Chapter 19. Protocol architecture. Summary. Key ideas. Copyright 1998, David G. Messerschmitt. All rights reserved. by David G.

Size: px
Start display at page:

Download "Chapter 19. Protocol architecture. Summary. Key ideas. Copyright 1998, David G. Messerschmitt. All rights reserved. by David G."

Transcription

1 Chapter 19 Protocol architecture Summary Network architecture Internet protocols Some network security issues 3 Key ideas Packet encapsulation: one packet can be encapsulated in another Packet fragmentation: one packet can be split into two or more packets and encapsulated Protocol layering: one service can be layered on another fragmentation and encapsulation 4 New header Original packet Packet encapsulated in another packet Header Payload Original packet Original packet (including its header) is payload of new packet Encapsulated again Encapsulated packet Divide into packet fragments New packets Original packet Reassembled original packet 5 6 1

2 Layer n+1 Layer n+1 Peer-to-peer communication Layer n Layer n protocol header Layer n+1 protocol header 7 Layer n Encapsulated layer n+1 packet, including header Layered protocol modularity Layer n+1 protocol is logically peer-to-peer Layer n+1 protocol depends on services of layer n Layer n+1 packets are encapsulated in layer n packets Layer n+1 never sees layer n packet headers Layer n ignores layer n+1 packet headers (part of payload) 8 Key ideas (again) IETF/OMG Layers Packet encapsulation: one packet can be encapsulated in another Packet fragmentation: one packet can be split into two or more packets and encapsulated Protocol layering: one service can be layered on another fragmentation and encapsulation 9 Layering Physical Logical Application Application ORB ORB IIOP IIOP TCP or UDP TCP or UDP IP IP IP Network 1 N 1 N 2 Network 2 A Switch B 10 Internet: logical view Internet: physical view Application TCP or UDP A Peer-to-peer 11 Application TCP or UDP B The constituent networks are not visible to the application; TCP/UDP does not reside in packet switches IP IP IP Network 1 N 1 N 2 Network 2 A Switch B IP serves to connect heterogeneous networks into an internetwork 12 2

3 What IP does do Allow packets to traverse multiple networks Deliver packet to specified destination host Best effort: deliver as reliably and as soon as it can What IP Doesn t Do Guarantee latency for packets that are delivered Guarantee delivery, or notify source host if packet is not delivered Guarantee order of delivery Guarantee integrity of packet payload Maintain conversational context (each packet is independent) Specify what process that should receive the packet at destination host IP header Version Priority FlowLabel PayloadLen NextHeader HopLimit SourceAddress DestinationAddress Transport services: UDP and TCP Direct packet to a particular process UDP adds: Payload integrity for packets delivered TCP adds: Reliable delivery of testream session 32 bits Comparison of services IP: host-tohost -toprocess IP: Best-effort datagram TCP UDP UDP: best-effort datagram with payload integrity te te te te te te TCP: reliable bi-directional testream 17 SourcePort UDP/TCP ports (publish/subscribe) Port IP: host-tohost DestinationPort (rest of UDP or TCP header) 32 bits 18 Port Encapsulated in IP packet 3

4 HTTP Service Client can make requests GET (pull) POST (push) (some others) Server responds HTTP headers HTML document or JPEG, or GIF, or 19 URL Structure <scheme>://<host>:<port>/<path> Scheme HTTP, FTP, GOPHER, MAILTO,... An IP address or D name Port TCP port number Optional (defaults to 80 for http) 20 HTTP example When a browser fetches says to use HTTP protocol Resolve in D Make TCP connection , port 80 Send the following text string GET /~presnick/ 21 Server sends back HTTP/ OK Date: Mon, 22 Dec :12:32 GMT Server: Apache/1.2.4 Last-Modified: Thu, 04 Dec :26:10 GMT ETag: "5f2f2-33fd-3486d9a2" Content-Length: Accept-Ranges: tes Connection: close Content-Type: text/html <HTML>. 22 HTML <H1> Paul Resnick</H1> <IMG SRC="RESNICK.gif" ALT="[PHOTO]" HSPACE=10 ALIGN=LEFT> <BR>Associate Professor <BR>University of Michigan <BR>School of Information <BR>314 West Hall <BR>550 East University Avenue <BR>Ann Arbor, MI <BR>presnick@umich.edu 23 What Browsers Send to Servers Your IP address The browser type The refer link What URL you last looked at Cookies (persistent client state for a URL) Server response can include a set-cookie header Browser saves the cookie Browser resends to server next time 24 4

