Communication Networks ( ) / Spring 2011 The Blavatnik School of Computer Science, Tel-Aviv University

Size: px
Start display at page:

Download "Communication Networks ( ) / Spring 2011 The Blavatnik School of Computer Science, Tel-Aviv University"

Transcription

1 ommunication Networks ( ) / Sprin 0 The lavatnik School o omputer Science, Tel-viv University llon Waner urose & Ross, hapters (5 th ed.) Tanenbaum & Wetherall, hapters (5 th ed.) Many slides adapted rom:. urose &. Ross \ omputer Networkin: Top own pproach (5 th ed.) ddison-wesley, pril 009. opyriht ,. urose and.w. Ross, ll Rihts Reserved. ubs physical-layer ( dumb ) repeaters: bits comin in one link o out all other links at same rate all nodes connected to hub can collide with one another no rame buerin no SM/ at hub: host Ns detect collisions hub twisted pair Switch link-layer device: smarter than hubs, take active role store, orward thernet rames examine incomin rame s M address, selectively orward rame to one-or-more outoin links when rame is to be orwarded on sement, uses SM/ to access sement transparent hosts are unaware o presence o switches plu-and-play, sel-learnin switches do not need to be coniured ata Link Layer 5-3 ata Link Layer 5-4 Switch: allows multiple simultaneous transmissions hosts have dedicated, direct connection to switch switches buer packets thernet protocol used on each incomin link, but no collisions; ull duplex each link is its own collision domain switchin: -to- and - to- simultaneously, without collisions not possible with dumb hub switch with six interaces (,,3,4,5,6) Switch Table Q: how does switch know that reachable via interace 4, reachable via interace 5? : each switch has a switch table, each entry: (M address o host, interace to reach host, time stamp) looks like a routin table! Q: how are entries created, maintained in switch table? somethin like a routin protocol? switch with six interaces (,,3,4,5,6) ata Link Layer 5-5 ata Link Layer 5-6

2 Switch: sel-learnin switch learns which hosts can be reached throuh which interaces when rame received, switch learns location o sender: incomin LN sement records sender/location pair in switch table M addr interace TTL Source: est: Switch table (initially empty) Switch: rame ilterin/orwardin When rame received:. record link associated with sendin host. index switch table usin M dest address 3. i entry ound or destination then { i dest on sement rom which rame arrived then drop the rame else orward the rame on interace indicated } else lood orward on all but the interace on which the rame arrived ata Link Layer 5-7 ata Link Layer 5-8 Sel-learnin, orwardin: example rame destination unknown: lood destination location known: selective send M addr interace TTL Source: est: Switch table (initially empty) nterconnectin switches switches can be connected toether S S Q: sendin rom to - how does S know to orward rame destined to via S 4 and S 3? : sel learnin! (works exactly the same as in sinle-switch case!) S 4 S 3 ata Link Layer 5-9 ata Link Layer 5-0 Sel-learnin multi-switch example Suppose sends rame to, responds to nstitutional network S S S 4 S 3 to external network router mail server web server P subnet Q: show switch tables and packet orwardin in S, S, S 3, S 4 ata Link Layer 5- ata Link Layer 5-

3 Question ride = {,a};{,};{,b} c ride = {,};{,c};{,b} ind all errors in the table anxplain why? ride name rror in table xplain ll rrors ride = {,a};{,};{,b} c ride = {,};{,c};{,b} oes a messae reaches destination? rom to rom to rom to What will happen to the tables? rom to rom to ride = {,a};{,};{,b}{,c} c ride = {,};{,c};{,b} ride = {,a};{,};{,b} c ride = {,};{,c};{,b} 3

4 rom to ride = {,a};{,};{,b} c ride = {,};{,c};{,b} What will happen with loops? ncorrect learnin,, Lecture 3 #0 What will happen with loops? rame loopin What will happen with loops? rame loopin,??,??,, Lecture 3 # Lecture 3 # Loop-ree: tree Loop-ree: tree : messae rom will mark s location messae rom will mark s location Lecture 3 #3 Lecture 3 #4 4

5 Loop-ree: tree Loop-ree: tree : : : : : : : messae rom will mark s location messae rom will mark s location Lecture 3 #5 Lecture 3 #6 Loop-ree: tree Loop-ree: tree : : : : : : : : : : messae rom will mark s location So a messae to will o by marks messae rom will mark s location Lecture 3 #7 Lecture 3 #8 ntroduction Perlman, hapters ( th ed.) Peterson & avie, hapter 3.. (3 th ed.) eveloped by Radia Perlman Standardized in 80. We will learn the main concepts, and skip some o the technical drudery Reer to Perlman s book or to the standard or a complete description rides run a distributed spannin tree alorithm Select which ports (and brides) should actively orward rames ynamic, adapts itsel to topoloy chanes 5

