM, disk, and CPU speeds

More information

Analysis of Probabilistic Cache Related Pre-emption Delays. Rob Davis, Luca Santinelli, Sebastian Altmeyer, Claire Maiza, and Liliana Cucu-Grosjean

Analysis of Probabilistic Cache Related Pre-emption Delays. Rob Davis, Luca Santinelli, Sebastian Altmeyer, Claire Maiza, and Liliana Cucu-Grosjean Analysis of Probabilistic Cache Related Pre-emption Delays Rob Davis, Luca Santinelli, Sebastian Altmeyer, Claire Maiza, and Liliana Cucu-Grosjean Outline Probabilistic real-time systems System model Random

More information

ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling

ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling ECE 587 Hardware/Software Co-Design Spring 2018 1/20 ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling Professor Jia Wang Department of Electrical and Computer Engineering

More information

Voting Machines and Automotive Software: Explorations with SMT at Scale

Voting Machines and Automotive Software: Explorations with SMT at Scale Voting Machines and Automotive Software: Explorations with SMT at Scale Sanjit A. Seshia EECS Department UC Berkeley Joint work with: Bryan Brady, Randy Bryant, Susmit Jha, Jon Kotker, John O Leary, Alexander

More information

Memory Hierarchy. Maurizio Palesi. Maurizio Palesi 1

Memory Hierarchy. Maurizio Palesi. Maurizio Palesi 1 Memory Hierarchy Maurizio Palesi Maurizio Palesi 1 References John L. Hennessy and David A. Patterson, Computer Architecture a Quantitative Approach, second edition, Morgan Kaufmann Chapter 5 Maurizio

More information

The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350):

The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350): The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350): Motivation for The Memory Hierarchy: { CPU/Memory Performance Gap The Principle Of Locality Cache $$$$$ Cache Basics:

More information

On the Comparison of Deterministic and Probabilistic WCET Estimation Techniques

On the Comparison of Deterministic and Probabilistic WCET Estimation Techniques On the Comparison of Deterministic and Probabilistic WCET Estimation Techniques Jaume Abella, Damien Hardy, Isabelle Puaut, Eduardo Quiñones, Francisco J. Cazorla, University of Rennes I, IRISA Barcelona

More information

Page 1. Memory Hierarchies (Part 2)

Page 1. Memory Hierarchies (Part 2) Memory Hierarchies (Part ) Outline of Lectures on Memory Systems Memory Hierarchies Cache Memory 3 Virtual Memory 4 The future Increasing distance from the processor in access time Review: The Memory Hierarchy

More information

Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, Eduardo Tovar

Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, Eduardo Tovar Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, Eduardo Tovar Current status MC model gradually gaining in sophistication Current status MC model gradually gaining in sophistication Issue Safety-related

More information

Agenda Cache memory organization and operation Chapter 6 Performance impact of caches Cache Memories

Agenda Cache memory organization and operation Chapter 6 Performance impact of caches Cache Memories Agenda Chapter 6 Cache Memories Cache memory organization and operation Performance impact of caches The memory mountain Rearranging loops to improve spatial locality Using blocking to improve temporal

More information

Agenda. EE 260: Introduction to Digital Design Memory. Naive Register File. Agenda. Memory Arrays: SRAM. Memory Arrays: Register File

Agenda. EE 260: Introduction to Digital Design Memory. Naive Register File. Agenda. Memory Arrays: SRAM. Memory Arrays: Register File EE 260: Introduction to Digital Design Technology Yao Zheng Department of Electrical Engineering University of Hawaiʻi at Mānoa 2 Technology Naive Register File Write Read clk Decoder Read Write 3 4 Arrays:

More information

Topics. Digital Systems Architecture EECE EECE Need More Cache?