5 Aggregating te stream Original tes are aggregated and. te te te te te te How TCP works.encapsulated in TCP packets, with a sequence number included in the TCP header te te te te te te te te te te The TCP packets are encapsulated in IP packets 26 TCP connections TCP establishes a session with ordered and bidirectional reliable delivery of tes Establishment: Inform receiving port of connection Initialize packet sequence number Congestion and flow control state Disestablishment By either peer Free state and resources 27 HTTP uses TCP Often have to request another page e.g., image HTTP/1.0 requires a new TCP session for each Overhead of session establishment HTTP/1.1 permits reuse of one TCP session for multiple requests 28 Reliable packet delivery: acknowledgement and resending Source Destination Source Destination Source Destination IP is used to send TCP packets and return Timeout Source Destination IP loses packets Task Concurrent tasks for higher throughput Packets can be reordered using sequence number

6 TCP Congestion TCP Congestion Control If link is congested Switch queue for that link fills up Drops packets Source resends non- ed packets Makes congestion worse 31 Voluntary source-imposed policy Source controls the number of non- ed packets that have been sent Controls the number of concurrent sends, and hence packet throughput Slow start, slowly increase rate Monitor non- s and delay of s to estimate congestion Quickly decrease if congestion detected 32 TCP congestion control flaws Fairness criterion Maybe equal division of resources is not what is wanted Estimating congestion retransmission is flawed for wireless links Depends on accurate implementation -- cheating possible Application can avoid congestion control using UDP 33 TCP Flow Control Recall that this is to avoid recipient from being overwhelmed Recipient must control source Recipient explicitly requests lower send rate MaxUnackedPackets is a parameter of s 34 Multicasting So far, we ve assumed node A sends to B Multicasting: node A sends same message to B, C, and D Could set up A-B, A-C, and A-D connections But A becomes a bottleneck Handling S and resends And it s inefficient Some intermediate nodes may receive the message several times Multicast protocols try to have A send only once Intermediate nodes do more work B A C D Domain Name System 35 6

7 root eecs.berkeley.edu s Delegate name search to local name server tj.watson.ibm.com berkeley.edu root info.sims.berkeley.edu berkeley.edu sims.berkeley.edu watson.ibm.com sims.berkeley.edu sims.berkeley.edu Local server caches recent search results berkeley.edu Supplements Network security Network security Some things to worry about: Sniffing Spoofing Security flaws in public servers 41 Improving security Security tools covered earlier Firewalls: a place where security policies can be enforced Who gains access What servers (ports) can be accessed What hosts can be accessed What protocols can pass Other security policies can be enforced 42 7

8 Public hosts Internal hosts Protected enclave Firewall 43 Global Internet Bastion hosts Second firewall Problems with firewalls Benign internal users assumption is naïve Obstacle to deployment of innovative applications and services Increasingly organizations want to extend extranet to suppliers and customers Solution: resource-based rather than enclave-based security Analogy: border patrol not enough, need secure buildings and vehicles, guards, police, etc. 44 Where to use encryption Packet structure Per link (wireless) Firewall-to-firewall (extranet) -to-host (IPsec) -to-process (TCP-SSL) Application 45 What are some strengths and weaknesses in these approaches? Header: Information for switches Serves as protocol message Packet length limited network policy Payload: Data for application Ignored network and protocol (Qualification: may also be encapsulated packet) 46 Protocol endpoints IP: host-tohost -toprocess Internetworking layer focuses on getting datagrams from one host to another 47 TCP UDP Transport layer focuses on process-to-process communication services Addresses vs. names 128 bits (Network,host) info.sims.berkeley.edu 48 Address specifies topological location of host to the network Name is easy to remember or construct and reflects administrative boundaries 8

9 Issues in congestion control Social issue: how do we divide limited network resources among users/applications? Approaches: Voluntary (e.g. UDP) Bad citizen is rewarded Policy driven (e.g. TCP) Incentivized (e.g. pricing) 49 Advantages of pricing-based congestion control Policies can never take into account the importance of traffic Users and applications are forced to consider the common resource implications of their actions Users and applications can choose the most important traffic for periods of congestion Shift other traffic to off-peak times Source of revenue to expand capacity 50 Technical approaches to congestion control Source-driven throttle algorithm Voluntary, policy, or incentive driven Network-driven Must use fairness criteria Network-to-source flow control Network access enforcement (policing) Traffic priorities allow source to control what traffic is discarded 51 Undesirability of fixed pricing per unit of capacity p Willingness to pay for one more unit of capacity D(c) c In reducing capacity from c to c Revenue gained Revenue lost c c max 52 Capacity Downsides of pricing Infrastructure for Usage monitoring Congestion monitoring QoS configuration Billing Operational costs How do costs compare to the benefits? 53 9

QoS attributes of a packet. Quality of service (QoS) Packet latency affects transport service QoS. Transport services.

