Synchronisation in Telecom Networks

Size: px
Start display at page:

Download "Synchronisation in Telecom Networks"

Transcription

1 Synchronisation in Telecom Networks ITSF / Jean-Loup Ferrant / November 6, 006

2 Network synchronisation history () Page -PSTN and PDH -Switches needed synchronisation in order to comply with slip generation specified in G.8 -Switches used to be synchronised from G.8 clocks (988) -Transport of synchronisation was done via Mbit/s signals transported within the PDH hierarchy, quasi transparently -The quality of these networks is guaranted by the control of wander that allows not to over/underflow buffers. These buffers were specified to allow 8 µs of wander without generation a slip

3 Network synchronisation history () -SDH -With SDH, Mbit/s signals transported via VC were not anymore suitable for network synchronisation due to the phase transients of VC pointer justification. -STM-N was chosen and specified to transport network synchronisation. -G.803 defines the hierarchical architecture of synchronisation network with clocks are defined in G.8, G.8 and G.83. -The respect of these recommendations avoids desynchronisation and allows the control of jitter and wander, prevents pointer justification and consequent wander on PDH tributaries Page 3 SDH networks have proven over last the 0 years their ability to provide excellent synchronisation network

4 Network synchronisation history (3) -GSM, and later UMTS, generated new requirements for the synchronisation network. Rather than Jitter and wander the frequency accuracy on the air ijnterface is the key requirement for synchronisation networks -WDM systems have been introduced Pre OTN point-to point WDM systems with proprietary implementation OTN systems based on G.709 -Packet networks have been introduced in metro and access networks New equipments, MSPP, combine TDM and Ethernet interfaces New standards specify the transport of TDM signals through packet networks New methods and protocols are proposed to transport synchronisation through packet networks Page 4

5 SDH Mapping & PJE due to desynchronisation Page 5 Central Clock Pointer jusification events Desynchronised clock Mapper / Demapper phase 3700 ns for VC /34/40 Mbit/s VC-4, VC-3, VC STM-N SDH - network STM-N VC-4, VC-3, VC Mapper / Demapper /34/40 Mbit/s phase 7400 ns for VC missing pointer 35 pointers

6 SDH Network Synchronisation Synchronisation reference chain This reference chain has been specified in order to maintain jitter and wander within acceptable limits, as specified in G.85 Page 6 Synchronisation direction PRC SSU SSU SSU m m mn n m n+ Maximum numbers according to G.803: - maximum number of 's between SSUs: m, m,... mn+ < 0 - maximum number of SSU's in a chain: n < 0 - maximum number of 's in a chain: 60

7 (SDH Equipment Clock) and SSU Page 7 T3 T4 T T T0 : MHz( Mbit/s) input sync. Signals : MHz ( Mbit/s) output sync. Signals : Mhz derived from STM-N : MHz derived from Mbit/s : MHz station clock T T T3 Sel A Sel B SETS squelch squelch S el C T4 T0 SETS: SDH Equipment Timing Source Using the T-T4 link allows to synchronize the from the SSU without any risk of timing loop SSU T T T3 T4 T0 ~

8 Hierarchical Master-slave solutions Easy and robust architecture, no timing loop May lead to long chains of clocks Page 8 PRC : SSU SSU SSU SSU SSU SSU Mai n synchroni sati on paths (normal operati on) U nder f ai lur e sit uat ions t he dir ect i on indicat ed by t he ar r ow m ay be r ever sed Standby synchronisation paths Pat hs w it hout ar r ow s m ay be used in ei t her di r ect i on, depending on All t he rights f ai lur reserved e sit uat ion 005, Alcatel

9 Distributed architecture Example with use of GPS receivers Short chain of clocks High number of GPS receivers Radio di stributed PRC, e. g. GPSsateli te system Page 9 PRC : RX SSU RX SSU SSU RX RX SSU RX SSU RX SSU

10 Hybrid solutions Each of the architectures, centralised and distributed has its own drawbacks, and most operators are optimising their synchronization network with a mix of both architectures. Page 0 : PRC,,3: Priorities RX SSU SSU SSU RX 3 SSU RX 3 SSU Mai n synchroni sati on paths (normal operati on) SSU

11 SSM and synchronisation protection SSM purpose Provide timing traceability Indicate the Quality Level of the source of synchronization SSM definition A 4 bit code located in S byte of STM-N frame SSM application Generates a DNU code to prevent timing loop In linear chains and rings and combination of them In meshed networks with some restrictions Provide desynchronisation detection Page G.8 source G.8 G.8 G.8 DNU DNU

12 Generalisation of SSM Page External Reference External Reference G.8 0 G.8 G.8 G.8 DNU DNU G.8 G.8 DNU DNU 0 G.8 G.8 G.8 G.8 0 G.8 G.8 G.8 DNU DNU G.8 DNU 0 DNU G.8 G.8 G.8 0 G.8 DNU DNU G.8 G.8 0 DNU G.8

13 Synchronisation of the E layer in SDH When SDH is the sync layer E is floating within the SDH frame through an asynchronous mapping E is inappropriate to transport synchronization due to VC PJE Page 3 Sync ref Digital switch Mbit/s Synchro? SDH network Mbit/s Digital switch Synchro? Solutions Provide a Mhz/ Mbit rom an SSU if the digital switch has a synchronisation port Implement a retiming function with the Mbit/s desynchroniser

14 Synchronisation of the E layer: SDH NE retiming The retiming function is basically a buffer in which a Mbit/s signal is entered with its own clock and which is extracted with the SDH clock of the SDH NE. Note that retiming is also implemented in some SSUs. This allows to deliver a network synchronization quality to the Mbit/s and get rid of phase jumps caused by VC PJE Page 4 This must be used only on synchronized Mbit/s, otherwise bits will be periodically lost in the buffer Output clock (locked to SDH clock) VC clock Mbit clock Low pass filter VC data buffer Mbit data Mbit/s desynchroniser retiming (functional representation)