Topics. Digital Systems Architecture EECE EECE Need More Cache? Digital Systems Architecture EECE 33-0 EECE 9-0 Need More Cache? Dr. William H. Robinson March, 00 http://eecs.vanderbilt.edu/courses/eece33/ Topics Cache: a safe place for hiding or storing things. Webster

More information

Cache Memories /18-213/15-513: Introduction to Computer Systems 12 th Lecture, October 5, Today s Instructor: Phil Gibbons

Cache Memories /18-213/15-513: Introduction to Computer Systems 12 th Lecture, October 5, Today s Instructor: Phil Gibbons Cache Memories 15-213/18-213/15-513: Introduction to Computer Systems 12 th Lecture, October 5, 2017 Today s Instructor: Phil Gibbons 1 Today Cache memory organization and operation Performance impact

More information

Architectural Time-predictability Factor (ATF) to Measure Architectural Time Predictability

Architectural Time-predictability Factor (ATF) to Measure Architectural Time Predictability Architectural Time-predictability Factor (ATF) to Measure Architectural Time Predictability Yiqiang Ding, Wei Zhang Department of Electrical and Computer Engineering Virginia Commonwealth University Outline

More information

Writing Temporally Predictable Code

Writing Temporally Predictable Code Writing Temporally Predictable Code Peter Puschner Benedikt Huber slides credits: P. Puschner, R. Kirner, B. Huber VU 2.0 182.101 SS 2015 Task Execution Time a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 9 a 8 1. Sequence

More information

Memory Hierarchy. Slides contents from:

Memory Hierarchy. Slides contents from: Memory Hierarchy Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing, NPTEL Memory Performance Gap Memory

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 48 Computer Organization 5. The Basics of Cache Chansu Yu Caches: The Basic Idea A smaller set of storage locations storing a subset of information from a larger set (memory) Unlike registers or memory,

More information

arxiv: v2 [cs.ds] 22 Jun 2016

arxiv: v2 [cs.ds] 22 Jun 2016 Federated Scheduling Admits No Constant Speedup Factors for Constrained-Deadline DAG Task Systems Jian-Jia Chen Department of Informatics, TU Dortmund University, Germany arxiv:1510.07254v2 [cs.ds] 22

More information

3Introduction. Memory Hierarchy. Chapter 2. Memory Hierarchy Design. Computer Architecture A Quantitative Approach, Fifth Edition

3Introduction. Memory Hierarchy. Chapter 2. Memory Hierarchy Design. Computer Architecture A Quantitative Approach, Fifth Edition Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Introduction Programmers want unlimited amounts of memory with low latency Fast memory technology is more

More information

Memory Hierarchy Motivation, Definitions, Four Questions about Memory Hierarchy

Memory Hierarchy Motivation, Definitions, Four Questions about Memory Hierarchy Memory Hierarchy Motivation, Definitions, Four Questions about Memory Hierarchy Soner Onder Michigan Technological University Randy Katz & David A. Patterson University of California, Berkeley Levels in

More information

MEMORY HIERARCHY BASICS. B649 Parallel Architectures and Programming

MEMORY HIERARCHY BASICS. B649 Parallel Architectures and Programming MEMORY HIERARCHY BASICS B649 Parallel Architectures and Programming BASICS Why Do We Need Caches? 3 Overview 4 Terminology cache virtual memory memory stall cycles direct mapped valid bit block address

More information

Hardware-Software Codesign. 9. Worst Case Execution Time Analysis

Hardware-Software Codesign. 9. Worst Case Execution Time Analysis Hardware-Software Codesign 9. Worst Case Execution Time Analysis Lothar Thiele 9-1 System Design Specification System Synthesis Estimation SW-Compilation Intellectual Prop. Code Instruction Set HW-Synthesis

More information

Slide Set 5. for ENCM 501 in Winter Term, Steve Norman, PhD, PEng

Slide Set 5. for ENCM 501 in Winter Term, Steve Norman, PhD, PEng Slide Set 5 for ENCM 501 in Winter Term, 2017 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2017 ENCM 501 W17 Lectures: Slide

More information

COSC 6385 Computer Architecture. - Memory Hierarchies (I)

COSC 6385 Computer Architecture. - Memory Hierarchies (I) COSC 6385 Computer Architecture - Hierarchies (I) Fall 2007 Slides are based on a lecture by David Culler, University of California, Berkley http//www.eecs.berkeley.edu/~culler/courses/cs252-s05 Recap

More information

CS/CoE 1541 Exam 2 (Spring 2019).