QoS attributes of a packet. Quality of service (QoS) Packet latency affects transport service QoS. Transport services. University of California at Berkeley School of Information Management and Systems Information Systems 206 Distributed Computing Applications and Infrastructure Quality of service (QoS) QoS attributes of

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

TCP/IP THE TCP/IP ARCHITECTURE

TCP/IP THE TCP/IP ARCHITECTURE TCP/IP-1 The Internet Protocol (IP) enables communications across a vast and heterogeneous collection of networks that are based on different technologies. Any host computer that is connected to the Internet

More information

Introduction. IP Datagrams. Internet Service Paradigm. Routers and Routing Tables. Datagram Forwarding. Example Internet and Conceptual Routing Table

Introduction. IP Datagrams. Internet Service Paradigm. Routers and Routing Tables. Datagram Forwarding. Example Internet and Conceptual Routing Table Introduction Datagram Forwarding Gail Hopkins Service paradigm IP datagrams Routing Encapsulation Fragmentation Reassembly Internet Service Paradigm IP Datagrams supports both connectionless and connection-oriented

More information

Networking interview questions

Networking interview questions Networking interview questions What is LAN? LAN is a computer network that spans a relatively small area. Most LANs are confined to a single building or group of buildings. However, one LAN can be connected

More information

Internetworking Models The OSI Reference Model

Internetworking Models The OSI Reference Model Internetworking Models When networks first came into being, computers could typically communicate only with computers from the same manufacturer. In the late 1970s, the Open Systems Interconnection (OSI)

More information

CS 4390 Computer Networks. Transport Services and Protocols

CS 4390 Computer Networks. Transport Services and Protocols CS 4390 Computer Networks UT D data Session 07 Transport Layer Overview and UDP Adapted from Computer Networking a Top-Down Approach 1996-2012 by J.F Kurose and K.W. Ross, All Rights Reserved Transport

More information

Application Layer Introduction; HTTP; FTP

Application Layer Introduction; HTTP; FTP Application Layer Introduction; HTTP; FTP Tom Kelliher, CS 325 Feb. 4, 2011 1 Administrivia Announcements Assignment Read 2.4 2.6. From Last Time Packet-switched network characteristics; protocol layers

More information

TSIN02 - Internetworking

TSIN02 - Internetworking TSIN02 - Internetworking Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 Transport layer responsibilities UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 Transport layer in OSI model

More information

Next Steps Spring 2011 Lecture #18. Multi-hop Networks. Network Reliability. Have: digital point-to-point. Want: many interconnected points

Next Steps Spring 2011 Lecture #18. Multi-hop Networks. Network Reliability. Have: digital point-to-point. Want: many interconnected points Next Steps Have: digital point-to-point We ve worked on link signaling, reliability, sharing Want: many interconnected points 6.02 Spring 2011 Lecture #18 multi-hop networks: design criteria network topologies

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

ICS 351: Networking Protocols

ICS 351: Networking Protocols ICS 351: Networking Protocols IP packet forwarding application layer: DNS, HTTP transport layer: TCP and UDP network layer: IP, ICMP, ARP data-link layer: Ethernet, WiFi 1 Networking concepts each protocol

More information

Goals and topics. Verkkomedian perusteet Fundamentals of Network Media T Circuit switching networks. Topics. Packet-switching networks

Goals and topics. Verkkomedian perusteet Fundamentals of Network Media T Circuit switching networks. Topics. Packet-switching networks Verkkomedian perusteet Fundamentals of Media T-110.250 19.2.2002 Antti Ylä-Jääski 19.2.2002 / AYJ lide 1 Goals and topics protocols Discuss how packet-switching networks differ from circuit switching networks.

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START MIDTERM EXAMINATION #1 NETWORKING CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R - S c h o o l o f C o m p u t e r S c i e n c e Intersession 2009 Question Paper NOTE: Students may take this

More information

Lab 2. All datagrams related to favicon.ico had been ignored. Diagram 1. Diagram 2

Lab 2. All datagrams related to favicon.ico had been ignored. Diagram 1. Diagram 2 Lab 2 All datagrams related to favicon.ico had been ignored. Diagram 1 Diagram 2 1. Is your browser running HTTP version 1.0 or 1.1? What version of HTTP is the server running? According to the diagram

More information

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University Computer Networks More on Standards & Protocols Quality of Service Week 10 College of Information Science and Engineering Ritsumeikan University Introduction to Protocols l A protocol is a set of rules

More information

Different Layers Lecture 20

Different Layers Lecture 20 Different Layers Lecture 20 10/15/2003 Jian Ren 1 The Network Layer 10/15/2003 Jian Ren 2 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host,

