RSVP Cryptographic Authentication draft-ietf-rsvp-md5-04.txt

Size: px
Start display at page:

Download "RSVP Cryptographic Authentication draft-ietf-rsvp-md5-04.txt"

Transcription

1 HTTP/ OK Date: Tue, 09 Apr :29:37 GMT Server: Apache/ (Unix) Last-Modified: Wed, 23 Jul :43:00 GMT ETag: " c31-33d5e034" Accept-Ranges: bytes Content-Length: Connection: close Content-Type: text/plain RSVP Cryptographic Authentication draft-ietf-rsvp-md5-04.txt Status of this Memo This document is an Internet Draft. Internet Drafts are working documents of the Internet Engineering Task Force (IETF), its Areas, and its Working Groups. Note that other groups may also distribute working documents as Internet Drafts. Internet Drafts are valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet Drafts as reference material or to cite them other than as a "work in progress". Comments should be made on the list rsvp@isi.edu. Abstract This document describes the format and use of RSVP s INTEGRITY object to provide hop-by-hop integrity and authentication of RSVP messages. Fred Baker Expiration: January 1998 [Page 1]

2 1. Introduction The Resource ReSerVation Protocol RSVP [1] is a protocol for setting up distributed state in routers and hosts, and in particular for reserving resources to implement integrated service. RSVP allows particular users to obtain preferential access to network resources, under the control of an admission control mechanism. Permission to make a reservation will depend both upon the availability of the requested resources along the path of the data, and upon satisfaction of policy rules. To protect the integrity of this admission control mechanism, RSVP requires the ability to protect its messages against corruption and spoofing. This document proposes a mechanism to protect RSVP message integrity hop-by-hop. The proposed scheme transmits the result of applying a cryptographic algorithm to a one-way function or "digest" of the message together with a secret Authentication Key. This scheme affords protection against forgery or message modification, but not replays. It is possible to replay a message until the sequence number changes, but the sequence number makes replays less of an issue. The proposed mechanism does not afford confidentiality, since messages stay in the clear; however, the mechanism is also exportable from most countries, which would be impossible were a privacy algorithm to be used. The proposed mechanism is independent of a specific cryptographic algorithm, but the document describes the use of Keyed-Hashing for Message Authentication using H-MD5 [8] for this purpose. As noted in [8], there exist stronger hashes, such as H-SHA-1; where warranted, implementations will do well to make them available. However, in the general case, [8] suggests that H-MD5 is adequate to the purpose at hand and has preferable performance characteristics. [8] also offers source code and test vectors for this algorithm, a boon to those who would test for interoperability. The author therefore suggests that H-MD5 should be the baseline, universally implemented by RSVP implementations implementing cryptographic authentication, with other proposals optional. The cost of computing an H-MD5 message digest far exceeds the cost of computing an RSVP checksum; therefore the RSVP checksum should be disabled (set to zero) ifh-md5 authentication is used, as theh-md5 digest is a much stronger integrity check. Fred Baker Expiration: January 1998 [Page 2] Two uses are envisioned: authentication of RSVP messages or message fragments (should a fragmentation procedure be defined in the future), and authentication of sessions. The INTEGRITY object used in both is the same, and is defined in this document. The use of the INTEGRITY object for those purposes

3 is defined in other more appropriate documents [1] [7] Why not use the Standard IPSEC Authentication Header? One obvious question is why, since there exists a standard mechanism for authentication, we would choose to not use it. This was discussed at length in the working group, and was rejected due to the operational impact of manually opening a new security association among the routers that a flow traverses for each flow making reservations. In addition, it was noted that neighbor relationships between RSVP systems are not limited to those which face one another across a communication channel; RSVP relationships across non-rsvp clouds, such as those described in section 2.8 of [1], are not necessarily visible to the sending system, suggesting that key management based on the source address may be a simpler key management strategy. It is also not clear that RSVP messages are well defined for the security associations, as a router must forward PATH and PATH TEAR messages using the same source address as the sender listed in the SENDER TEMPLATE, as in RSVP traffic may otherwise not follow exactly the same IP path as data traffic. These matters are simplified if a secure key management protocol exists which can be used to open and key the security associations; should such a protocol come into existence, it may be worthwhile reviewing this decision. However, the non- RSVP cloud considerations conspire against using the same solution as one which would work for IPSEC. Therefore, this consideration cannot be understood as a promise that this procedure will go away. 2. Data Structures 2.1. INTEGRITY Object Format The RSVP Message consists of a sequence of "objects," which are type-length-value encoded fields having specific purposes. The information required for hop-by-hop integrity checking is Fred Baker Expiration: January 1998 [Page 3] carried in an INTEGRITY object. The contents of INTEGRITY object are defined as a "Keyed Message Digest" structure, with one of the following formats: IP4 Keyed Message Digest INTEGRITY Object: Class = 4, C-Type = 1 Key Identifier Sequence Number Sending System IP4 Address

4 + + + Keyed Message Digest + + IP6 Keyed Message Digest INTEGRITY Object: Class = 4, C-Type = 2 Key Identifier Sequence Number Sending System IP6 Address Keyed Message Digest Fred Baker Expiration: January 1998 [Page 4] (1) Key Identifier An unsigned 32-bit number that acts as a key selector. With the key, the system stores an algorithm for its application. (2) Sending System Address This is the same address as would be carried in the Next Hop or Previous Hop object, the address of the interface of the RSVP system that sent this message. (3) Sequence Number unsigned 32-bit non-decreasing sequence number. Any non-decreasing sequence of numbers may be used as Sequence Number values. For example, a timestamp on the message s creation or a simple message counter might be used. This sequence number is reset to zero upon any key change. Note that when procedures such as the Network Time

5 Protocol [10] are in use to synchronize clocks, it is feasible and advisable to use the current time as a sequence number. Doing this obviates the need to store sequence numbers in memory that survives a system or process failure. (4) Keyed Message Digest The digest must be a multiple of 4 octets long. For H-MD5, it will be 16 bytes long H-MD5 Message Header and Trailer The H-MD5 algorithm requires affixing a header and trailer to the message to be sent before the hash is computed. This extra information is not transmitted, since the receiver can reconstruct it knowing the message length and hash algorithm. The content of this trailer is specified by [8]. Fred Baker Expiration: January 1998 [Page 5] 3. Message Processing Rules 3.1. Message Generation An RSVP message is created as specified in [1], with these exceptions: (1) The RSVP checksum is not calculated, but is set to zero. (2) The INTEGRITY object is inserted in the appropriate place, and its location in the message is remembered for later use. (3) The current sequence number is placed in the Sequence Number field of the INTEGRITY object. If several messages are being created simultaneously (for example, in a periodic refresh generated by a router), the messages should all use the same sequence number. This is to assure that message reordering between RSVP peers (in non-fifo queues or in an RSVP tunnel) does not cause authentication to fail for some of them. (4) The appropriate Authentication Key is selected and placed in the Keyed Message Digest field of the INTEGRITY object. (5) The Key Identifier is placed into the INTEGRITY object. (6) The H-MD5 message header and trailer are placed in memory as described in [8]. (7) A Keyed Message Digest of the augmented message is calculated using the appropriate hash algorithm. When the H-MD5 algorithm is used, the hash calculation is described in [8]. (8) The digest is written into the Cryptographic Digest field