6 STP s oal reate a spannin-tree o the LN sements in the extended LN This is done by loically removin ports rom the network in order to reduce it to an acyclic raph ata traic is discarded upon receipt in ports not selected or inclusion in the spannin tree. Sometimes, an entire bride will be removed rom the network STP preliminaries rides reularly exchane rames known as oniuration ride Protocol ata Units (oniuration PUs). very bride has a unique. The bride with the smallest is the root bride. ach coni messae transmitted by bride contains: Root : o the bride R which currently considers to be the root ost: Least cost path rom to R (o all the paths is currently aware o) Transmittin ride : s. STP preliminaries (cont.) bride initially assumes itsel to be the root and transmits rames on all ports indicatin it to be the root with cost 0. ach bride saves or each port the best rame it had seen so ar on this port. est means: Smaller root root s are equal: lower cost to the root ost is the sum o the cost indicates in the messae had received, and the cost o the link on which it was received Oten cost is measured in hops, and thus is simply cost in ms +. root s and costs are equal: transmittin bride has lower still a tie: break ties by port identiier or simplicity s sake, we ll inore that in our presentation xample (adapted rom Perlman) Root 9 ost Transmitter Root ost Transmitter n all three case, coni messae is better than (assumin cost is hops). Smaller root. Smaller distance to the same root 3. Same root and distance, but throuh ride with smaller xample (adapted rom Perlman) ride 9 has 5 ports t saves the best coni messae it has seen on each port (root. ost to root. Transmitter ) ssume all link costs are. port : port : xample (cont.) ride 9 assumes the root is 4 and best distance to it is + = 3. 4 can be reached in cost 3 either via or via. is chosen (smaller than ). 9 can transmit the messae port : port :

7 Selection o Root Port very bride accepts one bride as the root the smallest root indicatin on any o the ports, or itsel i its is even smaller can now select its Root Port the port which indicated the least cost to R will be used to transer messaes towards the root Selection o esinated Ports or every LN sement is connected to decides whether it is the desinated bride or that LN: i its coni messae is the best it had seen on this LN n that case, the correspondin port becomes the desinated port or that LN. will be responsible to deliverin data rames rom the root towards this LN via the desinated port desinated port is never also a root port (Why?) ll the ports o the root bride are desinated (Why?) Selectin spannin tree ports orwards data messaes only on its root port and its desinated ports. Other ports discard data messaes upon receipt. t miht even be that entire brides are removed rom the network xample (cont.) Recall that 9 assumes 4 is the root, with cost 3 throuh. ts coni messae is Port 4 is the root port 9 decides it is the desinated bride on the LN sements connected to ports,. These are desinated ports. port : port : xample (cont.) Ports,, 4 set to orwardin state Ports 3, 5 set to blockin state xample (cont.) the bride s had been 5, it would have decided it was the root port, transmittin the messae ll its ports would have become desinated port : port : port : port :

8 xample: esinated port / Root Port is the root bride 3 and 5 are both connected to LN, but 5 is the desinated port since it's closer to root 5 and 7 are both connected to LN, but 5 is the desinated port due to smaller (equal distance). nd 3 nd this one 6 5 What are these 7 4 nd these STP Stabilization Recall that ride initially assumes itsel to be the root and transmits rames on all ports indicatin it to be the root with cost 0. When ride accepts another bride R as the root, it stops eneratin coni messaes on its own. transmits coni messaes on all its desinated ports when triered to (by an you see why only on the desinated ports? t adds the relevant link cost (oten simply +) to the cost indicated in them When the alorithm stabilizes, only the real root R enerates coni messaes, and the other brides orward them on their desinated ports STP Run ind Root sends PU sends PU sends PU 4, sends PU 8 sends PU 9 9 L 8 8 M STP Run lock Ports : 5, 0, :, 0, 3: LO 7: 7, 0, 5: 5, 0, 7: LO ata Laptop Messae to 9 9 L L M M Laptop 8

9 Topoloy chanes STP dynamically adapts to link / bride additions: new bride / ride with a new port will think it is the root / the desinated bride or the LN until receivin the appropriate coni messaes ctually, there are some technicalities here we will not o into Topoloy chanes (cont.) STP dynamically adapts to link / bride removal Recall that every bride saves or each port the best messae it had seen on this port The entry also holds an ae ield (which is reset by resh coni messaes). but not always to 0 aain, technicalities When a link / bride ails or is removed rom the network resh coni messaes miht stop arrivin on some o s ports: ae is increased radually until the entry expires the STP alorithm kicks in aain: reselects its assumed root, cost to root. 9

Communication Networks ( ) / Spring 2011 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Communication Networks ( ) / Spring 2011 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner Communication Networks (0368-3030) / Spring 2011 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner Kurose & Ross, Chapters 5.5-5.6 (5 th ed.) Tanenbaum & Wetherall, Chapters 4.3.4

More information

Chapter 5: The Data Link Layer. Chapter 5 Link Layer and LANs. Ethernet. Link Layer. Star topology. Ethernet Frame Structure.