More information

CSE/EE 461 Lecture 16 TCP Congestion Control. TCP Congestion Control

CSE/EE 461 Lecture 16 TCP Congestion Control. TCP Congestion Control CSE/EE Lecture TCP Congestion Control Tom Anderson tom@cs.washington.edu Peterson, Chapter TCP Congestion Control Goal: efficiently and fairly allocate network bandwidth Robust RTT estimation Additive

More information

CS519: Computer Networks. Lecture 1 (part 2): Jan 28, 2004 Intro to Computer Networking

CS519: Computer Networks. Lecture 1 (part 2): Jan 28, 2004 Intro to Computer Networking : Computer Networks Lecture 1 (part 2): Jan 28, 2004 Intro to Computer Networking Remember this picture? How did the switch know to forward some packets to B and some to D? From the address in the packet

More information

CSE/EE 461 Lecture 13 Connections and Fragmentation. TCP Connection Management

CSE/EE 461 Lecture 13 Connections and Fragmentation. TCP Connection Management CSE/EE 461 Lecture 13 Connections and Fragmentation Tom Anderson tom@cs.washington.edu Peterson, Chapter 5.2 TCP Connection Management Setup assymetric 3-way handshake Transfer sliding window; data and

More information

IP Mobility vs. Session Mobility

IP Mobility vs. Session Mobility IP Mobility vs. Session Mobility Securing wireless communication is a formidable task, something that many companies are rapidly learning the hard way. IP level solutions become extremely cumbersome when

More information

Chapter 5 OSI Network Layer

Chapter 5 OSI Network Layer Chapter 5 OSI Network Layer The protocols of the OSI model Network layer specify addressing and processes that enable Transport layer data to be packaged and transported. The Network layer encapsulation

More information

IP Packet Switching. Goals of Todayʼs Lecture. Simple Network: Nodes and a Link. Connectivity Links and nodes Circuit switching Packet switching

IP Packet Switching. Goals of Todayʼs Lecture. Simple Network: Nodes and a Link. Connectivity Links and nodes Circuit switching Packet switching IP Packet Switching CS 375: Computer Networks Dr. Thomas C. Bressoud Goals of Todayʼs Lecture Connectivity Links and nodes Circuit switching Packet switching IP service model Best-effort packet delivery

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Resource Reservation Protocol

Resource Reservation Protocol 48 CHAPTER Chapter Goals Explain the difference between and routing protocols. Name the three traffic types supported by. Understand s different filter and style types. Explain the purpose of tunneling.

More information

OSI Transport Layer. objectives

OSI Transport Layer. objectives LECTURE 5 OSI Transport Layer objectives 1. Roles of the Transport Layer 1. segmentation of data 2. error detection 3. Multiplexing of upper layer application using port numbers 2. The TCP protocol Communicating

More information

Chapter 2: Application Layer. Chapter 2 Application Layer. Some network apps. Application architectures. Chapter 2: Application layer

Chapter 2: Application Layer. Chapter 2 Application Layer. Some network apps. Application architectures. Chapter 2: Application layer Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Chapter 2: Application Layer Our goals: conceptual, implementation

More information

20-CS Cyber Defense Overview Fall, Network Basics

20-CS Cyber Defense Overview Fall, Network Basics 20-CS-5155 6055 Cyber Defense Overview Fall, 2017 Network Basics Who Are The Attackers? Hackers: do it for fun or to alert a sysadmin Criminals: do it for monetary gain Malicious insiders: ignores perimeter

More information

Distributed Systems. 27. Firewalls and Virtual Private Networks Paul Krzyzanowski. Rutgers University. Fall 2013

Distributed Systems. 27. Firewalls and Virtual Private Networks Paul Krzyzanowski. Rutgers University. Fall 2013 Distributed Systems 27. Firewalls and Virtual Private Networks Paul Krzyzanowski Rutgers University Fall 2013 November 25, 2013 2013 Paul Krzyzanowski 1 Network Security Goals Confidentiality: sensitive

More information

Data and Computer Communications. Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications

Data and Computer Communications. Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications Data and Computer Communications Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based s 1 Need For Protocol Architecture data exchange can involve complex procedures better if task broken into subtasks

More information

UNIT 2 TRANSPORT LAYER

UNIT 2 TRANSPORT LAYER Network, Transport and Application UNIT 2 TRANSPORT LAYER Structure Page No. 2.0 Introduction 34 2.1 Objective 34 2.2 Addressing 35 2.3 Reliable delivery 35 2.4 Flow control 38 2.5 Connection Management