6 of the INTEGRITY object, overlaying the Authentication Key. In the sender, Authentication Key selection is based on the interface through which the message is sent, there being a key configured per interface. While administrations may configure all the routers and hosts on a subnet (or for that matter, in their network) with the same key, implementations should assume that each sender may send with a different key on each Fred Baker Expiration: January 1998 [Page 6] numbered interface, and that they keys are simplex - the key that a system uses to sign its messages need he same key that its recievers use to sign theirs. Implementations SHOULD maintain a separate key per ip address that they sign with. This restriction to numbered interfaces is intentional; if an RSVP system peers with another through a set of non-rsvp routers, and it might be able to reach systems through that domain from either a numbered interface or an unnumbered interface using the same address as a router id, the choice of key would otherwise be ambiguous. Therefore, on unnumbered interfaces, an RSVP router must use the same key as it uses on the related numbered interface. User interfaces SHOULD provide convenient ways to configure these keys Message Reception When the message is received, the process is reversed: (1) The RSVP checksum is not calculated. (2) The Cryptographic Digest field of the INTEGRITY object is set aside. (3) The Key Identifer field and Sending System Address are used to determine the Authentication Key and the hash algorithm to be used. Implementations SHOULD maintain a key per neighboring RSVP system address or CIDR prefix, as the keys used by neighbors to sign their messages need not be the same key that the recieving system uses. (4) If the received sequence number is less than the last sequence number received from the sending system with that key identifier, the message is discarded unprocessed. (5) The Cryptographic Digest field of the INTEGRITY object is overlaid with the Authentication Key. (6) The message header and trailer are reconstructed. (7) A new digest is calculated using the indicated algorithm. (8) If the calculated digest does not match the received digest, the message is discarded without further processing.

7 Fred Baker Expiration: January 1998 [Page 7] If a system detects the loss of a neighbor or interface, or the RSVP process is restarted on a system, the system should start with a new key if possible. In this way, the sequence number may be reset without exposure to a replay attack. In the event that no other key is available, the sequence number should be stored in non-volatile memory around failures, so that it may continue without decreasing, or (if the NTP timestamp is being used as a sequence number), RSVP resynchronization should await NTP synchronization. 4. Key Management It is likely that the IETF will define a standard key management protocol. It is strongly desirable to use that key management protocol to distribute RSVP Authentication Keys among communicating RSVP implementations. Such a protocol would provide scalability and significantly reduce the human administrative burden. The Key ID can be used as a hook between RSVP and such a future protocol. Key management protocols have a long history of subtle flaws that are often discovered long after the protocol was first described in public. To avoid having to change all RSVP implementations should such a flaw be discovered, integrated key management protocol techniques were deliberately omitted from this specification Key Management Procedures Each key has a lifetime associated with it. No key is ever used outside its lifetime. If more than one key is currently alive, then the youngest key (the key whose lifetime most recently started) should be sent, and all "live" keys should be tested upon message receipt. Possible mechanisms for managing key lifetime include: the use of the Network Time Protocol, hardware time-of-day clocks, or waiting some time before emitting the first message to determine what key other systems are signing with. The matter is left for the implementor. Note that the concept of a "key lifetime" does not require a hardware time-of-day clock or the use of NTP, although one or the other is advised; it merely requires that the earliest and latest times that the key is valid must be programmable in a way the system understands. To maintain security, it is advisable to change the RSVP Authentication Key on a regular basis. It should be possible Fred Baker Expiration: January 1998 [Page 8]

8 to switch the RSVP Authentication Key without loss of RSVP state or denial of reservation service, and without requiring people to change all the keys at once. This requires the RSVP implementation to support the storage and use of more than one RSVP Authentication Key on a given interface at the same time. For each key there will be a locally-stored Key Identifier. The combination of the Key Identifier and the interface associated with the message uniquely identifies the cryptographic algorithm and Authentication Key in use by RSVP. As noted above, the party creating the RSVP message will select a valid key from the set of valid keys for that interface. The receiver will use the Key Identifier and interface to determine which key to use for authentication of the received message. More than one key may be associated with an interface at the same time. To ensure a smooth switch-over, each communicating RSVP system must be updated with the new key before the current key will expire and before the new key lifetime begins. The new key should have a lifetime that starts several minutes before the old key expires. This gives time for each system to learn of the new RSVP Authentication Key before that key will be used. It also ensures that the new key will begin being used and the current key will go out of use before the current key s lifetime expires. For the duration of the overlap in key lifetimes, a system may receive messages using either key and authenticate the message. There are four important times for each key: o KeyStartReceive: the time the system starts accepting received packets signed with the key. o KeyStartSign: the time the system starts signing packets with the key. o KeyStopSign: the time the system stops signing packets with the key, which implies that it starts signing with the next key, if any. o KeyStopReceive: the time the system stops accepting received packets signed with the key. The times in the order listed SHOULD form a non-decreasing sequence. There needs to be some distance between start times and stop times, to achieve a seamless transition. Each system Fred Baker Expiration: January 1998 [Page 9] sends using the key with the most recent "start" time and makes its first attempt at validation of incoming traffic with this same key. If this validation fails and another (older) key is also active, the system should attempt to validate with any other active keys it may possess Key Management Requirements Requirements on an implementation are as follows. (1) It is strongly desirable that a hypothetical security

9 breach in one Internet protocol not automatically compromise other Internet protocols. The Authentication Key of this specification SHOULD NOT be stored using protocols or algorithms that have known flaws. (2) An implementation MUST support the storage of more than one key at the same time, although normally only one key will be active on an interface. (3) An implementation MUST associate a specific lifetime (i.e., KeyStartSign and KeyStopSign) with each key and corresponding Key Identifier. (4) An implementation MUST support manual key distribution (e.g., the privileged user manually typing in the key, key lifetime, and key identifier on the console). The lifetime may be infinite. (5) If more than one algorithm is supported, then the implementation MUST require that the algorithm be specified for each key at the time the other key information is entered. (6) Keys that are out of date MAY be deleted at will by the implementation without requiring human intervention. (7) Manual deletion of active keys SHOULD also be supported. (8) Key storage SHOULD persist across a system restart, warm or cold, to avoid operational issues, and an acceptable sequence number SHOULD be derivable either from nonvolatile memory or a procedure such as NTP. Fred Baker Expiration: January 1998 [Page 10] 4.3. Pathological Cases An implementation of this document must handle two pathological cases. Both of these should be exceedingly rare. (1) During key switch-over, devices may exist which have not yet been successfully configured with the new key. Therefore, systems MAY implement (and would be well advised to implement) an algorithm that detects the set of keys being used by its neighbors, and transmits its messages using both the new and old keys until all the neighbors are using the new key or the lifetime of the old key expires. Under normal circumstances, this elevated transmission rate will exist for a single refresh interval. (2) It is possible that the last key associated with an interface may expire. When this happens, it is unacceptable to revert to an unauthenticated condition, and not advisable to disrupt