CS/CoE 1541 Exam 2 (Spring 2019). CS/CoE 1541 Exam 2 (Spring 2019) Name: Question 1 (5+5+5=15 points): Show the content of each of the caches shown below after the two memory references 35, 44 Use the notation [tag, M(address),] to describe

More information

Pick a time window size w. In time span w, are there, Multiple References, to nearby addresses: Spatial Locality

Pick a time window size w. In time span w, are there, Multiple References, to nearby addresses: Spatial Locality Pick a time window size w. In time span w, are there, Multiple References, to nearby addresses: Spatial Locality Repeated References, to a set of locations: Temporal Locality Take advantage of behavior

More information

6.1 Motivation. Fixed Priorities. 6.2 Context Switch. Real-time is about predictability, i.e. guarantees. Real-Time Systems

6.1 Motivation. Fixed Priorities. 6.2 Context Switch. Real-time is about predictability, i.e. guarantees. Real-Time Systems Real-Time Systems Summer term 2017 6.1 Motivation 6.1 Motivation Real-Time Systems 6 th Chapter Practical Considerations Jafar Akhundov, M.Sc. Professur Betriebssysteme Real-time is about predictability,

More information

Performance! (1/latency)! 1000! 100! 10! Capacity Access Time Cost. CPU Registers 100s Bytes <10s ns. Cache K Bytes ns 1-0.

Performance! (1/latency)! 1000! 100! 10! Capacity Access Time Cost. CPU Registers 100s Bytes <10s ns. Cache K Bytes ns 1-0. Since 1980, CPU has outpaced DRAM... EEL 5764: Graduate Computer Architecture Appendix C Hierarchy Review Ann Gordon-Ross Electrical and Computer Engineering University of Florida http://www.ann.ece.ufl.edu/

More information

Program Testing and Analysis: Manual Testing Prof. Dr. Michael Pradel Software Lab, TU Darmstadt

Program Testing and Analysis: Manual Testing Prof. Dr. Michael Pradel Software Lab, TU Darmstadt Program Testing and Analysis: Manual Testing Prof. Dr. Michael Pradel Software Lab, TU Darmstadt Partly based on slides from Peter Müller, ETH Zurich 1 Warm-up Quiz What does the following code print?

More information

Managing Memory for Timing Predictability. Rodolfo Pellizzoni

Managing Memory for Timing Predictability. Rodolfo Pellizzoni Managing Memory for Timing Predictability Rodolfo Pellizzoni Thanks This work would not have been possible without the following students and collaborators Zheng Pei Wu*, Yogen Krish Heechul Yun* Renato

More information

Architecture Tuning Study: the SimpleScalar Experience

Architecture Tuning Study: the SimpleScalar Experience Architecture Tuning Study: the SimpleScalar Experience Jianfeng Yang Yiqun Cao December 5, 2005 Abstract SimpleScalar is software toolset designed for modeling and simulation of processor performance.

More information

Design and Analysis of Real-Time Systems Predictability and Predictable Microarchitectures

Design and Analysis of Real-Time Systems Predictability and Predictable Microarchitectures Design and Analysis of Real-Time Systems Predictability and Predictable Microarcectures Jan Reineke Advanced Lecture, Summer 2013 Notion of Predictability Oxford Dictionary: predictable = adjective, able

More information

Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation

Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation Meng Xu Linh Thi Xuan Phan Hyon-Young Choi Insup Lee Department of Computer and Information Science

More information

Memory hierarchies: caches and their impact on the running time

Memory hierarchies: caches and their impact on the running time Memory hierarchies: caches and their impact on the running time Irene Finocchi Dept. of Computer and Science Sapienza University of Rome A happy coincidence A fundamental property of hardware Different