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Transport Layer Network Fundamentals Chapter 4 Version 4.0 1 Transport Layer Role and Services Transport layer is responsible for overall end-to-end transfer of application data 2 Transport Layer Role

More information

Review of Previous Lecture

Review of Previous Lecture Review of Previous Lecture Network access and physical media Internet structure and ISPs Delay & loss in packet-switched networks Protocol layers, service models Some slides are in courtesy of J. Kurose

More information

ET4254 Communications and Networking 1

ET4254 Communications and Networking 1 Topic 9 Internet Protocols Aims:- basic protocol functions internetworking principles connectionless internetworking IP IPv6 IPSec 1 Protocol Functions have a small set of functions that form basis of

More information

Configuring Application Visibility and Control for Cisco Flexible Netflow

Configuring Application Visibility and Control for Cisco Flexible Netflow Configuring Application Visibility and Control for Cisco Flexible Netflow First published: July 22, 2011 This guide contains information about the Cisco Application Visibility and Control feature. It also

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964 The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

Resource Control and Reservation

Resource Control and Reservation 1 Resource Control and Reservation Resource Control and Reservation policing: hold sources to committed resources scheduling: isolate flows, guarantees resource reservation: establish flows 2 Usage parameter

More information

RSVP 1. Resource Control and Reservation

RSVP 1. Resource Control and Reservation RSVP 1 Resource Control and Reservation RSVP 2 Resource Control and Reservation policing: hold sources to committed resources scheduling: isolate flows, guarantees resource reservation: establish flows

More information

Chapter 2 Application Layer. Lecture 4: principles of network applications. Computer Networking: A Top Down Approach

Chapter 2 Application Layer. Lecture 4: principles of network applications. Computer Networking: A Top Down Approach Chapter 2 Application Layer Lecture 4: principles of network applications Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Application Layer 2-1 Chapter

More information

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print,

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print, ANNEX B - Communications Protocol Overheads The OSI Model is a conceptual model that standardizes the functions of a telecommunication or computing system without regard of their underlying internal structure

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 9 Transport Layer Spring 2018 Reading: Begin Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Outline Overview

More information

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 13: UDP and TCP

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 13: UDP and TCP CS 5520/ECE 5590NA: Network Architecture I Spring 2008 Lecture 13: UDP and TCP Most recent lectures discussed mechanisms to make better use of the IP address space, Internet control messages, and layering

More information

Modular Quality of Service Overview on Cisco IOS XR Software

Modular Quality of Service Overview on Cisco IOS XR Software Modular Quality of Service Overview on Cisco IOS XR Software Quality of Service (QoS) is the technique of prioritizing traffic flows and providing preferential forwarding for higher-priority packets. The

More information

Reliable Transport I: Concepts and TCP Protocol

Reliable Transport I: Concepts and TCP Protocol Reliable Transport I: Concepts and TCP Protocol Stefano Vissicchio UCL Computer Science COMP0023 Today Transport Concepts Layering context Transport goals Transport mechanisms and design choices TCP Protocol

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master

More information

Different Layers Lecture 21

Different Layers Lecture 21 Different Layers Lecture 21 10/17/2003 Jian Ren 1 The Transport Layer 10/17/2003 Jian Ren 2 Transport Services and Protocols Provide logical communication between app processes running on different hosts

More information

VXLAN Overview: Cisco Nexus 9000 Series Switches

VXLAN Overview: Cisco Nexus 9000 Series Switches White Paper VXLAN Overview: Cisco Nexus 9000 Series Switches What You Will Learn Traditional network segmentation has been provided by VLANs that are standardized under the IEEE 802.1Q group. VLANs provide

More information

Paper solution Subject: Computer Networks (TE Computer pattern) Marks : 30 Date: 5/2/2015

Paper solution Subject: Computer Networks (TE Computer pattern) Marks : 30 Date: 5/2/2015 Paper solution Subject: Computer Networks (TE Computer- 2012 pattern) Marks : 30 Date: 5/2/2015 Q1 a) What is difference between persistent and non persistent HTTP? Also Explain HTTP message format. [6]

More information

TRANSMISSION CONTROL PROTOCOL. ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016

TRANSMISSION CONTROL PROTOCOL. ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016 TRANSMISSION CONTROL PROTOCOL ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016 ETI 2506 - TELECOMMUNICATION SYLLABUS Principles of Telecom (IP Telephony and IP TV) - Key Issues to remember 1.