Chapter 5: The Data Link Layer. Chapter 5 Link Layer and LANs. Ethernet. Link Layer. Star topology. Ethernet Frame Structure. hapter 5 Link Layer and LNs omputer Networking: Top Down pproach 5 th edition. Jim Kurose, Keith Ross ddison-wesley, pril 2009. hapter 5: The Data Link Layer Our goals: understand principles behind data

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 6.1: Internetworking Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer

More information

Hubs. twisted pair. hub. 5: DataLink Layer 5-1

Hubs. twisted pair. hub. 5: DataLink Layer 5-1 Hubs Hubs are essentially physical-layer repeaters: bits coming from one link go out all other links at the same rate no frame buffering no CSMA/CD at : adapters detect collisions provides net management

More information

CSE/EE 461 Lecture 7 Bridging LANs. Last Two Times. This Time -- Switching (a.k.a. Bridging)

CSE/EE 461 Lecture 7 Bridging LANs. Last Two Times. This Time -- Switching (a.k.a. Bridging) S/ 461 Lecture 7 ridging LNs Last Two Times Medium ccess ontrol (M) protocols Part of the Link Layer t the heart of Local rea Networks (LNs) ow do multiple parties share a wire or the air? Random access

More information

The Link Layer and LANs: Ethernet and Swiches

The Link Layer and LANs: Ethernet and Swiches The Link Layer and LNs: Ethernet and Swiches EECS3214 2018-03-21 Link layer, LNs: outline 6.1 introduction, services 6.2 error detection, correction 6.3 multiple access protocols 6.4 LNs addressing, RP

More information

Link layer: introduction

Link layer: introduction Link layer: introduction terminology: hosts and routers: nodes communication channels that connect adjacent nodes along communication path: links wired links wireless links LANs layer-2 packet: frame,

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

Announcements. CS 5565 Network Architecture and Protocols. Ethernet. Ethernet. Ethernet Model. Ideal Multiple Access Protocol

Announcements. CS 5565 Network Architecture and Protocols. Ethernet. Ethernet. Ethernet Model. Ideal Multiple Access Protocol nnouncements CS 5565 Network rchitecture and Protocols Lecture 4 odmar ack Project due in parts: pr 5 and May xtra Credit Opportunities: xpand simulator (and your implementation) to introduce multiple

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 18

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 18 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 18 1 Final project demo Please do the demo THIS week to the TAs. Or you are allowed to use

More information

Link Layer: CSMA/CD, MAC addresses, ARP

Link Layer: CSMA/CD, MAC addresses, ARP Link Layer: CSM/CD, MC addresses, RP Smith College, CSC 249 March 29, 208 MC ddress q 32-bit IP address: network-layer address used to get datagram to destination IP subnet q MC (or LN, physical, thernet,

More information

Link layer, LANs: outline. Chapter 5-2 Link Layer. MAC addresses (more) MAC addresses

Link layer, LANs: outline. Chapter 5-2 Link Layer. MAC addresses (more) MAC addresses Chapter 5-2 Link Layer Computer Networking: Top Down pproach 6 th edition Jim Kurose, Keith Ross ddison-wesley March 2012 Link layer, LNs: outline 5.1 introduction, services 5.2 error detection, correction

More information

CS 455/555 Intro to Networks and Communications. Link Layer Addressing, Ethernet, and a Day in the Life of a Web Request

CS 455/555 Intro to Networks and Communications. Link Layer Addressing, Ethernet, and a Day in the Life of a Web Request CS 455/555 Intro to Networks and Communications Link Layer Addressing, ernet, and a Day in the Life of a Web Request Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu

More information

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD Review Error Detection: CRC Multiple access protocols Slotted ALOHA CSMA/CD LAN addresses and ARP Ethernet Some slides are in courtesy of J. Kurose and K. Ross Overview Ethernet Hubs, bridges, and switches

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Link Layer, Switches, VLANS, MPLS, Data Centers Sec 6.4 to 6.7 Prof. Lina Battestilli Fall 2017 Chapter 6 Outline Link layer and LANs: 6.1 introduction,

More information

Lecture 6: Multicast

Lecture 6: Multicast Lecture 6: Multicast Challene: how do we efficiently send messaes to a roup of machines? Need to revisit all aspects of networkin Routin Autonomous systems and admin control Address allocation Conestion

More information

CS 43: Computer Networks Switches and LANs. Kevin Webb Swarthmore College December 5, 2017

CS 43: Computer Networks Switches and LANs. Kevin Webb Swarthmore College December 5, 2017 CS 43: Computer Networks Switches and LANs Kevin Webb Swarthmore College December 5, 2017 Ethernet Metcalfe s Ethernet sketch Dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology

More information

EPL606. Internetworking. Part 2a. 1Network Layer

EPL606. Internetworking. Part 2a. 1Network Layer EPL606 Internetworking Part 2a The majority of the slides in this course are adapted from the accompanying slides to the books by Larry Peterson and Bruce Davie and by Jim Kurose and Keith Ross. Additional

More information

Chapter 3 Part 2 Switching and Bridging. Networking CS 3470, Section 1

Chapter 3 Part 2 Switching and Bridging. Networking CS 3470, Section 1 Chapter 3 Part 2 Switching and Bridging Networking CS 3470, Section 1 Refresher We can use switching technologies to interconnect links to form a large network What is a hub? What is a switch? What is

More information

CSC 4900 Computer Networks: Link Layer (2)

CSC 4900 Computer Networks: Link Layer (2) CSC 4900 Computer Networks: Link Layer (2) Professor Henry Carter Fall 2017 Link Layer 6.1 Introduction and services 6.2 Error detection and correction 6.3 Multiple access protocols 6.4 LANs addressing,

More information

Switching & ARP Week 3

Switching & ARP Week 3 Switching & ARP Week 3 Module : Computer Networks Lecturer: Lucy White lbwhite@wit.ie Office : 324 Many Slides courtesy of Tony Chen 1 Ethernet Using Switches In the last few years, switches have quickly

More information

Chapter 4. DataLink Layer. Reference: Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.