15 Optical networks Page 5 WDM system have been specified to be transparent to client timing SDH synchronisation network are not jeopardized by WDM, OTN Synchronisation Layer - Physical Synchronisation STM-n STM-n STM-n STM-n FE/FX WDM Layer Physical SDH WDM

16 Synchronisation choices for OTN OTN is plesiochronous ITU has stated that there is no need for OTN to carry synchronisation, since there is already one network layer that does it, SDH. OTN is transparent to CBR client timing, jitter and wander are specified in G.85 Each OTN NE has its own free-running clock within ±0 ppm OTN is a plesiochronous network G.709 specifies justification scheme to adapt client and G.709 frame rate All client signal can be within ±0 ppm, even with multiplex function When OTN does not transport SDH client, it couldnot transport timing, but this might change using new synchronisation methods transported on packet networks Page 6

17 microseconds Mobile requirements In mobile applications, the most important requirement is that the frequency accuracy on the air interface remains within 50 ppb (red line) in order to provide handover when a mobile moves from one cell to another one. Mbits interfaces vs 50 ppb Page traffic synchro 50ppb 0, 0,0 0, seconds Requires low clock bandwidth implementation in BTS/ nodeb

18 Mobile Backhauling: Typical TDM Architecture Page 8 50ppb G.83 interface Synchronisatio n interface Synchronou s network PRC BTS/ nodeb TDM BSC/ RNC TDM MSC BTS/nodeB locked to a PRC: TDM generated in a MSC that is locked to a PRC via a synchronisation interface (E, MHz, STM-N) BTS/nodeB synchronized on TDM BSC synchronized on MSC by the TDM traffic signal

19 Mobile Backhauling, example with CES Page 9 50ppb BTS/ nodeb G.83 interface TDM I W F Packet network CES I W F Synchronisatio n interface TDM BSC/ RNC TDM Synchronou s network MSC PRC BTS/nodeB locked to a PRC: TDM generated in a MSC that is locked to a PRC via a synchronisation interface (E, MHz, STM-N) BSC synchronized on MSC by the TDM traffic signal BTS/nodeB synchronized on TDM recovered from CES packets

20 New technologies in transport networks Page 0 Vc4nv Layer Metro Ethernet GbE VCn GbE/FX VC4nv - Packet Ring Layer - Physical VCn FE/TX STM-n STM-n STM-n STM-n FE/FX FE/FX WDM Layer Physical SDH WDM FE/FX

21 Packet networks and synchronisation Page st phase: pseudowire CES: for transport of TDM Adaptive Method Differential Method nd phase: packet networks Time Protocols Precision Time Protocol (IEEE588) Network Time Protocol (NTP) Real Time Protocol (RTP) Synchronous Ethernet

22 Multi-service provisioning platform (MSPP) Customer Access/Service Technology E, E3, E4 STM-, STM-4, STM-6 ATM Ethernet, GE IP/MPLS ESCON, FICON Fibre Channel FDDI, DVB Client Signals MSPP NG-SDH/xWDM Traffic Switching Layer Layer Network Transmission Metro Network xwdm/sdh/ge.5g/0g MSPP clock can be synchronised by STM-N, Sync Eth or external synchronisation ports The clock can be used to synchronise STM-N, sync Eth ports and CES when a clock is needed. Page

23 TDM-PSN connexion Page 3 Sync port STM-N VC VC STM-N TDM GFP TDM OTN STM-N STM-64 STM-N CES VC VC VC VC matrix VC PDH VC VC CES CES PDH Eth Eth CES CES 4 5 CES Packet networ k Eth 0GBE-WAN Eth Eth GFP Ethernet SWITCH Eth Eth Eth Packet networ k CES 3

24 Candidate techniques for PSN Pro Con Page 4 CES Pseudowire Adaptive - No specific requirement on intermediate equipments Medium quality as PDV sensitive CES Pseudowire Differential Synchronous Ethernet -No specific requirement on intermediate equipments -Good performance -Excellent quality, similar to SDH -No influence of payload - Need network ref clock at both end points - all switches of the link need to process the sync Eth feature IEEE588 TM V Applicable to Telecom (Expected approval early 007) NTP/RTP - good performance - Possibility to bypass some switches not processing 588 ( - suits several packet network applications such as VOIP -full performance achieved only if all switches are IEEE588 -Current accuracy too low for TDM applications

25 Conclusion Introduction of packet networks creates a similar situation as that one that occured when SDH was introduced in PDH networks, corruption of the existing synchronisation network by a new layer. VC pointer were the SDH problem and PDV is the packet network problem. There has been one solution to solve the issue with SDH, the transport of timing STM-N signals. Many solutions are currently presented to solve the issue with packet networks. Page 5 Many presentations will describe these solutions during the next days.

26 Page 6

The New Timing Standard for Packet Networks, G.8261 (G.pactiming)

The New Timing Standard for Packet Networks, G.8261 (G.pactiming) The New Timing Standard for Packet s, G.8261 (G.pactiming) Prague, November - 2006 Stefano Ruffini Ericsson Lab Italy stefano.ruffini@ericsson.com Presentation Outline The need for a new ITU-T Recommendation

More information

ITSF 2007 overview of future sync applications and architecture challenges

ITSF 2007 overview of future sync applications and architecture challenges ITSF 2007 overview of future sync applications and architecture challenges Orange Labs Sébastien JOBERT, Research & Development 14/11/2007, presentation to ITSF 2007, London agenda section 1 section 2

More information

NGN Standards. The 5th International Telecom Sync Forum, ITSF London, November Stefano Ruffini Ericsson

NGN Standards. The 5th International Telecom Sync Forum, ITSF London, November Stefano Ruffini Ericsson NGN Standards The 5th International Telecom Sync Forum, ITSF London, November - 2007 Stefano Ruffini Ericsson stefano.ruffini@ericsson.com Presentation outline Synchronization in the Standards: from Traditional

More information

ITU-T Q13/15activity and its relation with the leap second. Jean-Loup Ferrant, ITU-T Q13/15 Rapporteur Calnex solutions

ITU-T Q13/15activity and its relation with the leap second. Jean-Loup Ferrant, ITU-T Q13/15 Rapporteur Calnex solutions ITU-T Q13/15activity and its relation with the leap second Jean-Loup Ferrant, ITU-T Q13/15 Rapporteur Calnex solutions Q13/15 Network synchronization and time distribution performance Q13 has already studied

More information

Application Note. Re-timing: Cost-effective Synchronization via Re-timed E1 and DS1 Signals. Precision, Stability, Innovation, Support.