10 current reservations. Therefore, the system should send a "last authentication key expiration" notification to the network manager and treat the key as having an infinite lifetime until the lifetime is extended, the key is deleted by network management, or a new key is configured. 5. Conformance Requirements To conform to this specification, an implementation MUST support all of its aspects. The H-MD5 authentication algorithm defined in [8] MUST be implemented by all conforming implementations. A conforming implementation MAY also support other authentication algorithms such as NIST s Secure Hash Algorithm (SHA). Manual key distribution as described above MUST be supported by all conforming implementations. All implementations MUST support the smooth key rollover described under "Key Change Procedures." The user documentation provided with the implementation MUST contain clear instructions on how to ensure that smooth key rollover occurs. Implementations SHOULD support a standard key management protocol for secure distribution of RSVP Authentication Keys Fred Baker Expiration: January 1998 [Page 11] once such a key management protocol is standardized by the IETF. 6. Acknowledgments This document is derived directly from similar work done for OSPF and RIP Version II, jointly by Ran Atkinson and Fred Baker. Significant editing was sone by Bob Braden, resulting in increased clarity. (if you think this document was hard to read, think about what Bob read). Signifiant comments were submitted by Steve Bellovin, who actually understands this stuff. 7. References [1] Braden, R., Ed., Zhang, L., Estrin, D., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specificationq. Internet Draft draft-ietf-rsvp-spec-14.ps, January [2] S. Bellovin, "Security Problems in the TCP/IP Protocol Suite", ACM Computer Communications Review, Volume 19, Number 2, pp.32-48, April [3] N. Haller, R. Atkinson, "Internet Authentication Guidelines", Request for Comments 1704, October [4] R. Braden, D. Clark, S. Crocker, & C. Huitema, "Report of IAB Workshop on Security in the Internet Architecture", Request for Comments 1636, June [5] R. Atkinson, "IP Authentication Header", Request for

11 Comments 1826, August [6] R. Atkinson, "IP Encapsulating Security Payload", Request for Comments 1827, August [7] S. Herzog, "RSVP Extensions for Policy Control", draft- * ietf-rsvp-policy-ext-02.txt, March [8] Krawczyk, Bellare, and Canetti, "HMAC: Keyed-Hashing for * Message Authentication", Request for Comments 2104, March Fred Baker Expiration: January 1998 [Page 12] 8. Security Considerations This entire memo describes and specifies an authentication mechanism for RSVP that is believed to be secure against active and passive attacks. Passive attacks are widespread in the Internet at present. Protection against active attacks is also needed even though such attacks are not as widespread. Users need to understand that the quality of the security provided by this mechanism depends completely on the strength of the implemented authentication algorithms, the strength of the key being used, and the correct implementation of the security mechanism in all communicating RSVP implementations. This mechanism also depends on the RSVP Authentication Keys being kept confidential by all parties. If any of these assumptions are incorrect or procedures are insufficiently secure, then no real security will be provided to the users of this mechanism. Confidentiality is not provided by this mechanism; if this is required, IPSEC ESP may be the best approach, although it is subject to the same criticisms as IPSEC Authetication, and therefore would be applicable only in specific environments. Protection against traffic analysis is also not provided. Mechanisms such as bulk link encryption might be used when protection against traffic analysis is required. 9. Author s Address Fred Baker Cisco Systems 519 Lado Drive Santa Barbara, California Phone: (408) fred@cisco.com

12 Fred Baker Expiration: January 1998 [Page 13] Table of Contents 1 Introduction Why not use the Standard IPSEC Authentication Header? Data Structures INTEGRITY Object Format H-MD5 Message Header and Trailer Message Processing Rules Message Generation Message Reception Key Management Key Management Procedures Key Management Requirements Pathological Cases Conformance Requirements Acknowledgments References Security Considerations Author s Address Fred Baker Expiration: January 1998 [Page 14]

Network Working Group. Extreme Networks July Intermediate System to Intermediate System (IS-IS) Cryptographic Authentication

Network Working Group. Extreme Networks July Intermediate System to Intermediate System (IS-IS) Cryptographic Authentication Network Working Group Request for Comments: 3567 Category: Informational T. Li Procket Networks R. Atkinson Extreme Networks July 2003 Status of this Memo Intermediate System to Intermediate System (IS-IS)

More information

draft-ietf-sip-info-method-02.txt February 2000 The SIP INFO Method Status of this Memo

draft-ietf-sip-info-method-02.txt February 2000 The SIP INFO Method Status of this Memo HTTP/1.1 200 OK Date: Tue, 09 Apr 2002 07:53:57 GMT Server: Apache/1.3.20 (Unix) Last-Modified: Tue, 15 Feb 2000 17:03:00 GMT ETag: "3239a5-465b-38a986c4" Accept-Ranges: bytes Content-Length: 18011 Connection:

More information

Updates: 2453 Category: Standards Track February RIPv2 Cryptographic Authentication. Status of This Memo

Updates: 2453 Category: Standards Track February RIPv2 Cryptographic Authentication. Status of This Memo Network Working Group R. Atkinson Request for Comments: 4822 Extreme Networks Obsoletes: 2082 M. Fanto Updates: 2453 NIST Category: Standards Track February 2007 Status of This Memo RIPv2 Cryptographic

More information

INTERNET-DRAFT IP Version 6 over PPP February Table of Contents. 1. Introduction Specification of Requirements...

INTERNET-DRAFT IP Version 6 over PPP February Table of Contents. 1. Introduction Specification of Requirements... HTTP/1.1 200 OK Date: Tue, 09 Apr 2002 03:48:38 GMT Server: Apache/1.3.20 (Unix) Last-Modified: Thu, 15 Feb 1996 23:00:00 GMT ETag: "2f52fa-4e8d-3123baf0" Accept-Ranges: bytes Content-Length: 20109 Connection:

More information

Network Working Group Request for Comments: 2085 Category: Standards Track NIST February HMAC-MD5 IP Authentication with Replay Prevention

Network Working Group Request for Comments: 2085 Category: Standards Track NIST February HMAC-MD5 IP Authentication with Replay Prevention Network Working Group Request for Comments: 2085 Category: Standards Track M. Oehler NSA R. Glenn NIST February 1997 Status of This Memo HMAC-MD5 IP Authentication with Replay Prevention This document

More information

Network Working Group. Category: Standards Track NIST November 1998

Network Working Group. Category: Standards Track NIST November 1998 Network Working Group Request for Comments: 2404 Category: Standards Track C. Madson Cisco Systems Inc. R. Glenn NIST November 1998 Status of this Memo The Use of HMAC-SHA-1-96 within ESP and AH This document

More information

Network Working Group. Category: Standards Track BBN September 1997

Network Working Group. Category: Standards Track BBN September 1997 Network Working Group Request for Comments: 2207 Category: Standards Track L. Berger FORE Systems T. O Malley BBN September 1997 RSVP Extensions for IPSEC Data Flows Status of this Memo This document specifies

More information

CSC 6575: Internet Security Fall 2017

CSC 6575: Internet Security Fall 2017 CSC 6575: Internet Security Fall 2017 Network Security Devices IP Security Mohammad Ashiqur Rahman Department of Computer Science College of Engineering Tennessee Tech University 2 IPSec Agenda Architecture

More information

How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP

How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP If you are using the Amazon Virtual Private Cloud, you can transparently extend your local network to the cloud by connecting both networks

More information

Expiration Date: August 2003 February Access Control Prefix Router Advertisement Option for IPv6 draft-bellovin-ipv6-accessprefix-01.