Chapter 4. DataLink Layer. Reference: Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007. Chapter 4 DataLink Layer Reference: Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007. DataLink Layer Link Layer 4.1 Link-Layer Addressing 4.2 Ethernet

More information

CEN445 Network Protocols and Algorithms. Chapter 2. Routing Algorithms. Dr. Ridha Ouni

CEN445 Network Protocols and Algorithms. Chapter 2. Routing Algorithms. Dr. Ridha Ouni 3/4/04 EN44 Network Protocols and lgorithms hapter Routing lgorithms Dr. Ridha Ouni Department of omputer Engineering ollege of omputer and Information Sciences King Saud University References Some slides

More information

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols Link Layer: Introduction daptors ommunicating hosts and routers are nodes links connect nodes wired links wireless links layer-2 packet is a frame, encapsulates datagram datagram controller sending host

More information

More on Link Layer. Recap of Last Class. Interconnecting Nodes in LAN (Local-Area Network) Interconnecting with Hubs. Computer Networks 9/21/2009

More on Link Layer. Recap of Last Class. Interconnecting Nodes in LAN (Local-Area Network) Interconnecting with Hubs. Computer Networks 9/21/2009 More on Link Layer Kai Shen Recap of Last Class Ethernet dominant link layer technology for local-area l networks Ethernet frame structure Ethernet multiple access control CSMA/CD, exponential back-off

More information

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols Link Layer: Introduction daptors ommunicating Terminology: hosts and routers are nodes communication channels that connect adjacent nodes along communication path are links wired links wireless links LNs

More information

Bridges. Bridge Functions. Example of No-frills Bridge. No-frills Bridges. Example of Learning Bridge. Learning Bridges

Bridges. Bridge Functions. Example of No-frills Bridge. No-frills Bridges. Example of Learning Bridge. Learning Bridges ridge Functions To extend size of LNs either geographically or in terms number of users. Protocols that include collisions can be performed in a collision domain of limited size. In ring networks the number

More information

Minimum Spanning Trees and Shortest Paths

Minimum Spanning Trees and Shortest Paths Minimum Spanning Trees and Shortest Paths Kruskal's lgorithm Prim's lgorithm Shortest Paths pril 04, 018 inda eeren / eoffrey Tien 1 Kruskal's algorithm ata types for implementation Kruskalslgorithm()

More information

Data Link Layer. Our goals: understand principles behind data link layer services: instantiation and implementation of various link layer technologies

Data Link Layer. Our goals: understand principles behind data link layer services: instantiation and implementation of various link layer technologies Data Link Layer Our goals: understand principles behind data link layer services: link layer addressing instantiation and implementation of various link layer technologies 1 Outline Introduction and services

More information

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner Communication Networks (0368-3030) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner Kurose & Ross, Chapter 4 (5 th ed.) Many slides adapted from: J. Kurose & K. Ross

More information

Linear Network Coding

Linear Network Coding IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 2, FEBRUARY 2003 371 Linear Network Codin Shuo-Yen Robert Li, Senior Member, IEEE, Raymond W. Yeun, Fellow, IEEE, Nin Cai Abstract Consider a communication

More information

CSCD 330 Network Programming Spring 2017

CSCD 330 Network Programming Spring 2017 CSCD 330 Network Programming Spring 2017 Lecture 18 Link Layer Protocols Continued Who is this? Reading: Chapter 5 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright

More information

Practice exercises on Ethernet switching

Practice exercises on Ethernet switching Practice exercises on Ethernet switching Problem. Hosts HA through HA0 LAN A b 4 photon 3 b LAN D LAN G LAN B 3 duke b utopia 3 LAN C catt LAN F LAN E A network o Ethernet bridges (switches) and hubbed

More information

Third Generation Routers

Third Generation Routers IP orwarding 5-5- omputer Networking 5- Lecture : Routing Peter Steenkiste all www.cs.cmu.edu/~prs/5-- The Story So ar IP addresses are structured to reflect Internet structure IP packet headers carry

More information

Reducing Network Cost of Many-to-Many Communication in Unidirectional WDM Rings with Network Coding

Reducing Network Cost of Many-to-Many Communication in Unidirectional WDM Rings with Network Coding 1 Reducin Network Cost of Many-to-Many Communication in Unidirectional WDM Rins with Network Codin Lon Lon and Ahmed E. Kamal, Senior Member, IEEE Abstract In this paper we address the problem of traffic

More information

Name Student ID Department/Year. Final Examination. Introduction to Computer Networks Class#: Fall :50-11:30 Tuesday January 10, 2006

Name Student ID Department/Year. Final Examination. Introduction to Computer Networks Class#: Fall :50-11:30 Tuesday January 10, 2006 Name Student I epartment/year inal xamination Introduction to omputer Networks lass#: 901 31110 all 2005 9:50-11:30 Tuesday January 10, 2006 Prohibited 1. You are not allowed to write down the answers

More information

Principles behind data link layer services

Principles behind data link layer services Data link layer Goals: Principles behind data link layer services Error detection, correction Sharing a broadcast channel: Multiple access Link layer addressing Reliable data transfer, flow control: Done!