More information

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

ETSF05/ETSF10 Internet Protocols Network Layer Protocols ETSF05/ETSF10 Internet Protocols Network Layer Protocols 2016 Jens Andersson Agenda Internetworking IPv4/IPv6 Framentation/Reassembly ICMPv4/ICMPv6 IPv4 to IPv6 transition VPN/Ipsec NAT (Network Address

More information

Internet Design Principles and Architecture

Internet Design Principles and Architecture Internet Design Principles and Architecture Venkat Padmanabhan Microsoft Research 2 April 2001 Venkat Padmanabhan 1 Lecture Outline A brief history of the Internet How is the Internet different from the

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2017 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Da t e: August 2 0 th a t 9: :00 SOLUTIONS Interne t working, Examina tion 2G1 3 0 5 Da t e: August 2 0 th 2 0 0 3 a t 9: 0 0 1 3:00 SOLUTIONS 1. General (5p) a) Place each of the following protocols in the correct TCP/IP layer (Application, Transport,

More information

Solution to Question 1: ``Quickies'' (25 points, 15 minutes)

Solution to Question 1: ``Quickies'' (25 points, 15 minutes) Solution to Question : ``Quickies'' (25 points, 5 minutes) What is meant by the term statistical multiplexing? Answer: In statistical multiplexing, data from multiple users (senders) is sent over a link.

More information

Chapter 12 Network Protocols

Chapter 12 Network Protocols Chapter 12 Network Protocols 1 Outline Protocol: Set of defined rules to allow communication between entities Open Systems Interconnection (OSI) Transmission Control Protocol/Internetworking Protocol (TCP/IP)

More information

Chapter 09 Network Protocols

Chapter 09 Network Protocols Chapter 09 Network Protocols Copyright 2011, Dr. Dharma P. Agrawal and Dr. Qing-An Zeng. All rights reserved. 1 Outline Protocol: Set of defined rules to allow communication between entities Open Systems

More information

Cisco IP Fragmentation and PMTUD

Cisco IP Fragmentation and PMTUD Table of Contents IP Fragmentation and PMTUD...1 Introduction...1 IP Fragmentation and Reassembly...1 Issues with IP Fragmentation...3 Avoiding IP Fragmentation: What TCP MSS Does and How It Works...4

More information

ECE697AA Lecture 2. Today s lecture

ECE697AA Lecture 2. Today s lecture ECE697AA Lecture 2 Application Layer: HTTP Tilman Wolf Department of Electrical and Computer Engineering 09/04/08 Protocol stack Application layer Client-server architecture Example protocol: HTTP Demo

More information

HyperText Transfer Protocol

HyperText Transfer Protocol Outline Introduce Socket Programming Domain Name Service (DNS) Standard Application-level Protocols email (SMTP) HTTP HyperText Transfer Protocol Defintitions A web page consists of a base HTML-file which

More information

Introduction to Information Science and Technology 2017 Networking II. Sören Schwertfeger 师泽仁

Introduction to Information Science and Technology 2017 Networking II. Sören Schwertfeger 师泽仁 II Sören Schwertfeger 师泽仁 Outline Review Network Layer Routing Transport Layer Applications HTTP Demos Internet: Huge network of networks Billions of hosts (computers) Internet Structure Network Edge:

More information

Concept Questions Demonstrate your knowledge of these concepts by answering the following questions in the space provided.

Concept Questions Demonstrate your knowledge of these concepts by answering the following questions in the space provided. 113 Chapter 9 TCP/IP Transport and Application Layer Services that are located in the transport layer enable users to segment several upper-layer applications onto the same transport layer data stream.

More information

Chapter -4 OSI Reference Model

Chapter -4 OSI Reference Model Chapter -4 OSI Reference Model Objectives Concept of Reference Model. OSI Reference Model Concept. Layers of OSI Reference Model. 4.1 Introduction Layered Architecture, Peer-to- Peer Processes, Interfaces

More information

CPSC156a: The Internet Co-Evolution of Technology and Society. Lecture 4: September 16, 2003 Internet Layers and the Web

CPSC156a: The Internet Co-Evolution of Technology and Society. Lecture 4: September 16, 2003 Internet Layers and the Web CPSC156a: The Internet Co-Evolution of Technology and Society Lecture 4: September 16, 2003 Internet Layers and the Web Layering in the IP Protocols HTTP (Web) Telnet Domain Name Service Simple Network

More information

UDP, TCP, IP multicast

UDP, TCP, IP multicast UDP, TCP, IP multicast Dan Williams In this lecture UDP (user datagram protocol) Unreliable, packet-based TCP (transmission control protocol) Reliable, connection oriented, stream-based IP multicast Process-to-Process

More information

Multiple unconnected networks

Multiple unconnected networks TCP/IP Life in the Early 1970s Multiple unconnected networks ARPAnet Data-over-cable Packet satellite (Aloha) Packet radio ARPAnet satellite net Differences Across Packet-Switched Networks Addressing Maximum

More information

CS 268: Internet Architecture & E2E Arguments. Today s Agenda. Scott Shenker and Ion Stoica (Fall, 2010) Design goals.