Application Note. Re-timing: Cost-effective Synchronization via Re-timed E1 and DS1 Signals. Precision, Stability, Innovation, Support. Re-timing: Cost-effective Synchronization via Re-timed E1 and DS1 Signals Application Note Number 14 TELECOM NETWORKS PROFESSIONAL MANUFACTURING POWER & UTILITIES DIGITAL BROADCASING TIME & FREQUENCY TIME

More information

White paper Application note

White paper Application note Applications of the Stand-Alone Synchronization Equipment in optical networks and the Synchronous Digital Hierarchy (SDH) White paper Application note Number 07 TELECOM NETWORKS PROFESSIONAL MANUFACTURING

More information

learntelecoms interactive e-learning suite of courses: SyncNet v6 SDH-based broadband networks SyncNet

learntelecoms interactive e-learning suite of courses: SyncNet v6 SDH-based broadband networks SyncNet Tel: 0845 0949 120 Email: info@ptt.co.uk Web site: www.ptt.co.uk SyncNet SyncNet v6 SDH-based broadband networks SyncNet is a suite of interactive, multimedia e-learning courses. provides training in the

More information

NETWORK SYNCHRONIZATION TRAINING COURSE

NETWORK SYNCHRONIZATION TRAINING COURSE NETWORK SYNCHRONIZATION TRAINING COURSE 2016 Network Synchronization Training program Network Synchronization Fundamentals Ref: NST-1 Planning managers, network planners, O&M experts, system Audience:

More information

E1-E2 (EB) Chapter 4 MSPP

E1-E2 (EB) Chapter 4 MSPP E1-E2 (EB) Chapter 4 MSPP Page: 1 Multi-service Provisioning Platform (M S P P) I) Introduction: MSPP is deployed in the boundary of Access and Metro core backbone. TEC has prepared two different platforms

More information

Synchronous Ethernet based mobile backhaul integrated transport and synchronization management

Synchronous Ethernet based mobile backhaul integrated transport and synchronization management Synchronous Ethernet based mobile backhaul integrated transport and synchronization management ITSF 2012 Jon Baldry Transmode Chris Roberts Chronos Technology Clock Synchronization Is Critical Synchronization

More information

Final draft ETSI EN V1.2.1 ( )

Final draft ETSI EN V1.2.1 ( ) Final draft EN 300 462-2-1 V1.2.1 (2002-01) European Standard (Telecommunications series) Transmission and Multiplexing (TM); Generic requirements for synchronization networks; Part 2-1: Synchronization

More information

Status of ITU Q13/15 sync standards ITSF Jean-Loup Ferrant, ITU-T Q13/15 rapporteur

Status of ITU Q13/15 sync standards ITSF Jean-Loup Ferrant, ITU-T Q13/15 rapporteur Status of ITU Q13/15 sync standards ITSF-2013 Jean-Loup Ferrant, ITU-T Q13/15 rapporteur Agenda 1-Overview of recommendations 2-History 3-transport of frequency in packet networks 4-transport of time and

More information

CLOCK SYNCHRONIZATION IN CELLULAR/MOBILE NETWORKS PETER CROY SENIOR NETWORK ARCHITECT AVIAT NETWORKS

CLOCK SYNCHRONIZATION IN CELLULAR/MOBILE NETWORKS PETER CROY SENIOR NETWORK ARCHITECT AVIAT NETWORKS CLOCK SYNCHRONIZATION IN CELLULAR/MOBILE NETWORKS PETER CROY SENIOR NETWORK ARCHITECT AVIAT NETWORKS 1 Agenda Sync 101: Frequency and phase synchronization basics Legacy sync : GPS and SDH/Sonet overview

More information

Backbone network technologies. T Jouni Karvo, Timo Kiravuo

Backbone network technologies. T Jouni Karvo, Timo Kiravuo Backbone network technologies T-110.300 Jouni Karvo, Timo Kiravuo Backbone network technologies This lecture tells about backbone networks After this lecture, you should know WDM, PDH, SDH and ATM understand

More information

SDH Principle. Copyright 2012 Huawei Technologies Co., Ltd. All rights reserved.

SDH Principle.   Copyright 2012 Huawei Technologies Co., Ltd. All rights reserved. SDH Principle www.huawei.com Objectives Upon completion of this course, you will be able to: Understand the basic of SDH multiplexing standard Know the features, applications and advantages of SDH based

More information

Synchronization in Microwave Networks

Synchronization in Microwave Networks T E C H N O L O G Y W H I T E P A P E R Synchronization in Microwave Networks Network transformation, driven by IP services and Ethernet technologies, presents multiple challenges. Equally important to

More information

Tutorial: Network-based Frequency, Time & Phase Distribution

Tutorial: Network-based Frequency, Time & Phase Distribution Tutorial: Network-based Frequency, Time & Phase Distribution Christian Farrow B.Sc, MIET, MIsntP Technical Services Manager Chronos Technology Ltd 5 th Nov 2013 ITSF Lisbon Presentation Contents Introduction

More information

Wireless Backhaul Synchronization

Wireless Backhaul Synchronization Wireless Backhaul Synchronization Abstract This paper focuses on Next Generation Backhaul Networks Synchronization and the way it is implemented by Ceragon s high capacity, LTE Ready point to point microwave