More information

Principles behind data link layer services:

Principles behind data link layer services: Data link layer Goals: Principles behind data link layer services: Error detection, correction Sharing a broadcast channel: Multiple access Link layer addressing Reliable data transfer, flow control Example

More information

LAN Interconnection and Other Link Layer Protocols

LAN Interconnection and Other Link Layer Protocols LAN Interconnection and Other Link Layer Protocols Ethernet dominant link layer technology for local-area networks Ethernet frame structure Kai Shen Dept. of Computer Science, University of Rochester Ethernet

More information

Principles behind data link layer services:

Principles behind data link layer services: Data link layer Goals: Principles behind data link layer services: Error detection, correction Sharing a broadcast channel: Multiple access Link layer addressing Reliable data transfer, flow control Example

More information

Let s focus on clarifying questions. More Routing. Logic Refresher. Warning. Short Summary of Course. 10 Years from Now.

Let s focus on clarifying questions. More Routing. Logic Refresher. Warning. Short Summary of Course. 10 Years from Now. Let s focus on clarifying questions I love the degree of interaction in this year s class More Routing all Scott Shenker http://inst.eecs.berkeley.edu/~ee/ Materials with thanks to Jennifer Rexford, Ion

More information

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats What is Routing? Routing implements the core function of a network: : Shortest Path Routing Ion Stoica Ts: Junda Liu, K Moon, avid Zats http://inst.eecs.berkeley.edu/~ee/fa9 (Materials with thanks to Vern

More information

Medium Access Protocols

Medium Access Protocols Medium Access Protocols Summary of MAC protocols What do you do with a shared media? Channel Partitioning, by time, frequency or code Time Division,Code Division, Frequency Division Random partitioning

More information

Underlying Technologies -Continued-

Underlying Technologies -Continued- S465 omputer Networks Spring 2004 hapter 3 (Part B) Underlying Technologies -ontinued- Dr. J. Harrison These slides were produced from material by Behrouz Forouzan for the text TP/IP Protocol Suite (2

More information

Lecture 20: Link Layer

Lecture 20: Link Layer Lecture 20: Link Layer COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F Kurose and K.W. Ross, All Rights

More information

IP Forwarding Computer Networking. Routes from Node A. Graph Model. Lecture 10: Intra-Domain Routing

IP Forwarding Computer Networking. Routes from Node A. Graph Model. Lecture 10: Intra-Domain Routing IP orwarding - omputer Networking Lecture : Intra-omain Routing RIP (Routing Information Protocol) & OSP (Open Shortest Path irst) The Story So ar IP addresses are structure to reflect Internet structure

More information

Link Layer Review. CS244A Winter 2008 March 7, 2008 Ben Nham

Link Layer Review. CS244A Winter 2008 March 7, 2008 Ben Nham Link Layer Review CS244A Winter 2008 March 7, 2008 Ben Nham Announcements PA3 due today PS3 due next Wednesday PA4 due next Friday Final Exam Review session next Friday 7-10 PM on Thursday, March 20 Multiple

More information

The Problem: Finding Paths Spring 2011 Lecture #19. Forwarding. Shortest Path Routing

The Problem: Finding Paths Spring 2011 Lecture #19. Forwarding. Shortest Path Routing The Problem: Finding Paths 1 6.02 Spring 20 Lecture # addressing, forwarding, routing liveness, advertisements, integration distance-vector routing routing loops, counting to infinity 6.02 Spring 20 Lecture,

More information

4/25/12. The Problem: Distributed Methods for Finding Paths in Networks Spring 2012 Lecture #20. Forwarding. Shortest Path Routing

4/25/12. The Problem: Distributed Methods for Finding Paths in Networks Spring 2012 Lecture #20. Forwarding. Shortest Path Routing //1 The Problem: istributed Methods for Finding Paths in Networks L 1.0 Spring 01 Lecture #0 addressing, forwarding, routing liveness, advertisements, integration distance-vector routing link-state routing

More information

CSCI Computer Networks

CSCI Computer Networks CSCI-1680 - Computer Networks Link Layer III: LAN & Switching Chen Avin Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca Today: Link Layer (cont.)

More information

Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs Chapter 5 Link Layer and LANs A note on the use of these ppt slides: All material copyright 1996-2007 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 4 th edition.

More information

Lecture 9 The Data Link Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 9 The Data Link Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 9 The Data Link Layer part II Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Physical Addresses Physical (or LAN or MAC) address: 48 bit string Hexadecimal representation

More information

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Jean-Yves Le Boudec Fall Contents

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. Jean-Yves Le Boudec Fall Contents Bridging ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Jean-Yves Le Boudec Fall 0 Algorhyme I think that I shall never see a graph more lovely than a tree. A tree whose crucial property is loop-free connectivity.