Expiration Date: August 2003 February Access Control Prefix Router Advertisement Option for IPv6 draft-bellovin-ipv6-accessprefix-01. Network Working Group Steven M. Bellovin Internet Draft AT&T Labs Research Expiration Date: August 2003 February 2003 Access Control Prefix Router Advertisement Option for IPv6 draft-bellovin-ipv6-accessprefix-01.txt

More information

Internet Protocol, Version 6 (IPv6) Specification. <draft-ietf-ipngwg-ipv6-spec-v2-00.txt> Status of this Memo

Internet Protocol, Version 6 (IPv6) Specification. <draft-ietf-ipngwg-ipv6-spec-v2-00.txt> Status of this Memo HTTP/1.1 200 OK Date: Tue, 09 Apr 2002 03:46:56 GMT Server: Apache/1.3.20 (Unix) Last-Modified: Wed, 30 Jul 1997 14:21:00 GMT ETag: "2f52db-16524-33df4dcc" Accept-Ranges: bytes Content-Length: 91428 Connection:

More information

IPSec. Slides by Vitaly Shmatikov UT Austin. slide 1

IPSec. Slides by Vitaly Shmatikov UT Austin. slide 1 IPSec Slides by Vitaly Shmatikov UT Austin slide 1 TCP/IP Example slide 2 IP Security Issues Eavesdropping Modification of packets in transit Identity spoofing (forged source IP addresses) Denial of service

More information

Network Working Group Request for Comments: DayDreamer March 1999

Network Working Group Request for Comments: DayDreamer March 1999 Network Working Group Request for Comments: 2521 Category: Experimental P. Karn Qualcomm W. Simpson DayDreamer March 1999 ICMP Security Failures Messages Status of this Memo This document defines an Experimental

More information

How to Configure an IPsec VPN to an AWS VPN Gateway with BGP

How to Configure an IPsec VPN to an AWS VPN Gateway with BGP How to Configure an IPsec VPN to an AWS VPN Gateway with BGP If you are using the Amazon Virtual Private Cloud, you can transparently extend your local network to the cloud by connecting both networks

More information

Configuration of an IPSec VPN Server on RV130 and RV130W

Configuration of an IPSec VPN Server on RV130 and RV130W Configuration of an IPSec VPN Server on RV130 and RV130W Objective IPSec VPN (Virtual Private Network) enables you to securely obtain remote access to corporate resources by establishing an encrypted tunnel

More information

Network Working Group. Category: Standards Track September The SRP Authentication and Key Exchange System

Network Working Group. Category: Standards Track September The SRP Authentication and Key Exchange System Network Working Group T. Wu Request for Comments: 2945 Stanford University Category: Standards Track September 2000 Status of this Memo The SRP Authentication and Key Exchange System This document specifies

More information

Network Working Group

Network Working Group Network Working Group Request for Comments: 5709 Updates: 2328 Category: Standards Track M. Bhatia Alcatel-Lucent V. Manral IP Infusion M. Fanto Aegis Data Security R. White M. Barnes Cisco Systems T.

More information

How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP

How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP How to Configure an IKEv1 IPsec VPN to an AWS VPN Gateway with BGP If you are using the Amazon Virtual Private Cloud, you can transparently extend your local network to the cloud by connecting both networks

More information

Set Up a Remote Access Tunnel (Client to Gateway) for VPN Clients on RV016, RV042, RV042G and RV082 VPN Routers

Set Up a Remote Access Tunnel (Client to Gateway) for VPN Clients on RV016, RV042, RV042G and RV082 VPN Routers Set Up a Remote Access Tunnel (Client to Gateway) for VPN Clients on RV016, RV042, RV042G and RV082 VPN Routers Objective A Virtual Private Network (VPN) is a private network that is used to virtually

More information

User Authentication in an Internet Protocol

User Authentication in an Internet Protocol User Authentication in an Internet Protocol Parinya Thamthawornsakul Suvepon Sittichivapak Department of Telecommunication Engineering, King Mongkut s Institute of Technology Ladkrabang Abstract This paper

More information

Network Working Group. Category: Standards Track. ArrowPoint Communications A. Sastry. Cisco Systems. September 1997

Network Working Group. Category: Standards Track. ArrowPoint Communications A. Sastry. Cisco Systems. September 1997 Network Working Group Request for Comments: 2213 Category: Standards Track F. Baker Cisco Systems J. Krawczyk ArrowPoint Communications A. Sastry Cisco Systems September 1997 Integrated Services Management

More information

IPSec. Overview. Overview. Levente Buttyán

IPSec. Overview. Overview. Levente Buttyán IPSec - brief overview - security associations (SAs) - Authentication Header (AH) protocol - Encapsulated Security Payload () protocol - combining SAs (examples) Overview Overview IPSec is an Internet

More information

Charles Perkins Nokia Research Center 2 July Mobility Support in IPv6 <draft-ietf-mobileip-ipv6-14.txt> Status of This Memo

Charles Perkins Nokia Research Center 2 July Mobility Support in IPv6 <draft-ietf-mobileip-ipv6-14.txt> Status of This Memo IETF Mobile IP Working Group INTERNET-DRAFT David B. Johnson Rice University Charles Perkins Nokia Research Center 2 July 2000 Mobility Support in IPv6 Status of This

More information

RSVP Message Authentication

RSVP Message Authentication RSVP Message Authentication First Published: March 17, 2003 Last Updated: August 6, 2007 The Resource Reservation Protocol (RSVP) Message Authentication feature provides a secure method to control quality

More information

VPN Overview. VPN Types

VPN Overview. VPN Types VPN Types A virtual private network (VPN) connection establishes a secure tunnel between endpoints over a public network such as the Internet. This chapter applies to Site-to-site VPNs on Firepower Threat

More information

Virtual Private Networks (VPN)

Virtual Private Networks (VPN) CYBR 230 Jeff Shafer University of the Pacific Virtual Private Networks (VPN) 2 Schedule This Week Mon September 4 Labor Day No class! Wed September 6 VPN Project 1 Work Fri September 8 IPv6? Project 1

More information

Virtual Private Networks

Virtual Private Networks EN-2000 Reference Manual Document 8 Virtual Private Networks O ne of the principal features of routers is their support of virtual private networks (VPNs). This document discusses transmission security,

More information

Network Working Group Internet Draft: SMTP Authentication Document: draft-myers-smtp-auth-00.txt April SMTP Service Extension for Authentication

Network Working Group Internet Draft: SMTP Authentication Document: draft-myers-smtp-auth-00.txt April SMTP Service Extension for Authentication HTTP/1.1 200 OK Date: Tue, 09 Apr 2002 10:24:33 GMT Server: Apache/1.3.20 (Unix) Last-Modified: Mon, 01 May 1995 22:00:00 GMT ETag: "361c6c-32a5-2fa559e0" Accept-Ranges: bytes Content-Length: 12965 Connection:

More information

Shim6: Reference Implementation and Optimization

Shim6: Reference Implementation and Optimization Shim6: Reference Implementation and Optimization Jun Bi, Ping Hu, and Lizhong Xie Network Research Center, Tsinghua University, Beijing, 100084, China junbi@tsinghua.edu.cn Abstract. Shim6 is an important

More information

E. Rescorla. <draft-ietf-smime-x txt> October 1998 (Expires April 1999) Diffie-Hellman Key Agreement Method. Status of this Memo

E. Rescorla. <draft-ietf-smime-x txt> October 1998 (Expires April 1999) Diffie-Hellman Key Agreement Method. Status of this Memo HTTP/1.1 200 OK Date: Tue, 09 Apr 2002 08:11:59 GMT Server: Apache/1.3.20 (Unix) Last-Modified: Wed, 28 Oct 1998 17:41:00 GMT ETag: "323a37-3a03-3637572c" Accept-Ranges: bytes Content-Length: 14851 Connection:

More information

Category: Standards Track March 2009

Category: Standards Track March 2009 Network Working Group A. Okmianski Request for Comments: 5426 Cisco Systems, Inc. Category: Standards Track March 2009 Status of This Memo Transmission of Syslog Messages over UDP This document specifies

More information

RSVP Petri Jäppilä Nokia Telecommunications P.O Box Nokia Group, Finland

RSVP Petri Jäppilä Nokia Telecommunications P.O Box Nokia Group, Finland RSVP Petri Jäppilä Nokia Telecommunications P.O Box 330 0004 Nokia Group, Finland Email: petri.jappila@nokia.com Abstract Resource ReSerVation Protocol, RSVP, is a protocol to provide resources reservation,

More information

Category:Best Current Practice December Administratively Scoped IP Multicast. Status of this Memo

Category:Best Current Practice December Administratively Scoped IP Multicast. Status of this Memo HTTP/1.1 200 OK Date: Tue, 09 Apr 2002 04:57:56 GMT Server: Apache/1.3.20 (Unix) Last-Modified: Tue, 24 Dec 1996 00:15:00 GMT ETag: "2f51c8-22cf-32bf2084" Accept-Ranges: bytes Content-Length: 8911 Connection:

More information

8. Network Layer Contents

8. Network Layer Contents Contents 1 / 43 * Earlier Work * IETF IP sec Working Group * IP Security Protocol * Security Associations * Authentication Header * Encapsulation Security Payload * Internet Key Management Protocol * Modular

More information

RSVP Message Authentication

RSVP Message Authentication RSVP Message Authentication Last Updated: January 12, 2012 The Resource Reservation Protocol (RSVP) Message Authentication feature provides a secure method to control quality of service (QoS) access to

More information

Network Working Group Request for Comments: 1762 Obsoletes: 1376 March 1995 Category: Standards Track. The PPP DECnet Phase IV Control Protocol (DNCP)

Network Working Group Request for Comments: 1762 Obsoletes: 1376 March 1995 Category: Standards Track. The PPP DECnet Phase IV Control Protocol (DNCP) Network Working Group S. Senum Request for Comments: 1762 DigiBoard Obsoletes: 1376 March 1995 Category: Standards Track Status of this Memo The PPP DECnet Phase IV Control Protocol (DNCP) This document

More information

IP Security Protocol Working Group (IPSEC) draft-ietf-ipsec-nat-t-ike-03.txt. B. Swander Microsoft V. Volpe Cisco Systems 24 June 2002

IP Security Protocol Working Group (IPSEC) draft-ietf-ipsec-nat-t-ike-03.txt. B. Swander Microsoft V. Volpe Cisco Systems 24 June 2002 IP Security Protocol Working Group (IPSEC) INTERNET-DRAFT draft-ietf-ipsec-nat-t-ike-03.txt Expires: 24 December 2002 T. Kivinen SSH Communications Security A. Huttunen F- Secure Corporation B. Swander

More information

Network Security - ISA 656 IPsec IPsec Key Management (IKE)

Network Security - ISA 656 IPsec IPsec Key Management (IKE) Network Security - ISA 656 IPsec IPsec (IKE) Angelos Stavrou September 28, 2008 What is IPsec, and Why? What is IPsec, and Why? History IPsec Structure Packet Layout Header (AH) AH Layout Encapsulating

More information

IKE and Load Balancing

IKE and Load Balancing Configure IKE, page 1 Configure IPsec, page 9 Load Balancing, page 22 Configure IKE IKE, also called ISAKMP, is the negotiation protocol that lets two hosts agree on how to build an IPsec security association.

More information

April 24, 1998 Expires in six months. SMTP Service Extension for Secure SMTP over TLS. Status of this memo

April 24, 1998 Expires in six months. SMTP Service Extension for Secure SMTP over TLS. Status of this memo HTTP/1.1 200 OK Date: Tue, 09 Apr 2002 00:24:41 GMT Server: Apache/1.3.20 (Unix) Last-Modified: Mon, 27 Apr 1998 14:31:00 GMT ETag: "2e9b64-31dd-354496a4" Accept-Ranges: bytes Content-Length: 12765 Connection:

More information

draft-ietf-ipsec-nat-t-ike-01.txt W. Dixon, B. Swander Microsoft V. Volpe Cisco Systems L. DiBurro Nortel Networks 23 October 2001

draft-ietf-ipsec-nat-t-ike-01.txt W. Dixon, B. Swander Microsoft V. Volpe Cisco Systems L. DiBurro Nortel Networks 23 October 2001 IP Security Protocol Working Group (IPSEC) INTERNET-DRAFT draft-ietf-ipsec-nat-t-ike-01.txt Expires: 23 April 2001 T. Kivinen, M. Stenberg SSH Communications Security A. Huttunen F-Secure Corporation W.

More information

Lecture 13 Page 1. Lecture 13 Page 3

Lecture 13 Page 1. Lecture 13 Page 3 IPsec Network Security: IPsec CS 239 Computer Software March 2, 2005 Until recently, the IP protocol had no standards for how to apply security Encryption and authentication layered on top Or provided

More information

B. Carpenter. January Connection of IPv6 Domains via IPv4 Clouds without Explicit Tunnels. Copyright Notice

B. Carpenter. January Connection of IPv6 Domains via IPv4 Clouds without Explicit Tunnels. Copyright Notice IETF Internet Draft January 1999 B. Carpenter K. Moore Connection of IPv6 Domains via IPv4 Clouds without Explicit Tunnels Copyright Notice Placeholder for ISOC copyright if needed Abstract draft-ietf-ngtrans-6to4-00.txt

More information

Request for Comments: 1333 May 1992

Request for Comments: 1333 May 1992 Network Working Group Request for Comments: 1333 W. Simpson Daydreamer May 1992 PPP Link Quality Monitoring Status of this Memo This RFC specifies an IAB standards track protocol for the Internet community,

More information

Lecture 33. Firewalls. Firewall Locations in the Network. Castle and Moat Analogy. Firewall Types. Firewall: Illustration. Security April 15, 2005

Lecture 33. Firewalls. Firewall Locations in the Network. Castle and Moat Analogy. Firewall Types. Firewall: Illustration. Security April 15, 2005 Firewalls Lecture 33 Security April 15, 2005 Idea: separate local network from the Internet Trusted hosts and networks Intranet Firewall DMZ Router Demilitarized Zone: publicly accessible servers and networks

More information

CIS 6930/4930 Computer and Network Security. Topic 8.1 IPsec

CIS 6930/4930 Computer and Network Security. Topic 8.1 IPsec CIS 6930/4930 Computer and Network Security Topic 8.1 IPsec 1 IPsec Objectives Why do we need IPsec? IP V4 has no authentication IP spoofing Payload could be changed without detection. IP V4 has no confidentiality

More information

Internet Control Message Protocol

Internet Control Message Protocol Internet Control Message Protocol The Internet Control Message Protocol is used by routers and hosts to exchange control information, and to inquire about the state and configuration of routers and hosts.