More information

For internal circulation of BSNL only

For internal circulation of BSNL only E3-E4 E4 (CFA) Overview of SDH AGENDA SDH & PDH Hierarchy SDH Network Survivability Synchronous All elements are synchronized with one master clock. DIGITAL Information is in binary. SDH OVERVIEW HIERARCHY

More information

G.823 and G.824. Silvana Rodrigues Phone:

G.823 and G.824. Silvana Rodrigues Phone: G.823 and G.824 Silvana Rodrigues Phone: +1 613 270-7258 silvana.rodrigues@zarlink.com http://timing.zarlink.com Agenda What is G.823 and G.824? Jitter and Wander G.823 wander limits G.824 wander limits

More information

Sync Tested Mesh Microwave System

Sync Tested Mesh Microwave System Sync Tested Mesh Microwave System Billy Marshall Pre-sales Engineer International Telecom Sync Forum November 2013 CCSL Microwave Solution CCSL have developed a self-organising mesh microwave solution

More information

Traditional Synchronization Standards Overview

Traditional Synchronization Standards Overview Traditional Synchronization Standards Overview Silvana Rodrigues Phone: +1 613 2707258 silvana.rodrigues@zarlink.com http://timing.zarlink.com/ AGENDA Telecom Synchronization International Telecommunication

More information

INTERNATIONAL TELECOMMUNICATION UNION

INTERNATIONAL TELECOMMUNICATION UNION INTERNATIONAL TELECOMMUNICATION UNION TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.823 (03/2000) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital networks Quality and

More information

Name of Course : E1-E2 CFA. Chapter 14. Topic : NG SDH & MSPP

Name of Course : E1-E2 CFA. Chapter 14. Topic : NG SDH & MSPP Name of Course : E1-E2 CFA Chapter 14 Topic : NG SDH & MSPP Date of Creation : 28.03.2011 NGN SDH and MSPP 1. Introduction: Innovation, the lifeline to survival in the telecommunication market, has spurred

More information

Backbone network technologies. T Jouni Karvo, Timo Kiravuo

Backbone network technologies. T Jouni Karvo, Timo Kiravuo Backbone network technologies T-110.300 Jouni Karvo, Timo Kiravuo Backbone network technologies This lecture tells about landline backbone networks After this lecture, you should know WDM, PDH, SDH and

More information

PASS4TEST. IT Certification Guaranteed, The Easy Way! We offer free update service for one year

PASS4TEST. IT Certification Guaranteed, The Easy Way!  We offer free update service for one year PASS4TEST IT Certification Guaranteed, The Easy Way! \ http://www.pass4test.com We offer free update service for one year Exam : 4A0-M01 Title : Alcatel-Lucent IP/MPLS Mobile Backhaul Transport Vendors

More information

ITU-T G.8264/Y.1364 (08/2017) Distribution of timing information through packet networks

ITU-T G.8264/Y.1364 (08/2017) Distribution of timing information through packet networks I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8264/Y.1364 (08/2017) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS

More information

Tutorial: Network-based Frequency, Time & Phase Distribution

Tutorial: Network-based Frequency, Time & Phase Distribution Tutorial: Network-based Frequency, Time & Phase Distribution Christian Farrow B.Sc, MIET, MIsntP Technical Services Manager Chronos Technology Ltd 6 th Nov 2012 ITSF Nice, France Presentation Contents

More information

Status of ITU Q13/15 sync standards and relationship with IEEE 1588 ITSF-2014

Status of ITU Q13/15 sync standards and relationship with IEEE 1588 ITSF-2014 Status of ITU Q13/15 sync standards and relationship with IEEE 1588 ITSF-2014 Jean-Loup Ferrant, ITU-T Q13/15 rapporteur (With support of Silvana Rodrigues for the IEEE1588 section) ITU T Q13 Summary I-Synchronization

More information

Synchronous Ethernet A RAD White Paper

Synchronous Ethernet A RAD White Paper Synchronous Ethernet A RAD White Paper Yaakov (J) Stein, Chief Scientist, RAD Data Communications, Ltd. Alon Geva, Timing specialist, RAD Data Communications, Ltd. Abstract As more and more traffic is

More information

Migration of TDM networks towards unified packet infrastructures. Wolfgang Fischer

Migration of TDM networks towards unified packet infrastructures. Wolfgang Fischer Migration of TDM networks towards unified packet infrastructures Wolfgang Fischer What is TDM migration Two different aspects Transport of native TDM traffic over a packet network infrastructure: Circuit

More information

Joint ITU-T/IEEE Workshop on Carrier-class Ethernet

Joint ITU-T/IEEE Workshop on Carrier-class Ethernet Joint ITU-T/IEEE Workshop on Carrier-class Ethernet Time Synchronization Protocols - Time & Timing Core to Edge Mike Gilson Lead Technical Consultant British s Plc, UK Agenda Techniques & protocols for

More information

ITU-T Architecture standards and impacts to network operations. Michael Mayer Nortel ISTF 2007

ITU-T Architecture standards and impacts to network operations. Michael Mayer Nortel ISTF 2007 ITU-T Architecture standards and impacts to network operations Michael Mayer Nortel ISTF 2007 mgm@nortel.com 1 ITU-T Sync architecture and impacts to network operation Presentation intent: Overview of

More information

SONET/ SDH 10G. Core Packet Network SONET/ SDH SONET/ SDH 10G 3G/ LTE. Figure 1. Example Network with Mixed Synchronous and Asynchronous Equipment

SONET/ SDH 10G. Core Packet Network SONET/ SDH SONET/ SDH 10G 3G/ LTE. Figure 1. Example Network with Mixed Synchronous and Asynchronous Equipment SYNCE AND IEEE 1588: SYNC DISTRIBUTION FOR A UNIFIED NETWORK 1. Introduction Ethernet has become the preferred method of data transport over the last few decades because of its low operation cost and universal