More information

Data Organization: Creating Order Out Of Chaos

Data Organization: Creating Order Out Of Chaos ata Organization: reating Order Out Of haos 3 Non-linear data structures 5-5 Principles of omputation, arnegie Mellon University - ORTIN Trees tree is a hierarchical (usually non-linear) data structure.

More information

A Meshed Tree Algorithm for Loop Avoidance in Switched Networks

A Meshed Tree Algorithm for Loop Avoidance in Switched Networks INS 202 : The ighth International onference on Networking and Services Meshed Tree lgorithm for Loop voidance in Switched Networks Nirmala Shenoy Networking Security and Systems dministration epartment

More information

Computer Networks. Wenzhong Li. Nanjing University

Computer Networks. Wenzhong Li. Nanjing University Computer Networks Wenzhong Li Nanjing University 1 Chapter 2. Direct Link Networks Link Service and Framing Error Detection and Reliable Transmission HDLC, PPP, and SONET Token Ring Ethernet Bridges and

More information

Chapter 6 Wireless and Mobile Networks. Chapter 6 outline. Chapter 6: Wireless and Mobile Networks. Elements of a wireless network

Chapter 6 Wireless and Mobile Networks. Chapter 6 outline. Chapter 6: Wireless and Mobile Networks. Elements of a wireless network Chapter 6 Wireless and Mobile Networks Computer Networking: Top Down pproach 5 th edition. Jim Kurose, Keith Ross ddison-wesley, pril 009. Chapter 6: Wireless and Mobile Networks ackground: # wireless

More information

CSE3213 Computer Network I

CSE3213 Computer Network I SE33 omputer Network I Service Model, Error ontrol, Flow ontrol, and Link Sharing (h. 5. 5.3. and 5.7.) ourse page: http://www.cse.yorku.ca/course/33 Slides modiied om lberto Leon-Garcia and Indra Widjaja

More information

Internet: Best Effort. L11: Protocols and Network layer. Protocol. End hosts implement everything else

Internet: Best Effort. L11: Protocols and Network layer. Protocol. End hosts implement everything else L: Protocols and Network layer Frans Kaashoek 6.0 Spring 0 http://web.mit.edu/6.0 Some slides are from lectures by Nick Mckeown, Ion Stoica,ina Katabi, Hari alakrishnan, Sam Madden, and Robert Morris Internet:

More information

Grooming Multicast Traffic in Unidirectional SONET/WDM Rings

Grooming Multicast Traffic in Unidirectional SONET/WDM Rings 1 Groomin Multicast Traffic in Unidirectional SONET/WDM Rins Anuj Rawat, Richard La, Steven Marcus and Mark Shayman Abstract In this paper we study the problem of efficient roomin of iven non-uniform multicast

More information

The Role of Switching in Reducing the Number of Electronic Ports in WDM Networks

The Role of Switching in Reducing the Number of Electronic Ports in WDM Networks 1 The Role of Switchin in Reducin the Number of Electronic Ports in WDM Networks Randall A. Berry and Eytan Modiano Abstract We consider the role of switchin in minimizin the number of electronic ports

More information

Interface The exit interface a packet will take when destined for a specific network.

Interface The exit interface a packet will take when destined for a specific network. The Network Layer The Network layer (also called layer 3) manages device addressing, tracks the location of devices on the network, and determines the best way to move data, which means that the Network

More information

Layer 2 functionality bridging and switching

Layer 2 functionality bridging and switching Layer 2 functionality bridging and switching BSAD 141 Dave Novak Sources: Network+ Guide to Networks, Dean 2013 Overview Layer 2 functionality Error detection Bridges Broadcast and collision domains How

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 8, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 8, minutes CS 421: COMPUTR NTWORKS SPRIN 2016 INL May 8, 2016 150 minutes Name: Student No: Q1 Q2 Q3 TOT 1) a) (6 pts) iven the following parameters for a datagram packet switching network: N: number of hops between

More information

Homework 2: IP Due: 11:59 PM, Oct 19, 2017

Homework 2: IP Due: 11:59 PM, Oct 19, 2017 CS68 Computer Networks Fonseca Homework : IP Due: :59 PM, Oct 9, 07 Contents IP Forwarding Routing More routing 4 Spanning Tree 4 IP Forwarding Answer the following questions based on the diagram below.