CS 268: Internet Architecture & E2E Arguments. Today s Agenda. Scott Shenker and Ion Stoica (Fall, 2010) Design goals. CS 268: Internet Architecture & E2E Arguments Scott Shenker and Ion Stoica (Fall, 2010) 1 Today s Agenda Design goals Layering (review) End-to-end arguments (review) 2 1 Internet Design Goals Goals 0 Connect

More information

Priority Traffic CSCD 433/533. Advanced Networks Spring Lecture 21 Congestion Control and Queuing Strategies

Priority Traffic CSCD 433/533. Advanced Networks Spring Lecture 21 Congestion Control and Queuing Strategies CSCD 433/533 Priority Traffic Advanced Networks Spring 2016 Lecture 21 Congestion Control and Queuing Strategies 1 Topics Congestion Control and Resource Allocation Flows Types of Mechanisms Evaluation

More information

4.0.1 CHAPTER INTRODUCTION

4.0.1 CHAPTER INTRODUCTION 4.0.1 CHAPTER INTRODUCTION Data networks and the Internet support the human network by supplying seamless, reliable communication between people - both locally and around the globe. On a single device,

More information

TCP so far Computer Networking Outline. How Was TCP Able to Evolve

TCP so far Computer Networking Outline. How Was TCP Able to Evolve TCP so far 15-441 15-441 Computer Networking 15-641 Lecture 14: TCP Performance & Future Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 Reliable byte stream protocol Connection establishments

More information

1-1. Switching Networks (Fall 2010) EE 586 Communication and. September Lecture 10

1-1. Switching Networks (Fall 2010) EE 586 Communication and. September Lecture 10 EE 586 Communication and Switching Networks (Fall 2010) Lecture 10 September 17 2010 1-1 Announcement Send me your group and get group ID HW3 (short) out on Monday Personal leave for next two weeks No

More information

University of Southern California EE450: Introduction to Computer Networks

University of Southern California EE450: Introduction to Computer Networks University of Southern California EE450: Introduction to Computer Networks Catalog Description Network architectures; Layered protocols, Network service interface; Local Networks; long-haul Networks; Internal

More information

CCNA 1 Chapter 7 v5.0 Exam Answers 2013

CCNA 1 Chapter 7 v5.0 Exam Answers 2013 CCNA 1 Chapter 7 v5.0 Exam Answers 2013 1 A PC is downloading a large file from a server. The TCP window is 1000 bytes. The server is sending the file using 100-byte segments. How many segments will the

More information

Sequence Number. Acknowledgment Number. Data

Sequence Number. Acknowledgment Number. Data CS 455 TCP, Page 1 Transport Layer, Part II Transmission Control Protocol These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING ECE361 Computer Networks Midterm March 06, 2017, 6:15PM DURATION: 80 minutes Calculator Type: 2 (non-programmable calculators) Examiner:

More information

CSE 461 Module 10. Introduction to the Transport Layer

CSE 461 Module 10. Introduction to the Transport Layer CSE 461 Module 10 Introduction to the Transport Layer Last Time We finished up the Network layer Internetworks (IP) Routing (DV/RIP, LS/OSPF, BGP) It was all about routing: how to provide end-to-end delivery

More information

Review for Internet Introduction

Review for Internet Introduction Review for Internet Introduction What s the Internet: Two Views View 1: Nuts and Bolts View billions of connected hosts routers and switches protocols control sending, receiving of messages network of

More information

COSC4377. Useful Linux Tool: screen

COSC4377. Useful Linux Tool: screen Lecture 10 Useful Linux Tool: screen Alternative to having multiple ssh/putty screens, you can have multiple virtual screens within the same session. To open a screen session: ~$ screen To suspend the

More information

Realtime Multimedia in Presence of Firewalls and Network Address Translation

Realtime Multimedia in Presence of Firewalls and Network Address Translation Realtime Multimedia in Presence of Firewalls and Network Address Translation Knut Omang Ifi/Oracle 9 Oct, 2017 1 Overview Real-time multimedia and connectivity Mobile users (roaming between devices) or

More information

Network Applications Principles of Network Applications

Network Applications Principles of Network Applications Network Applications Principles of Network Applications A Network application is an application running on one host and provides communication to another application running on a different host. At the

More information

Troubleshooting OSI Layers 4-7

Troubleshooting OSI Layers 4-7 Troubleshooting OSI Layers 4-7 In this two-part white paper series, learn to quickly locate and resolve problems across the OSI layers using the Troubleshooting Cheat Sheet. The root cause of application