More information

KillTest. Mejor calidad Mejor servicio. Renovación gratuita dentro de un año

KillTest. Mejor calidad Mejor servicio. Renovación gratuita dentro de un año KillTest Mejor calidad Mejor servicio Examen Renovación gratuita dentro de un año Exam : 4A0-M01 Title : Alcatel-Lucent IP/MPLS Mobile Backhaul Transport Version : Demo 1 / 8 1.When researching carrier-class

More information

Wireless over Pseudowires

Wireless over Pseudowires Wireless over Pseudowires Presented by: Giles Heron Director of Data Network Consulting October 31 st 2006 Agenda The challenge of mobile backhaul Wireless over Pseudowires Reference designs Synchronisation

More information

Testing Timing Over Packet With The Ixia Anue 3500

Testing Timing Over Packet With The Ixia Anue 3500 Testing Timing Over Packet With The Ixia Anue 3500 Testing according to ITU-T G.8261-2008 Appendix VI 1 Table of Contents Overview... 3 ITU-T G.8261... 3 MEF 18... 4 Acronyms and Definitions... 7 Test

More information

What is SDH? Telecommunications Standards Primer. Plesiochronous Digital Hierarchy (PDH) Limitations of PDH Network

What is SDH? Telecommunications Standards Primer. Plesiochronous Digital Hierarchy (PDH) Limitations of PDH Network Página 1 de 7 Telecommunications Standards Primer What is SDH? This document is intended as an introductory guide to the Synchronous Digital Hierarchy (SDH) standard. The following is a representative

More information

NEXT GENERATION BACKHAUL NETWORKS

NEXT GENERATION BACKHAUL NETWORKS NEXT GENERATION BACKHAUL NETWORKS AVIAT NETWORKS Presented By Vishnu Sahay 1 Visionary Adaptive Agile 2 AVIAT NETWORKS May 18, 2010 By Your Side Evolving Backhaul Requirements Base Stations with 50 Mbit/s

More information

EPoC System Level Synchronization Transport 802.3bn Interim meeting - Phoenix

EPoC System Level Synchronization Transport 802.3bn Interim meeting - Phoenix EPoC System Level Synchronization Transport 802.3bn Interim meeting - Phoenix Bill Powell 23-25 January, 2013 1 Agenda Mobile BackHaul (MBH) & Circuit Emulation Services (CES) sync requirements EPON &

More information

Time Sync distribution via PTP

Time Sync distribution via PTP Time Sync distribution via PTP Challenges, Asymmetries, Solutions ITSF - 2011 Stefano Ruffini, Ericsson Time Synchronization via PTP, cont. The basic principle is to distribute Time sync reference by means

More information

Synchronisation Requirements for Wireline and Wireless Convergence. Ghani Abbas ITSF 2006 Prague Nov.,2006

Synchronisation Requirements for Wireline and Wireless Convergence. Ghani Abbas ITSF 2006 Prague Nov.,2006 Synchronisation Requirements for Wireline and Wireless Convergence Ghani Abbas ITSF 2006 Prague 14-16 Nov.,2006 Topics Why do we need synchronisation? Market and Technology Trends Impacting Synchronisation

More information

Implementation Agreement MEF Mobile Backhaul Phase 3 - Amendment 1: Time Synchronization. November, 2016

Implementation Agreement MEF Mobile Backhaul Phase 3 - Amendment 1: Time Synchronization. November, 2016 Implementation Agreement Mobile Backhaul Phase 3 - Amendment 1: Time Synchronization November, 2016 Page i Disclaimer Mobile Backhaul Implementation Agreement Phase 3, Amendment 1 The information in this

More information

ITU-T G /Y

ITU-T G /Y International Telecommunication Union ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8261.1/Y.1361.1 (02/2012) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Packet over

More information

CALNEX PARAGON-X. Testing 1588v2 PTP

CALNEX PARAGON-X. Testing 1588v2 PTP CALNEX PARAGON-X Testing 1588v2 PTP Introducing Calnex Solutions Ltd Company founded in January 2006. Executive team with over 100 years of experience in telecom test instrumentation. Rapporteur of the

More information

Packet synchronization deployment

Packet synchronization deployment Packet synchronization deployment and challenges to mobile operator Background Challenges 1. Network growth seek the transformation of services delivery mechanism. 2. Summary of previous setup: DESCRIPTION

More information

in Synchronous Ethernet Networks

in Synchronous Ethernet Networks Jitter and Wander Measurements in Synchronous Ethernet Networks Andreas Alpert ITSF November 2008 Agenda Introduction ti Synchronous Ethernet Ji d W d A Jitter and Wander Aspects Test Applications in SyncE

More information

PDH Switches. Switching Technology S PDH switches

PDH Switches. Switching Technology S PDH switches PDH Switches Switching Technology S38.165 http://www.netlab.hut.fi/opetus/s38165 8-1 PDH switches General structure of telecom exchange Timing and synchronization Dimensioning example 8-2 1 PDH exchange

More information

ITU-T G.8262/Y.1362 (08/2007) Timing characteristics of synchronous Ethernet equipment slave clock (EEC)

ITU-T G.8262/Y.1362 (08/2007) Timing characteristics of synchronous Ethernet equipment slave clock (EEC) International Telecommunication Union ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8262/Y.1362 (08/2007) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Packet over Transport

More information

3GPP TS V8.0.0 ( )

3GPP TS V8.0.0 ( ) TS 25.411 V8.0.0 (2008-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UTRAN Iu interface layer 1 (Release 8) The present document has

More information

Suppliers Information Note. Synchronisation Recommended Settings for Customer Premises Equipment

Suppliers Information Note. Synchronisation Recommended Settings for Customer Premises Equipment SIN 488 Issue 1.2 January 2015 Suppliers Information Note Synchronisation Recommended Settings for Customer Premises Equipment For The BT Network Each SIN is the copyright of British Telecommunications