More information

Lesson 4.2. Critical Paths

Lesson 4.2. Critical Paths Lesson. ritical Paths It is relatively easy to find the shortest time needed to complete a project if the project consists of only a few activities. ut as the tasks increase in number, the problem becomes

More information

CSE/EE 461 Distance Vector Routing

CSE/EE 461 Distance Vector Routing S/ 46 istance Vector Routing Last Time Introduction to the Network layer Internetworks atagram and virtual circuit services Internet Protocol (IP) packet format The Network layer Provides end-to-end data

More information

Summary of MAC protocols

Summary of MAC protocols Summary of MAC protocols What do you do with a shared media? Channel Partitioning, by time, frequency or code Time Division, Code Division, Frequency Division Random partitioning (dynamic) ALOHA, S-ALOHA,

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Dr. Nils

More information

Switching and Forwarding Reading: Chapter 3 1/30/14 1

Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Next Problem: Enable communication between hosts that are not directly connected Fundamental Problem of the Internet or any

More information

Routers & Routing : Computer Networking. Binary Search on Ranges. Speeding up Prefix Match - Alternatives

Routers & Routing : Computer Networking. Binary Search on Ranges. Speeding up Prefix Match - Alternatives Routers & Routing -44: omputer Networking High-speed router architecture Intro to routing protocols ssigned reading [McK9] Fast Switched ackplane for a Gigabit Switched Router Know RIP/OSPF L-4 Intra-omain

More information

Introduction to Packet Switching

Introduction to Packet Switching S 5 esign and nalysis of ing Systems onathan Turner Introduction to Pacet ing Review Questions. Let be the cost of a lin between two points in a networ and let n+ n be the cost of a switch or router with

More information

Computer Networks Principles LAN - Ethernet

Computer Networks Principles LAN - Ethernet Computer s Principles LN - thernet Prof. ndrzej Duda duda@imag.fr Interconnection structure - layer subnetwork interconnection layer interconnection layer subnet subnet router switch (bridge) VLN http://duda.imag.fr

More information

Now Arriving at Layer 3. Packet Forwarding. Router Design. Network Layers and Routers. Switching and Forwarding. Forwarding

Now Arriving at Layer 3. Packet Forwarding. Router Design. Network Layers and Routers. Switching and Forwarding. Forwarding Now rriving at Layer Packet orwarding although layer switches and layer routers are similar in many ways and TM/Virtual are used at layer these days 9/7/6 S/ 48 - UIU, all 6 9/7/6 S/ 48 - UIU, all 6 Layers

More information

Architecture EECS 122. Network Architecture. Layer: Example. Internet Layers - Intro

Architecture EECS 122. Network Architecture. Layer: Example. Internet Layers - Intro rchitecture S rchitecture Introduction Layering xample Internet Layers First Look Layering Step by Step ownside of Layering Interconnecting s The Internet Introduction Issues: Inter-operability xtensibility

More information

CSCD 330 Network Programming Winter 2016

CSCD 330 Network Programming Winter 2016 CSCD 330 Network Programming Winter 2016 Lecture 18 Link Layer Protocols Continued Who is this? Reading: Chapter 5 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright

More information

CS4/MSc Computer Networking. Lectures 4-5 Transport layer protocols TCP/UDP automatic repeat request

CS4/MSc Computer Networking. Lectures 4-5 Transport layer protocols TCP/UDP automatic repeat request S4/MSc omputer Networking Lectures 4-5 Transport layer protocols TP/UDP automatic repeat request omputer Networking, opyright University o Edinburgh 005 Transport services and protocols provide logical

More information

ICMP (Internet Control Message Protocol)

ICMP (Internet Control Message Protocol) Today s Lecture ICMP (Internet Control Message Protocol) Internet Protocols CSC / C 573 I. ICMP Overview II. ICMP rror Reporting III. ICMP Query / Response Messages IV. ICMP Message Processing Fall, 2005

More information

Minimum Spanning Trees and Shortest Paths

Minimum Spanning Trees and Shortest Paths Minimum Spanning Trees and Shortest Paths Prim's algorithm ijkstra's algorithm November, 017 inda eeren / eoffrey Tien 1 Recall: S spanning tree Starting from vertex 16 9 1 6 10 13 4 3 17 5 11 7 16 13

More information

4/11/2012. Outline. Routing Protocols for Ad Hoc Networks. Classification of Unicast Ad-Hoc Routing Protocols. Ad Hoc Networks.

4/11/2012. Outline. Routing Protocols for Ad Hoc Networks. Classification of Unicast Ad-Hoc Routing Protocols. Ad Hoc Networks. 18759 Wireless Networks (2012-pring) urvey Routing Protocols for d Hoc Networks Jiun-RenLin and Yi-hun hou lectrical and omputer ngineering arnegie Mellon University Outline d-hoc networks Unicast d-hoc

More information

Lecture 9 Ethernet and other Link Layer protocols

Lecture 9 Ethernet and other Link Layer protocols Lecture 9 Ethernet and other Link Layer protocols From Kurose & Ross Book slightly modified by Romaric Duvignau duvignau@chalmers.se Thanks and enjoy! JFK/KWR All material copyright 1996-2016 J.F Kurose

More information

Chapter 5 Link Layer. Down Approach. Computer Networking: A Top. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 5 Link Layer. Down Approach. Computer Networking: A Top. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Link layer,

More information

Addressing and Switching in the Link Layer

Addressing and Switching in the Link Layer Addressing and Switching in the Link Layer Stefano Vissicchio UCL Computer Science COMP00 Recap: We have done a full pass on the stack email WWW phone...! SMTP HTTP RTP...! TCP UDP!! IP! When and how to

More information

Chapter 6 The Link Layer and LANs

Chapter 6 The Link Layer and LANs Chapter 6 The Link Layer and LANs A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the

More information

Chapter 5 Data Link Layer

Chapter 5 Data Link Layer Chapter 5 Data Link Layer Reti degli Elaboratori Canale AL Prof.ssa Chiara Petrioli a.a. 2013/2014 We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 J.F Kurose and K.W.