More information

IPv6 Protocol. Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer Cisco Systems, Inc.

IPv6 Protocol. Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer Cisco Systems, Inc. IPv6 Protocol Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer fmajstor@cisco.com Cisco Systems, Inc. 1 Agenda IPv6 Primer IPv6 Protocol Security Dual stack approach

More information

The IPsec protocols. Overview

The IPsec protocols. Overview The IPsec protocols -- components and services -- modes of operation -- Security Associations -- Authenticated Header (AH) -- Encapsulated Security Payload () (c) Levente Buttyán (buttyan@crysys.hu) Overview

More information

Category: Informational Alcatel January 2006

Category: Informational Alcatel January 2006 Network Working Group Request for Comments: 4278 Category: Informational S. Bellovin AT&T Labs Research A. Zinin Alcatel January 2006 Standards Maturity Variance Regarding the TCP MD5 Signature Option

More information

OSPFv2 Cryptographic Authentication

OSPFv2 Cryptographic Authentication To prevent unauthorized or invalid routing updates in your network, Open Shortest Path First version 2 (OSPFv2) protocol packets must be authenticated. There are two methods of authentication that are

More information

Internet Engineering Task Force (IETF) Ericsson July 2011

Internet Engineering Task Force (IETF) Ericsson July 2011 Internet Engineering Task Force (IETF) Request for Comments: 6275 Obsoletes: 3775 Category: Standards Track ISSN: 2070-1721 C. Perkins, Ed. Tellabs, Inc. D. Johnson Rice University J. Arkko Ericsson July

More information

Configuring a Hub & Spoke VPN in AOS

Configuring a Hub & Spoke VPN in AOS June 2008 Quick Configuration Guide Configuring a Hub & Spoke VPN in AOS Configuring a Hub & Spoke VPN in AOS Introduction The traditional VPN connection is used to connect two private subnets using a

More information

Independent Submission Request for Comments: 6812 Category: Informational. S. Thombare E. Yedavalli Cisco Systems January 2013

Independent Submission Request for Comments: 6812 Category: Informational. S. Thombare E. Yedavalli Cisco Systems January 2013 Independent Submission Request for Comments: 6812 Category: Informational ISSN: 2070-1721 M. Chiba A. Clemm S. Medley J. Salowey S. Thombare E. Yedavalli Cisco Systems January 2013 Cisco Service-Level

More information

Internet Protocol and Transmission Control Protocol

Internet Protocol and Transmission Control Protocol Internet Protocol and Transmission Control Protocol CMSC 414 November 13, 2017 Internet Protcol Recall: 4-bit version 4-bit hdr len 8-bit type of service 16-bit total length (bytes) 8-bit TTL 16-bit identification

More information

Configuring Internet Key Exchange Security Protocol

Configuring Internet Key Exchange Security Protocol Configuring Internet Key Exchange Security Protocol This chapter describes how to configure the Internet Key Exchange (IKE) protocol. IKE is a key management protocol standard that is used in conjunction

More information

Internet Engineering Task Force (IETF) Request for Comments: ISSN: June 2010

Internet Engineering Task Force (IETF) Request for Comments: ISSN: June 2010 Internet Engineering Task Force (IETF) D. Katz Request for Comments: 5880 D. Ward Category: Standards Track Juniper Networks ISSN: 2070-1721 June 2010 Abstract Bidirectional Forwarding Detection (BFD)

More information

Network Working Group Request for Comments: December 2004

Network Working Group Request for Comments: December 2004 Network Working Group Request for Comments: 3967 BCP: 97 Category: Best Current Practice R. Bush IIJ T. Narten IBM Corporation December 2004 Status of this Memo Clarifying when Standards Track Documents

More information

Index. good cycle, 40,41,45,47, 61,62, 66, 73,74 good state, 40,41,45,47,61,62, 66, 73 guard, 8,9, 11,21 timeout, 21 local, 9, 11 receiving, 9, 11

Index. good cycle, 40,41,45,47, 61,62, 66, 73,74 good state, 40,41,45,47,61,62, 66, 73 guard, 8,9, 11,21 timeout, 21 local, 9, 11 receiving, 9, 11 Atkins, D., et al., Internet Security, 2nd edition, New Riders, 1997. Baker, F., B. Lindell, M. Talwar, "RSVP Cryptographic Authentication", RFC 2747, January 2000. Bellovin, S., M. Leech, T. Taylor, "ICMP

More information

RIP Version 2. The Classless Brother

RIP Version 2. The Classless Brother RIP Version 2 The Classless Brother (C) Herbert Haas 2005/03/11 1 Why RIPv2 Need for subnet information and VLSM Need for Next Hop addresses for each route entry Need for external route tags Need for multicast

More information

Protocols, Technologies and Standards Secure network protocols for the OSI stack P2.1 WLAN Security WPA, WPA2, IEEE i, IEEE 802.1X P2.

Protocols, Technologies and Standards Secure network protocols for the OSI stack P2.1 WLAN Security WPA, WPA2, IEEE i, IEEE 802.1X P2. P2 Protocols, Technologies and Standards Secure network protocols for the OSI stack P2.1 WLAN Security WPA, WPA2, IEEE 802.11i, IEEE 802.1X P2.2 IP Security IPsec transport mode (host-to-host), ESP and

More information

The Internet community has developed application-specific security mechanisms in a number of application areas, including electronic mail (S/MIME,

The Internet community has developed application-specific security mechanisms in a number of application areas, including electronic mail (S/MIME, 1 The Internet community has developed application-specific security mechanisms in a number of application areas, including electronic mail (S/MIME, PGP), client/server (Kerberos), Web access (Secure Sockets

More information

Lecture 12 Page 1. Lecture 12 Page 3

Lecture 12 Page 1. Lecture 12 Page 3 IPsec Network Security: IPsec CS 239 Computer Software February 26, 2003 Until recently, the IP protocol had no standards for how to apply security Encryption and authentication layered on top Or provided

More information

The EN-4000 in Virtual Private Networks

The EN-4000 in Virtual Private Networks EN-4000 Reference Manual Document 8 The EN-4000 in Virtual Private Networks O ne of the principal features of routers is their support of virtual private networks (VPNs). This document discusses transmission

More information

Internet Engineering Task Force. C. Perkins Nokia Research Center Ted Lemon Nominum Bernie Volz Ericsson R. Droms(ed.) Cisco Systems May

Internet Engineering Task Force. C. Perkins Nokia Research Center Ted Lemon Nominum Bernie Volz Ericsson R. Droms(ed.) Cisco Systems May Internet Engineering Task Force INTERNET DRAFT DHC Working Group Obsoletes: draft-ietf-dhc-dhcpv6-24.txt J. Bound Hewlett Packard M. Carney Sun Microsystems, Inc C. Perkins Nokia Research Center Ted Lemon