More information

ECE7995 (6) Improving Cache Performance. [Adapted from Mary Jane Irwin s slides (PSU)]

ECE7995 (6) Improving Cache Performance. [Adapted from Mary Jane Irwin s slides (PSU)] ECE7995 (6) Improving Cache Performance [Adapted from Mary Jane Irwin s slides (PSU)] Measuring Cache Performance Assuming cache hit costs are included as part of the normal CPU execution cycle, then CPU

More information

Caching Basics. Memory Hierarchies

Caching Basics. Memory Hierarchies Caching Basics CS448 1 Memory Hierarchies Takes advantage of locality of reference principle Most programs do not access all code and data uniformly, but repeat for certain data choices spatial nearby

More information

CPE 631 Lecture 04: CPU Caches

CPE 631 Lecture 04: CPU Caches Lecture 04 CPU Caches Electrical and Computer Engineering University of Alabama in Huntsville Outline Memory Hierarchy Four Questions for Memory Hierarchy Cache Performance 26/01/2004 UAH- 2 1 Processor-DR

More information

Modern Computer Architecture

Modern Computer Architecture Modern Computer Architecture Lecture3 Review of Memory Hierarchy Hongbin Sun 国家集成电路人才培养基地 Xi an Jiaotong University Performance 1000 Recap: Who Cares About the Memory Hierarchy? Processor-DRAM Memory Gap

More information

CISC 662 Graduate Computer Architecture Lecture 16 - Cache and virtual memory review

CISC 662 Graduate Computer Architecture Lecture 16 - Cache and virtual memory review CISC 662 Graduate Computer Architecture Lecture 6 - Cache and virtual memory review Michela Taufer http://www.cis.udel.edu/~taufer/teaching/cis662f07 Powerpoint Lecture Notes from John Hennessy and David

More information

Deterministic Memory Abstraction and Supporting Multicore System Architecture

Deterministic Memory Abstraction and Supporting Multicore System Architecture Deterministic Memory Abstraction and Supporting Multicore System Architecture Farzad Farshchi $, Prathap Kumar Valsan^, Renato Mancuso *, Heechul Yun $ $ University of Kansas, ^ Intel, * Boston University

More information

NeighborWatcher: A Content-Agnostic Comment Spam Inference System

NeighborWatcher: A Content-Agnostic Comment Spam Inference System NeighborWatcher: A Content-Agnostic Comment Spam Inference System Jialong Zhang and Guofei Gu Secure Communication and Computer Systems Lab Department of Computer Science & Engineering Texas A&M University

More information

WCET-Aware C Compiler: WCC

WCET-Aware C Compiler: WCC 12 WCET-Aware C Compiler: WCC Jian-Jia Chen (slides are based on Prof. Heiko Falk) TU Dortmund, Informatik 12 2015 年 05 月 05 日 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

More information

Today. Cache Memories. General Cache Concept. General Cache Organization (S, E, B) Cache Memories. Example Memory Hierarchy Smaller, faster,

Today. Cache Memories. General Cache Concept. General Cache Organization (S, E, B) Cache Memories. Example Memory Hierarchy Smaller, faster, Today Cache Memories CSci 2021: Machine Architecture and Organization November 7th-9th, 2016 Your instructor: Stephen McCamant Cache memory organization and operation Performance impact of caches The memory

More information

COSC 6385 Computer Architecture - Memory Hierarchy Design (III)

COSC 6385 Computer Architecture - Memory Hierarchy Design (III) COSC 6385 Computer Architecture - Memory Hierarchy Design (III) Fall 2006 Reducing cache miss penalty Five techniques Multilevel caches Critical word first and early restart Giving priority to read misses

More information

A Complete Data Scheduler for Multi-Context Reconfigurable Architectures

A Complete Data Scheduler for Multi-Context Reconfigurable Architectures A Complete Data Scheduler for Multi-Context Reconfigurable Architectures M. Sanchez-Elez, M. Fernandez, R. Maestre, R. Hermida, N. Bagherzadeh, F. J. Kurdahi Departamento de Arquitectura de Computadores