More information

Distributed Queue Dual Bus

Distributed Queue Dual Bus Distributed Queue Dual Bus IEEE 802.3 to 802.5 protocols are only suited for small LANs. They cannot be used for very large but non-wide area networks. IEEE 802.6 DQDB is designed for MANs It can cover

More information

VLAN and bridges. Transparent Bridging (TB) Transparent Bridging (TB) LB: Learning Bridge. Several Learning Bridges. Loops. Loop-Free topology

VLAN and bridges. Transparent Bridging (TB) Transparent Bridging (TB) LB: Learning Bridge. Several Learning Bridges. Loops. Loop-Free topology VLN and bridges dvanced Computer Networks Interconnection Layer : bridges and VLNs Contents Transparent bridges Spanning Tree Protocol (STP) apid Spanning Tree Protocol (STP) VLNs Prof. ndrzej uda duda@imag.fr

More information

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online 1 CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online Solutions 1. General Networking a. In traditional client-server communication using TCP, a new socket is created.

More information

ECPE / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ECPE / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ECPE / COMP 177 Fall 2016 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Course Organization Top-Down! Starting with Applications / App programming Then Transport Layer (TCP/UDP) Then

More information

L9: Bridges and LAN Switches. Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

L9: Bridges and LAN Switches. Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806 L9: Bridges and LAN Switches Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806 1 Acknowledgements Some pictures used in this presentation were obtained

More information

Page 1. Mobile Ad Hoc Networks. EEC173B/ECS152C, Winter Mobile Ad Hoc Networks (MANET)

Page 1. Mobile Ad Hoc Networks. EEC173B/ECS152C, Winter Mobile Ad Hoc Networks (MANET) 173/152, Winter 2006 obile d oc etworks (T) obile d oc etworks (T) ntroduction Unicast Routing Properties ormed by wireless hosts which may be mobile Without (necessarily) using a pre existing infrastructure

More information

x y x mod p g y mod p K= g xy mod p Alice Eve Bob g g x mod p x mod p g y y mod p y mod p K1= g mod p K2= g mod p

x y x mod p g y mod p K= g xy mod p Alice Eve Bob g g x mod p x mod p g y y mod p y mod p K1= g mod p K2= g mod p 6.857 Computer and Network Security Fall Term, 1997 Lecture 15 : October 23rd, 1997 Lecturer: Ron Rivest Scribe: Ben Adida 1 Topics Covered An Active Attack on RSA smart cards Secure Channels over Insecure

More information

Good day. Today we will be talking about Local Internetworking What is Internetworking? Internetworking is the connection of different networks.

Good day. Today we will be talking about Local Internetworking What is Internetworking? Internetworking is the connection of different networks. Computer Networks Prof: Sujoy Ghosh Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Local Internetworking Good day. Today we will be talking about

More information

A SUIF Interface Module for Eli. W. M. Waite. University of Colorado

A SUIF Interface Module for Eli. W. M. Waite. University of Colorado A SUIF Interace Module or Eli W. M. Waite Department o Electrical and Computer Enineerin University o Colorado William.Waite@Colorado.edu 1 What is Eli? Eli [2] is a domain-specic prorammin environment

More information

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 5 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

More information

Chapter 5 part 2 LINK LAYER. Computer Networks Timothy Roscoe Summer Networks & Operating Systems Computer Networks

Chapter 5 part 2 LINK LAYER. Computer Networks Timothy Roscoe Summer Networks & Operating Systems Computer Networks Chapter 5 part 2 LINK LAYER Computer Networks Timothy Roscoe Summer 2007 LAN technologies Data link layer so far services, error detection/correction, multiple access Next: LAN technologies LAN addressing,

More information

CompSci 356: Computer Network Architectures. Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch & 3.2. Xiaowei Yang

CompSci 356: Computer Network Architectures. Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch & 3.2. Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 8: Spanning Tree Algorithm and Basic Internetworking Ch 3.1.5 & 3.2 Xiaowei Yang xwy@cs.duke.edu Review Past lectures Single link networks Point-to-point,

More information

CS Networks and Distributed Systems. Lecture 5: Bridging. Revised 1/14/13

CS Networks and Distributed Systems. Lecture 5: Bridging. Revised 1/14/13 CS 3700 Networks and Distributed Systems Lecture 5: Bridging Revised 1/14/13 Just Above the Data Link Layer 2 Application Presentation Session Transport Network Data Link Physical Bridging! How do we connect

More information

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Administrivia Homework I out later today, due next ursday, Sep 27th Today: Link Layer

More information

06/02/ Local & Metropolitan Area Networks. Overview. Routing algorithm ACOE322. Lecture 6 Routing

06/02/ Local & Metropolitan Area Networks. Overview. Routing algorithm ACOE322. Lecture 6 Routing Local & Metropolitan rea Networks OE3 Lecture 6 Routing r. L. hristofi Overview The main function of the network layer is routing packets from the source to the destination machine. The only exception

More information