More information

IP Security. Cunsheng Ding HKUST, Kong Kong, China

IP Security. Cunsheng Ding HKUST, Kong Kong, China IP Security Cunsheng Ding HKUST, Kong Kong, China Agenda Some attacks against the IP Brief introduction to IPSec Building Block: Security Association Building Block: Security Association Database Building

More information

Implementing Keychain Management oncisco IOS XR Software

Implementing Keychain Management oncisco IOS XR Software Implementing Keychain Management oncisco IOS XR Software This module describes how to implement keychain management on Cisco IOS XR software. Keychain management is a common method of authentication to

More information

Intended status: Informational Expires: March 7, 2019 Huawei Technologies N. Leymann Deutsche Telekom G. Swallow Independent September 3, 2018

Intended status: Informational Expires: March 7, 2019 Huawei Technologies N. Leymann Deutsche Telekom G. Swallow Independent September 3, 2018 MPLS Working Group Internet-Draft Intended status: Informational Expires: March 7, 2019 L. Andersson Bronze Dragon Consulting S. Bryant A. Malis Huawei Technologies N. Leymann Deutsche Telekom G. Swallow

More information

Point-to-Point Extensions Working Group Internet Draft April EAP SIM Authentication (Version 1) draft-haverinen-pppext-eap-sim-01.

Point-to-Point Extensions Working Group Internet Draft April EAP SIM Authentication (Version 1) draft-haverinen-pppext-eap-sim-01. Point-to-Point Extensions Working Group Internet Draft H. Haverinen Nokia April 2001 EAP SIM Authentication (Version 1) draft-haverinen-pppext-eap-sim-01.txt Status of this Memo This document is an Internet-Draft

More information

How to Configure BGP over IKEv2 IPsec Site-to- Site VPN to an Google Cloud VPN Gateway

How to Configure BGP over IKEv2 IPsec Site-to- Site VPN to an Google Cloud VPN Gateway How to Configure BGP over IKEv2 IPsec Site-to- Site VPN to an Google Cloud VPN Gateway To connect to the Google Cloud VPN gateway, create an IPsec IKEv2 site-to-site VPN tunnel on your F-Series Firewall

More information

RSVP Message Authentication

RSVP Message Authentication RSVP Message Authentication Last Updated: December 10, 2012 The Resource Reservation Protocol (RSVP) Message Authentication feature provides a secure method to control quality of service (QoS) access to

More information

Expires: October 2000 April 2000

Expires: October 2000 April 2000 INTERNET-DRAFT UPDATES RFC 2535 Donald E. Eastlake 3rd Motorola Expires: October 2000 April 2000 DNS Request and Transaction Signatures ( SIG(0)s ) --- ------- --- ----------- ---------- - ------- -

More information

Request for Comments: 1552 Category: Standards Track December The PPP Internetwork Packet Exchange Control Protocol (IPXCP)

Request for Comments: 1552 Category: Standards Track December The PPP Internetwork Packet Exchange Control Protocol (IPXCP) Network Working Group W. Simpson Request for Comments: 1552 Daydreamer Category: Standards Track December 1993 The PPP Internetwork Packet Exchange Control Protocol (IPXCP) Status of this Memo This document

More information

<draft-huitema-v6ops-teredo-04.txt> Expires July 17, 2005 January 17, Teredo: Tunneling IPv6 over UDP through NATs. Status of this memo

<draft-huitema-v6ops-teredo-04.txt> Expires July 17, 2005 January 17, Teredo: Tunneling IPv6 over UDP through NATs. Status of this memo INTERNET DRAFT C. Huitema Microsoft Expires July 17, 2005 January 17, 2005 Teredo: Tunneling IPv6 over UDP through NATs Status of this memo By submitting this Internet-Draft,

More information

CSCE 715: Network Systems Security

CSCE 715: Network Systems Security CSCE 715: Network Systems Security Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Security in Network Layer Implementing security in application layer provides flexibility in security

More information

Category: Informational May Use of Hash Algorithms in Internet Key Exchange (IKE) and IPsec

Category: Informational May Use of Hash Algorithms in Internet Key Exchange (IKE) and IPsec Network Working Group P. Hoffman Request for Comments: 4894 VPN Consortium Category: Informational May 2007 Use of Hash Algorithms in Internet Key Exchange (IKE) and IPsec Status of This Memo This memo

More information

Firepower Threat Defense Site-to-site VPNs

Firepower Threat Defense Site-to-site VPNs About, on page 1 Managing, on page 3 Configuring, on page 3 Monitoring Firepower Threat Defense VPNs, on page 11 About Firepower Threat Defense site-to-site VPN supports the following features: Both IPsec

More information

Internet Engineering Task Force (IETF) Request for Comments: Category: Informational ISSN: March 2011

Internet Engineering Task Force (IETF) Request for Comments: Category: Informational ISSN: March 2011 Internet Engineering Task Force (IETF) S. Turner Request for Comments: 6149 IECA Obsoletes: 1319 L. Chen Category: Informational NIST ISSN: 2070-1721 March 2011 Abstract MD2 to Historic Status This document

More information

1. Introduction. Carpenter, Jung Expires June 1999 [Page 2] ^L. Internet Draft Transmission of IPv6 Packets over IPv4 Dec 1998

1. Introduction. Carpenter, Jung Expires June 1999 [Page 2] ^L. Internet Draft Transmission of IPv6 Packets over IPv4 Dec 1998 IETF Internet Draft December 1998 B. Carpenter, IBM C. Jung, 3Com Transmission of IPv6 over IPv4 Domains without Explicit Tunnels draft-ietf-ipngwg-6over4-01.txt Status of this Memo This document is an

More information

The file name of this version is draft-alvestrand-charset-policy-00.txt

The file name of this version is draft-alvestrand-charset-policy-00.txt HTTP/1.1 200 OK Date: Mon, 08 Apr 2002 22:29:59 GMT Server: Apache/1.3.20 (Unix) Last-Modified: Tue, 24 Jun 1997 14:45:00 GMT ETag: "2e6ce6-2dc9-33afdd6c" Accept-Ranges: bytes Content-Length: 11721 Connection:

More information

Internet Engineering Task Force. Obsoletes: draft-ietf-dhc-dhcpv6-05.txt 16 August 1996

Internet Engineering Task Force. Obsoletes: draft-ietf-dhc-dhcpv6-05.txt 16 August 1996 Internet Engineering Task Force INTERNET DRAFT DHC Working Group Obsoletes: draft-ietf-dhc-dhcpv6-05.txt J. Bound Digital Equipment Corp. C. Perkins IBM Research 16 August 1996 Dynamic Host Configuration

More information

Defining IPsec Networks and Customers

Defining IPsec Networks and Customers CHAPTER 4 Defining the IPsec Network Elements In this product, a VPN network is a unique group of targets; a target can be a member of only one network. Thus, a VPN network allows a provider to partition

More information

Internet Engineering Task Force. C. Perkins Nokia Research Center Ted Lemon Nominum Bernie Volz Ericsson R. Droms(ed.) Cisco Systems 22 Apr 2002