More information

Introduction to Dynamic Analysis

Introduction to Dynamic Analysis Introduction to Dynamic Analysis Reading assignment Gary T. Leavens, Yoonsik Cheon, "Design by Contract with JML," draft paper, http://www.eecs.ucf.edu/~leavens/jml//jmldbc.pdf G. Kudrjavets, N. Nagappan,

More information

VOILA: Efficient Feature-value Acquisition for Classification

VOILA: Efficient Feature-value Acquisition for Classification VOILA: Efficient Feature-value Acquisition for Classification Mustafa Bilgic and Lise Getoor University of Maryland College Park, MD {mbilgic,getoor}@cs.umd.edu Abstract We address the problem of efficient

More information

Caches in Real-Time Systems. Instruction Cache vs. Data Cache

Caches in Real-Time Systems. Instruction Cache vs. Data Cache Caches in Real-Time Systems [Xavier Vera, Bjorn Lisper, Jingling Xue, Data Caches in Multitasking Hard Real- Time Systems, RTSS 2003.] Schedulability Analysis WCET Simple Platforms WCMP (memory performance)

More information

Higher-order Testing. Stuart Anderson. Stuart Anderson Higher-order Testing c 2011

Higher-order Testing. Stuart Anderson. Stuart Anderson Higher-order Testing c 2011 Higher-order Testing Stuart Anderson Defining Higher Order Tests 1 The V-Model V-Model Stages Meyers version of the V-model has a number of stages that relate to distinct testing phases all of which are

More information

Caches Concepts Review

Caches Concepts Review Caches Concepts Review What is a block address? Why not bring just what is needed by the processor? What is a set associative cache? Write-through? Write-back? Then we ll see: Block allocation policy on

More information

Threshold-Based Markov Prefetchers

Threshold-Based Markov Prefetchers Threshold-Based Markov Prefetchers Carlos Marchani Tamer Mohamed Lerzan Celikkanat George AbiNader Rice University, Department of Electrical and Computer Engineering ELEC 525, Spring 26 Abstract In this

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L16-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

Cache memories are small, fast SRAM based memories managed automatically in hardware.

Cache memories are small, fast SRAM based memories managed automatically in hardware. Cache Memories Cache memories are small, fast SRAM based memories managed automatically in hardware. Hold frequently accessed blocks of main memory CPU looks first for data in caches (e.g., L1, L2, and

More information

Rethinking On-chip DRAM Cache for Simultaneous Performance and Energy Optimization

Rethinking On-chip DRAM Cache for Simultaneous Performance and Energy Optimization Rethinking On-chip DRAM Cache for Simultaneous Performance and Energy Optimization Fazal Hameed and Jeronimo Castrillon Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden,

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Warren Hunt, Jr. and Bill Young Department of Computer Sciences University of Texas at Austin Last updated: August 26, 2014 at 08:54 CS429 Slideset 20: 1 Cache

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Principle of Locality Programs access a small proportion of their address space at any time Temporal locality Items accessed recently are likely to

More information

Computer Architecture

Computer Architecture Computer Architecture Architecture The art and science of designing and constructing buildings A style and method of design and construction Design, the way components fit together Computer Architecture

More information

The Memory Hierarchy. Cache, Main Memory, and Virtual Memory (Part 2)

The Memory Hierarchy. Cache, Main Memory, and Virtual Memory (Part 2) The Memory Hierarchy Cache, Main Memory, and Virtual Memory (Part 2) Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Cache Line Replacement The cache

More information

EEC 170 Computer Architecture Fall Cache Introduction Review. Review: The Memory Hierarchy. The Memory Hierarchy: Why Does it Work?