More information

Synchronization Networks Based on Synchronous Ethernet

Synchronization Networks Based on Synchronous Ethernet Application Note Number 20/2009 Created: December 14, 2009 Last modification: - ynchronization Networks Based on ynchronous thernet Oscilloquartz.A., CH-2002 Neuchâtel 2, witzerland, Tel. +41 32 722 5555,

More information

SONET. By Sadhish Prabhu. Unit II

SONET. By Sadhish Prabhu. Unit II SONET By Sadhish Prabhu History Digital carrier systems The hierarchy of digital signals that the telephone network uses. Trunks and access links organized in DS (digital signal) hierarchy Problem: rates

More information

Optical Transport Networks- Enhanced Hierarchy Standards Ghani Abbas Ericsson Broadband Networks Rome 3-5 Nov 2009

Optical Transport Networks- Enhanced Hierarchy Standards Ghani Abbas Ericsson Broadband Networks Rome 3-5 Nov 2009 ITSF 2009 Optical Transport Networks- Enhanced Hierarchy Standards Ghani Abbas Ericsson Broadband Networks Rome 3-5 Nov 2009 Topics Traffic Growth and its impact on the network infrastructure ITU-T OTN

More information

COPYRIGHTED MATERIAL INTRODUCTION TO OPTICAL TRANSPORT CHAPTER 1

COPYRIGHTED MATERIAL INTRODUCTION TO OPTICAL TRANSPORT CHAPTER 1 CHAPTER 1 INTRODUCTION TO OPTICAL TRANSPORT This chapter covers the history of the development of SDH, SONET, and OTN. For consistency in the terminology used in this book I have included a list of conventions.

More information

Understanding and Overcoming the Timing and Synchronisation Challenges of Transporting ATM over SDH

Understanding and Overcoming the Timing and Synchronisation Challenges of Transporting ATM over SDH Understanding and Overcoming the Timing and Synchronisation Challenges of Transporting ATM over SDH Charles Curry, Managing Director, Chronos Technology Ltd www.chronos.co.uk Introduction National telecom

More information

Understanding the Challenges of, and Planning, Access Layer Synchronisation in SDH Networks

Understanding the Challenges of, and Planning, Access Layer Synchronisation in SDH Networks Understanding the Challenges of, and Planning, Access Layer Synchronisation in SDH Networks Charles Curry, Managing Director, Chronos Technology Ltd www.chronos.co.uk Introduction National telecom networks

More information

Evaluating 1588v2 Performance

Evaluating 1588v2 Performance Evaluating 1588v2 Performance Rev 2 How to evaluate the performance of both 1588v2 Boundary clocks (BCs) and 1588v2 Transparent clocks (TCs) based on solutions from Calnex and Xena Networks. APPLICATION

More information

Optical Business Services

Optical Business Services Optical Business Services Choosing the Right Solution Mano Nachum Packet Optical Networking Product Line Management November 16, 2010 2 Drivers for Packet Optical Access & Edge Cloud computing, Smart Phones,

More information

Transmission Technology Ses SDH

Transmission Technology Ses SDH Transmission Technology Ses SDH ALTTC/TX1/SDH/CONCEPTS 1 CONTENTS SDH PROTECTION PLANNING SYNCHRONISATION ALTTC/TX1/SDH/CONCEPTS 2 SDH: DISCUSSION AREA WHAT IS SDH? EVOLUTION DRIVING FORCES LIMITATIONS

More information

PHYSICAL LAYER TIMING

PHYSICAL LAYER TIMING PHYSICAL LAYER TIMING Physical Layer Timing Timing in TDM Networks Synchronous Multiplexing (TDM) Transferring Timing (Timing Distribution) Stratum Levels Slips Asynchronous Multiplexing (TDM) Timing in

More information

Carrier Ethernet Synchronization. Technologies and Standards

Carrier Ethernet Synchronization. Technologies and Standards Carrier Ethernet Synchronization Technologies and Standards DataEdge, Dublin, May 19, 2010 Overview What and Where of Synchronization Synchronization Delivery Strategies o Synchronous Ethernet o IEEE 1588-2008

More information

Double Migration of Packet Clocks

Double Migration of Packet Clocks Double Migration of Packet Clocks Kenneth Hann Principal Engineer Artwork:Tanja Hann November 1, 2011 1 Packet Clocks... the first migration Land of Phase Data Com Republic Legacy Land Packet Clocks...

More information

Loop-IP6763 TDMoEthernet Aggregator

Loop-IP6763 TDMoEthernet Aggregator Loop- TDMoEthernet Aggregator Agenda Introduction Applications Advantage 1: Faster and Better Services Advantage 2: Saving in Cap-EX & Op-EX Feature List Panel View Point to Point Connection RSTP/MSTP

More information

IEEE-1588 Frequency and Time & Phase Profiles at ITU

IEEE-1588 Frequency and Time & Phase Profiles at ITU IEEE-1588 Frequency and Time & Phase Profiles at ITU Silvana Rodrigues, IDT (silvana.rodrigues@idt.com) Presentation to ITSF 2011, Edinburgh, November 2011 2009 Integrated Device Technology, Inc. Agenda

More information

ITU-T G.824. The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchy

ITU-T G.824. The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchy INTERNATIONAL TELECOMMUNICATION UNION ITU-T G.824 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (03/2000) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital transmission systems

More information

Managing RAN Backhaul Services

Managing RAN Backhaul Services CHAPTER 4 This chapter describes how to use Prime Fulfillment to manage radio access network (RAN) backhaul services in Prime Fulfillment. It contains the following sections: Overview of RAN Backhaul Services,

More information

Cisco ONS Port 10/100 Ethernet Module

Cisco ONS Port 10/100 Ethernet Module Cisco ONS 15305 8-Port 10/100 Ethernet Module The Cisco ONS 15305 8-Port 10/100 Ethernet module provides eight ports for Layer 1 or Layer 2 switched transport of Ethernet and Fast Ethernet traffic over

More information

3GPP TS V ( )