Internet Engineering Task Force. C. Perkins Nokia Research Center Ted Lemon Nominum Bernie Volz Ericsson R. Droms(ed.) Cisco Systems 22 Apr 2002 Internet Engineering Task Force INTERNET DRAFT DHC Working Group Obsoletes: draft-ietf-dhc-dhcpv6-23.txt J. Bound Compaq M. Carney Sun Microsystems, Inc C. Perkins Nokia Research Center Ted Lemon Nominum

More information

IP Routing: RIP Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3650 Switches)

IP Routing: RIP Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3650 Switches) IP Routing: RIP Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3650 Switches) First Published: November 15, 2012 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706

More information

draft-ietf-ipsec-nat-t-ike-00.txt W. Dixon, B. Swander Microsoft V. Volpe Cisco Systems L. DiBurro Nortel Networks 10 June 2001

draft-ietf-ipsec-nat-t-ike-00.txt W. Dixon, B. Swander Microsoft V. Volpe Cisco Systems L. DiBurro Nortel Networks 10 June 2001 IP Security Protocol Working Group (IPSEC) INTERNET-DRAFT draft-ietf-ipsec-nat-t-ike-00.txt Expires: 10 December 2001 T. Kivinen, M. Stenberg SSH Communications Security A. Huttunen F-Secure Corporation

More information

Network Working Group Request for Comments: 1663 Category: Standards Track July 1994

Network Working Group Request for Comments: 1663 Category: Standards Track July 1994 Network Working Group D. Rand Request for Comments: 1663 Novell Category: Standards Track July 1994 Status of this Memo PPP Reliable Transmission This document specifies an Internet standards track protocol

More information

MIP4 Working Group. Generic Notification Message for Mobile IPv4 draft-ietf-mip4-generic-notification-message-16

MIP4 Working Group. Generic Notification Message for Mobile IPv4 draft-ietf-mip4-generic-notification-message-16 MIP4 Working Group Internet-Draft Intended status: Standards Track Expires: April 28, 2011 H. Deng China Mobile H. Levkowetz Netnod V. Devarapalli WiChorus S. Gundavelli Cisco Systems B. Haley Hewlett-Packard

More information

Cryptography and Network Security. Sixth Edition by William Stallings

Cryptography and Network Security. Sixth Edition by William Stallings Cryptography and Network Security Sixth Edition by William Stallings Chapter 20 IP Security If a secret piece of news is divulged by a spy before the time is ripe, he must be put to death, together with

More information

Cryptography and Network Security Chapter 16. Fourth Edition by William Stallings

Cryptography and Network Security Chapter 16. Fourth Edition by William Stallings Cryptography and Network Security Chapter 16 Fourth Edition by William Stallings Chapter 16 IP Security If a secret piece of news is divulged by a spy before the time is ripe, he must be put to death,

More information

IPSec implementation for SCTP

IPSec implementation for SCTP SCTP and Proposed Modifications to Aditya Kelkar Alok Sontakke Srivatsa R. Dept. of CSE. IIT Bombay October 31, 2004 SCTP and Proposed Modifications to 1 2 3 SCTP and 4 Proposed Modifications to 5 SCTP

More information

T.J. Watson Research Center IBM Corp Sue Thomson Bellcore. Dynamic Host Configuration Protocol for IPv6. draft-ietf-dhc-dhcpv6-01.

T.J. Watson Research Center IBM Corp Sue Thomson Bellcore. Dynamic Host Configuration Protocol for IPv6. draft-ietf-dhc-dhcpv6-01. HTTP/1.1 200 OK Date: Tue, 09 Apr 2002 01:46:15 GMT Server: Apache/1.3.20 (Unix) Last-Modified: Wed, 22 Mar 1995 23:00:00 GMT ETag: "2ed703-7c52-2f70abf0" Accept-Ranges: bytes Content-Length: 31826 Connection:

More information

Request for Comments: 3566 Category: Standards Track Intel September The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec

Request for Comments: 3566 Category: Standards Track Intel September The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec Network Working Group Request for Comments: 3566 Category: Standards Track S. Frankel NIST H. Herbert Intel September 2003 Status of this Memo The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec This

More information

Configuring IP Services

Configuring IP Services CHAPTER 8 Configuring IP Services This chapter describes how to configure optional IP services supported by the Cisco Optical Networking System (ONS) 15304. For a complete description of the commands in

More information

Network Working Group. <draft-ietf-mailext-pipeline-00.txt> SMTP Service Extension for Command Pipelining. August 17, Status of this Memo

Network Working Group. <draft-ietf-mailext-pipeline-00.txt> SMTP Service Extension for Command Pipelining. August 17, Status of this Memo HTTP/1.1 200 OK Date: Tue, 09 Apr 2002 04:52:23 GMT Server: Apache/1.3.20 (Unix) Last-Modified: Thu, 18 Aug 1994 22:00:00 GMT ETag: "2e6820-3355-2e53d9e0" Accept-Ranges: bytes Content-Length: 13141 Connection:

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

draft-ietf-idn-idna-02.txt Internationalizing Host Names In Applications (IDNA) Status of this Memo

draft-ietf-idn-idna-02.txt Internationalizing Host Names In Applications (IDNA) Status of this Memo Internet Draft draft-ietf-idn-idna-02.txt June 16, 2001 Expires in six months Patrik Faltstrom Cisco Paul Hoffman IMC & VPNC Status of this Memo Internationalizing Host Names In Applications (IDNA) This

More information

Mobile Ad-hoc Networks. Intended status: Informational July 16, 2012 Expires: January 17, 2013

Mobile Ad-hoc Networks. Intended status: Informational July 16, 2012 Expires: January 17, 2013 Mobile Ad-hoc Networks H. Rogge Internet-Draft Fraunhofer FKIE Intended status: Informational July 16, 2012 Expires: January 17, 2013 Abstract Stateless RFC5444-based Dynamic Link Exchange Protocol (DLEP)

More information

The World Wide Web is widely used by businesses, government agencies, and many individuals. But the Internet and the Web are extremely vulnerable to

The World Wide Web is widely used by businesses, government agencies, and many individuals. But the Internet and the Web are extremely vulnerable to 1 The World Wide Web is widely used by businesses, government agencies, and many individuals. But the Internet and the Web are extremely vulnerable to compromises of various sorts, with a range of threats

More information

October 4, 2000 Expires in six months. SMTP Service Extension for Secure SMTP over TLS. Status of this Memo

October 4, 2000 Expires in six months. SMTP Service Extension for Secure SMTP over TLS. Status of this Memo Internet Draft draft-hoffman-rfc2487bis-04.txt October 4, 2000 Expires in six months Paul Hoffman Internet Mail Consortium Status of this Memo SMTP Service Extension for Secure SMTP over TLS This document

More information

IPSec VPN Setup with IKE Preshared Key and Manual Key on WRVS4400N Router

IPSec VPN Setup with IKE Preshared Key and Manual Key on WRVS4400N Router IPSec VPN Setup with IKE Preshared Key and Manual Key on WRVS4400N Router Objective Internet Protocol Security (IPSec) is used to protect communications through the encryption of IP packets during a communication

More information