EEC 170 Computer Architecture Fall Cache Introduction Review. Review: The Memory Hierarchy. The Memory Hierarchy: Why Does it Work? EEC 17 Computer Architecture Fall 25 Introduction Review Review: The Hierarchy Take advantage of the principle of locality to present the user with as much memory as is available in the cheapest technology

More information

CSE 417 Network Flows (pt 4) Min Cost Flows

CSE 417 Network Flows (pt 4) Min Cost Flows CSE 417 Network Flows (pt 4) Min Cost Flows Reminders > HW6 is due Monday Review of last three lectures > Defined the maximum flow problem find the feasible flow of maximum value flow is feasible if it

More information

Comparing Memory Systems for Chip Multiprocessors

Comparing Memory Systems for Chip Multiprocessors Comparing Memory Systems for Chip Multiprocessors Jacob Leverich Hideho Arakida, Alex Solomatnikov, Amin Firoozshahian, Mark Horowitz, Christos Kozyrakis Computer Systems Laboratory Stanford University

More information

Ensuring Schedulability of Spacecraft Flight Software

Ensuring Schedulability of Spacecraft Flight Software Ensuring Schedulability of Spacecraft Flight Software Flight Software Workshop 7-9 November 2012 Marek Prochazka & Jorge Lopez Trescastro European Space Agency OUTLINE Introduction Current approach to

More information

EEC 170 Computer Architecture Fall Improving Cache Performance. Administrative. Review: The Memory Hierarchy. Review: Principle of Locality

EEC 170 Computer Architecture Fall Improving Cache Performance. Administrative. Review: The Memory Hierarchy. Review: Principle of Locality Administrative EEC 7 Computer Architecture Fall 5 Improving Cache Performance Problem #6 is posted Last set of homework You should be able to answer each of them in -5 min Quiz on Wednesday (/7) Chapter

More information

Impact of Resource Sharing on Performance and Performance Prediction: A Survey

Impact of Resource Sharing on Performance and Performance Prediction: A Survey Impact of Resource Sharing on Performance and Performance Prediction: A Survey Andreas Abel, Florian Benz, Johannes Doerfert, Barbara Dörr, Sebastian Hahn, Florian Haupenthal, Michael Jacobs, Amir H. Moin,

More information

CHAPTER 6 Memory. CMPS375 Class Notes (Chap06) Page 1 / 20 Dr. Kuo-pao Yang

CHAPTER 6 Memory. CMPS375 Class Notes (Chap06) Page 1 / 20 Dr. Kuo-pao Yang CHAPTER 6 Memory 6.1 Memory 341 6.2 Types of Memory 341 6.3 The Memory Hierarchy 343 6.3.1 Locality of Reference 346 6.4 Cache Memory 347 6.4.1 Cache Mapping Schemes 349 6.4.2 Replacement Policies 365

More information

Advanced Computer Architecture

Advanced Computer Architecture ECE 563 Advanced Computer Architecture Fall 2009 Lecture 3: Memory Hierarchy Review: Caches 563 L03.1 Fall 2010 Since 1980, CPU has outpaced DRAM... Four-issue 2GHz superscalar accessing 100ns DRAM could

More information

DTM: Degraded Test Mode for Fault-Aware Probabilistic Timing Analysis

DTM: Degraded Test Mode for Fault-Aware Probabilistic Timing Analysis DTM: Degraded Test Mode for Fault-Aware Probabilistic Timing Analysis Mladen Slijepcevic,, Leonidas Kosmidis,, Jaume Abella, Eduardo Quiñones, Francisco J. Cazorla, Universitat Politècnica de Catalunya

More information

Παράλληλη Επεξεργασία

Παράλληλη Επεξεργασία Παράλληλη Επεξεργασία Μέτρηση και σύγκριση Παράλληλης Απόδοσης Γιάννος Σαζεϊδης Εαρινό Εξάμηνο 2013 HW 1. Homework #3 due on cuda (summary of Tesla paper on web page) Slides based on Lin and Snyder textbook

More information

COMP 3221: Microprocessors and Embedded Systems

COMP 3221: Microprocessors and Embedded Systems COMP 3: Microprocessors and Embedded Systems Lectures 7: Cache Memory - III http://www.cse.unsw.edu.au/~cs3 Lecturer: Hui Wu Session, 5 Outline Fully Associative Cache N-Way Associative Cache Block Replacement