3GPP TS V ( ) TS 25.411 V11.0.0 (2012-09) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UTRAN Iu interface layer 1 (Release 11) The present document

More information

Examples of Time Transport

Examples of Time Transport Joint ITU-T/IEEE Workshop on The Future of Ethernet Transport (Geneva, 28 ay 2010) Examples of Time Transport ichel Ouellette Technical Advisor Huawei Technologies Co., Ltd. Geneva, 28 ay 2010 Outline

More information

Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) WHITE PAPER

Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) WHITE PAPER Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) WHITE PAPER Improving Mobile Backhaul Network Reliability with Carrier-Class IEEE 1588 (PTP) Grandmaster Hardware Redundancy

More information

Synchronization for Mobile Backhaul

Synchronization for Mobile Backhaul Synchronization for Mobile Backhaul A Formula for Deploying Packet Synchronization: Investigate Test - Deploy December, 8 2010 December, 8 2010 Page 1 of 34 Doc Num December, 8 2010 Page 2 of 34 Doc Num

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 ECI TELECOM S LQLAB 30 Hasivim Street Petah-Tikva 4959338, ISRAEL Moshe Perel Phone: 972 52-4008642 Email: Moshe.Perel@ecitele.com ELECTRICAL Valid to: June

More information

Circuit Emulation Service

Circuit Emulation Service Best in class Network Modernization Approach Circuit Emulation enables telecom operators to translate legacy systems using TDM signals such as E1/, E3/DS3, STM-n/OC-n to appropriate packet formats and

More information

PDH Switches. Switching Technology S P. Raatikainen Switching Technology / 2004.

PDH Switches. Switching Technology S P. Raatikainen Switching Technology / 2004. PDH Switches Switching Technology S38.165 http://www.netlab.hut.fi/opetus/s38165 L8-1 PDH switches General structure of a telecom exchange Timing and synchronization Dimensioning example L8-2 PDH exchange

More information

WECC Guideline Digital Circuits Synchronization

WECC Guideline Digital Circuits Synchronization WECC Guideline Digital Circuits Synchronization March 8, 2018 155 North 400 West, Suite 200 Salt Lake City, Utah 84103-1114 WECC Guideline: Digital Circuits Synchronization 2 Table of Contents I. Introduction...

More information

Timing in Packet Networks. Stefano RUffini 9 March 2015

Timing in Packet Networks. Stefano RUffini 9 March 2015 Timing in Packet Networks Stefano RUffini 9 March 2015 Giulio Bottari Contents Background Frequency sync via packets Two-Way Time Transfer NTP/PTP Details Impairments, Packet-based Metrics for frequency

More information

MOBILE backhaul is a term commonly used to describe. The Evolution of Cellular Backhaul Technologies: Current Issues and Future Trends

MOBILE backhaul is a term commonly used to describe. The Evolution of Cellular Backhaul Technologies: Current Issues and Future Trends IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 13, NO. 1, FIRST QUARTER 2011 97 The Evolution of Cellular Backhaul Technologies: Current Issues and Future Trends Orawan Tipmongkolsilp, Said Zaghloul and

More information

Challenges in profiles and architectures

Challenges in profiles and architectures Challenges in profiles and architectures Michael Mayer, Editor G.8275 ITSF-2014 Budapest 1 Challenges in profiles and architectures Outline The architecture recommendations Relation to other Recommendations

More information

2 Mobile Backhaul and the New Packet Era 7 Erik Salo and Juha Salmelin 2.1 Backhaul Network, Tiers and Costs, 7 V ^

2 Mobile Backhaul and the New Packet Era 7 Erik Salo and Juha Salmelin 2.1 Backhaul Network, Tiers and Costs, 7 V ^ / Contents Foreword Acknowledgements List of Abbreviations List of Contributors XV xvii xix xxxi 1 Introduction Esa Metsdld, Juha Salmelin and Erik Salo 1.1 Why Read This Book 1.2 What is 'Mobile Backhaul'

More information

Technical Specification MEF 3. Circuit Emulation Service Definitions, Framework and Requirements in Metro Ethernet Networks.

Technical Specification MEF 3. Circuit Emulation Service Definitions, Framework and Requirements in Metro Ethernet Networks. Technical Specification Circuit Emulation Service Definitions, Framework and April 13, 2004 Page 1 of 65 Disclaimer The information in this publication is freely available for reproduction and use by any

More information

ITU-T Q13/15 Updates TICTOC / IETF-83. Jean-Loup Ferrant, Calnex, Q13/15 Rapporteur Stefano RUffini, Ericsson, Q13/15 Associate Rapporteur

ITU-T Q13/15 Updates TICTOC / IETF-83. Jean-Loup Ferrant, Calnex, Q13/15 Rapporteur Stefano RUffini, Ericsson, Q13/15 Associate Rapporteur ITU-T Q13/15 Updates TICTOC / IETF-83 Jean-Loup Ferrant, Calnex, Q13/15 Rapporteur Stefano RUffini, Ericsson, Q13/15 Associate Rapporteur Introduction Q13/15 met at the SG15 in December and held Interim

More information

Phase Synchronisation the standards and beyond

Phase Synchronisation the standards and beyond Phase Synchronisation the standards and beyond Supporting Your Phase Network Chris Farrow Technical Services Manager Christian.Farrow@chronos.co.uk 3rd June 2015 Chronos Technology: COMPANY PROPRIETARY

More information

Pseudo-Wire: The Solution for HSDPA Offload WHITE PAPER

Pseudo-Wire: The Solution for HSDPA Offload WHITE PAPER Pseudo-Wire: The Solution for HSDPA Offload WHITE PAPER Important Notice This document is delivered subject to the following conditions and restrictions: This document contains proprietary information

More information

Substation. Communications. Power Utilities. Application Brochure. Typical users: Transmission & distribution power utilities

Substation. Communications. Power Utilities. Application Brochure. Typical users: Transmission & distribution power utilities Power Utilities Application Brochure Communications Typical users: Transmission & distribution power utilities For more than 30 years, RAD has worked closely with its worldwide energy utility customers