More information

Advanced Memory Organizations

Advanced Memory Organizations CSE 3421: Introduction to Computer Architecture Advanced Memory Organizations Study: 5.1, 5.2, 5.3, 5.4 (only parts) Gojko Babić 03-29-2018 1 Growth in Performance of DRAM & CPU Huge mismatch between CPU

More information

Memory Hierarchy. Slides contents from:

Memory Hierarchy. Slides contents from: Memory Hierarchy Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing, NPTEL Memory Performance Gap Memory

More information

Data Exchange Design and A Textured State Estimation Algorithm For Distributed Multi-Utility Operations In Electric Power Market.

Data Exchange Design and A Textured State Estimation Algorithm For Distributed Multi-Utility Operations In Electric Power Market. Data Exchange Design and A Textured State Estimation Algorithm For Distributed Multi-Utility Operations In Electric Power Market Jiansheng Lei Advisor: Dr. Garng M. Huang Department of Electrical Engineering

More information

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility. HIL platform for EV charging and microgrid emulation

European Conference on Nanoelectronics and Embedded Systems for Electric Mobility. HIL platform for EV charging and microgrid emulation European Conference on Nanoelectronics and Embedded Systems for Electric Mobility emobility emotion 25-26 th September 2013, Toulouse, France HIL platform for EV charging and microgrid emulation Salvador

More information

Instruction-Level Parallelism (ILP)

Instruction-Level Parallelism (ILP) Instruction Level Parallelism Instruction-Level Parallelism (ILP): overlap the execution of instructions to improve performance 2 approaches to exploit ILP: 1. Rely on hardware to help discover and exploit

More information

Reconciling Time Predictability and Performance in Future Computing Systems

Reconciling Time Predictability and Performance in Future Computing Systems Reconciling Time Predictability and Performance in Future Computing Systems Francisco J. Cazorla, Jaume Abella, Enrico Mezzetti, Carles Hernandez, Tullio Vardanega, Guillem Bernat Barcelona Supercomputing

More information

Caches in Real-Time Systems. Instruction Cache vs. Data Cache

Caches in Real-Time Systems. Instruction Cache vs. Data Cache Caches in Real-Time Systems [Xavier Vera, Bjorn Lisper, Jingling Xue, Data Caches in Multitasking Hard Real- Time Systems, RTSS 2003.] Schedulability Analysis WCET Simple Platforms WCMP (memory performance)

More information

What is the worst-case execution time of your software?

What is the worst-case execution time of your software? What is the worst-case execution time of your software?... and how can I improve it? Dr. Guillem Bernat (CEO) Timing of Real-Time Systems int f (int x) { return 2 * x; } What does this do? Does it always

More information

Resource Sharing and Partitioning in Multicore

Resource Sharing and Partitioning in Multicore www.bsc.es Resource Sharing and Partitioning in Multicore Francisco J. Cazorla Mixed Criticality/Reliability Workshop HiPEAC CSW Barcelona May 2014 Transition to Multicore and Manycores Wanted or imposed

More information

HW/SW Codesign. WCET Analysis

HW/SW Codesign. WCET Analysis HW/SW Codesign WCET Analysis 29 November 2017 Andres Gomez gomeza@tik.ee.ethz.ch 1 Outline Today s exercise is one long question with several parts: Basic blocks of a program Static value analysis WCET

More information

EE 4683/5683: COMPUTER ARCHITECTURE

EE 4683/5683: COMPUTER ARCHITECTURE EE 4683/5683: COMPUTER ARCHITECTURE Lecture 6A: Cache Design Avinash Kodi, kodi@ohioedu Agenda 2 Review: Memory Hierarchy Review: Cache Organization Direct-mapped Set- Associative Fully-Associative 1 Major

More information

Advanced Caching Techniques

Advanced Caching Techniques Advanced Caching Approaches to improving memory system performance eliminate memory operations decrease the number of misses decrease the miss penalty decrease the cache/memory access times hide memory

More information