More information

From PoS to GFP - Abstract Thomas Hagmeister (Alcatel)

From PoS to GFP - Abstract Thomas Hagmeister (Alcatel) From PoS to GFP - Abstract Thomas Hagmeister (Alcatel) In multilayer networks for data and optical networks the traditional interconnection is facilitated today with PoS (Packet over SDH/Sonet) interfaces

More information

ETSI TS V8.0.0 ( ) Technical Specification

ETSI TS V8.0.0 ( ) Technical Specification TS 125 411 V8.0.0 (2009-01) Technical Specification Universal Mobile Telecommunications System (UMTS); UTRAN Iu interface layer 1 (3GPP TS 25.411 version 8.0.0 Release 8) 1 TS 125 411 V8.0.0 (2009-01)

More information

Vendor: Alcatel-Lucent. Exam Code: 4A0-M01. Exam Name: Alcatel-Lucent IP/MPLS Mobile Backhaul Transport. Version: Demo

Vendor: Alcatel-Lucent. Exam Code: 4A0-M01. Exam Name: Alcatel-Lucent IP/MPLS Mobile Backhaul Transport. Version: Demo Vendor: Alcatel-Lucent Exam Code: 4A0-M01 Exam Name: Alcatel-Lucent IP/MPLS Mobile Backhaul Transport Version: Demo QUESTION: 1 When researching carrier-class Ethernet standards to support the mobile backhaul

More information

Packet-Based Primary Reference Source for Synchronizing Next Generation Networks

Packet-Based Primary Reference Source for Synchronizing Next Generation Networks Packet-Based Primary Reference Source for Synchronizing Next Generation Networks Responding to consumer demand, service providers are expanding and upgrading their telecommunications networks to add more

More information

Evaluating the performance of Network Equipment. Presenter: Tommy Cook, CEO Calnex Solutions Ltd

Evaluating the performance of Network Equipment. Presenter: Tommy Cook, CEO Calnex Solutions Ltd Evaluating the performance of Network Equipment Presenter: Tommy Cook, CEO Calnex Solutions Ltd Presentation overview Proving performance of; EEC Synchronous Ethernet Devices. 1588v2 Boundary s. 1588v2

More information

Applications of PTP in non-telecom networks. Anurag Gupta November 1 st -3 rd 2011, ITSF 2011

Applications of PTP in non-telecom networks. Anurag Gupta November 1 st -3 rd 2011, ITSF 2011 Applications of PTP in non-telecom networks Anurag Gupta angupta@juniper.net November 1 st -3 rd 2011, ITSF 2011 Introduction PTP/ 1588 has grown from its initial objective of Synchronization of real-time

More information

Synchronous Ethernet. Silvana Rodrigues, IDT Presentation to WSTS-11, May 10-12, 2010, Westminster, Colorado

Synchronous Ethernet. Silvana Rodrigues, IDT Presentation to WSTS-11, May 10-12, 2010, Westminster, Colorado ynchronous Ethernet ilvana Rodrigues, IDT (silvana.rodrigues@idt.com) Presentation to WT-11, May 10-12, 2010, Westminster, Colorado 2009 Integrated Device Technology, Inc. Agenda ynchronous Ethernet Features

More information

Network Topologies & Error Performance Monitoring in SDH Technology

Network Topologies & Error Performance Monitoring in SDH Technology Network Topologies & Error Performance Monitoring in SDH Technology Shiva Sharma Electronics and Communications Department Dronacharya College of Engineering Gurgaon, Haryana Shiva.92@hotmail.com Abstract

More information

Reference Access and Interconnection Offer

Reference Access and Interconnection Offer 1. Commercial Proposal for Reference Access and Interconnection Offer Sub Annex E Technical Specification Table of Contents 1 General... 3 2 Physical and Electrical Interface... 4 3 Transmission... 7 4

More information

Synchronous Optical Networks SONET. Computer Networks: SONET

Synchronous Optical Networks SONET. Computer Networks: SONET Synchronous Optical Networks SONET 1 Telephone Networks {Brief History} Digital carrier systems The hierarchy of digital signals that the telephone network uses. Trunks and access links organized in DS

More information

Suppliers' Information Note. BT International Megastream 155. Service Description

Suppliers' Information Note. BT International Megastream 155. Service Description SIN 326 Issue 1.3 January 2016 Suppliers' Information Note For The BT Network BT International Megastream 155 Service Description Each SIN is the copyright of British Telecommunications plc. Reproduction

More information

Generic Mapping Procedure. White Paper

Generic Mapping Procedure. White Paper White Paper Introduction Recent enhancements to the OTN address the growing need to provide a transport layer for packet and data oriented networks. These enhancements have included defi nition of new

More information

Practical NewGen Measurements with ONT-503/ONT-506/ONT-512

Practical NewGen Measurements with ONT-503/ONT-506/ONT-512 Application Note Practical NewGen Measurements with ONT-503/ONT-506/ONT-512 Practical NewGen measurements To evaluate NewGen network elements it is essential to test all particular technologies, which

More information

ITSF 2011 Testing the PDV tolerance of PTPv2 slave clocks, an approach from an operator

ITSF 2011 Testing the PDV tolerance of PTPv2 slave clocks, an approach from an operator ITSF 2011 Testing the PDV tolerance of PTPv2 slave clocks, an approach from an operator Sébastien JOBERT R&D expert France Télécom Orange Orange Labs sebastien.jobert@orange.com Baba TABOURE Yannick LAGADEC

More information

FCD-155. STM-1/OC-3 Terminal Multiplexer FEATURES

FCD-155. STM-1/OC-3 Terminal Multiplexer FEATURES FEATURES SDH/SONET terminal multiplexer for grooming LAN and legacy traffic (TDM) over SDH/SONET networks Demarcation point between the carrier and the customer networks GFP (G.7041), LAPS (X.85/86) encapsulation

More information