More information

HP Load Balancing Module

HP Load Balancing Module HP Load Balancing Module Load Balancing Configuration Guide Part number: 5998-4218 Software version: Feature 3221 Document version: 6PW100-20130326 Legal and notice information Copyright 2013 Hewlett-Packard

More information

UDP: Datagram Transport Service

UDP: Datagram Transport Service UDP: Datagram Transport Service 1 Topics Covered Introduction Transport Protocols and End-to-End Communication The User Datagram Protocol The Connectionless Paradigm Message-Oriented Interface UDP Communication

More information

Review. Review. Review. How to Send a Message over a Network? LAN LAN. LAN Routing Addressing Reliable Data Transfer Congestion Control LAN

Review. Review. Review. How to Send a Message over a Network? LAN LAN. LAN Routing Addressing Reliable Data Transfer Congestion Control LAN Review Review Computer etworks Multiaccess or Shared Media Broadcast Switched Point-to-Point Packet Switched or Store-and-foward Circuit Switched Virtual Ciruit or Connection-Oriented Datagram or Connectionless

More information

Realtime Multimedia in Presence of Firewalls and Network Address Translation. Knut Omang Ifi/Oracle 9 Nov, 2015

Realtime Multimedia in Presence of Firewalls and Network Address Translation. Knut Omang Ifi/Oracle 9 Nov, 2015 Realtime Multimedia in Presence of Firewalls and Network Address Translation Knut Omang Ifi/Oracle 9 Nov, 2015 1 Overview Real-time multimedia and connectivity Mobile users (roaming between devices) or

More information

Application Layer: HTTP

Application Layer: HTTP Application Layer: HTTP EECS 3214 Slides courtesy of J.F Kurose and K.W. Ross, All Rights Reserved 23-Jan-18 1-1 Chapter 2: outline 2.1 principles of network applications 2.2 Web and HTTP 2.3 electronic

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 14: TCP Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu Northeastern

More information

ACL Rule Configuration on the WAP371

ACL Rule Configuration on the WAP371 Article ID: 5089 ACL Rule Configuration on the WAP371 Objective A network access control list (ACL) is an optional layer of security that acts as a firewall for controlling traffic in and out of a subnet.

More information

Lecture (03) Network Model

Lecture (03) Network Model ١ Lecture (03) Network Model By: Dr. Ahmed ElShafee Agenda Layering concept History Discovering the network layers Application Layer same layer interaction concept; Transport Layer Adjacent layer interaction

More information

Lecture 6 Application Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 6 Application Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 6 Application Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Application-layer protocols Application: communicating, distributed processes running in network hosts

More information

416 Distributed Systems. Networks review; Day 1 of 2 Jan 5 + 8, 2018

416 Distributed Systems. Networks review; Day 1 of 2 Jan 5 + 8, 2018 416 Distributed Systems Networks review; Day 1 of 2 Jan 5 + 8, 2018 1 Distributed Systems vs. Networks Low level (c/go) Run forever Support others Adversarial environment Distributed & concurrent Resources

More information

QUESTION BANK EVEN SEMESTER

QUESTION BANK EVEN SEMESTER Fatima Michael College of Engineering and Technology DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK EVEN SEMESTER SUB CODE & NAME: EC2352 COMPUTER NETWORKS YEAR / SEM: III / VI Staff

More information

Layered Model. DoD Model. ISO/OSI Model

Layered Model. DoD Model. ISO/OSI Model Data Communications vs Networking (later) Communication is concerned with the transmission of data over a communication medium/channel between two entities. Here we are more concerned about EE issues such

More information

Peer entities. Protocol Layering. Protocols. Example

Peer entities. Protocol Layering. Protocols. Example Peer entities Protocol Layering An Engineering Approach to Computer Networking Customer A and B are peers Postal worker A and B are peers Protocols A protocol is a set of rules and formats that govern

More information

Part VI. Appendixes. Appendix A OSI Model and Internet Protocols Appendix B About the CD

Part VI. Appendixes. Appendix A OSI Model and Internet Protocols Appendix B About the CD Part VI Appendixes Appendix A OSI Model and Internet Protocols Appendix B About the CD OSI Model and Internet Protocols APPENDIX A In this appendix, you will Learn about the OSI model Review the network

More information

Page 1. Review: Internet Protocol Stack. Transport Layer Services EEC173B/ECS152C. Review: TCP. Transport Layer: Connectionless Service

Page 1. Review: Internet Protocol Stack. Transport Layer Services EEC173B/ECS152C. Review: TCP. Transport Layer: Connectionless Service EEC7B/ECS5C Review: Internet Protocol Stack Review: TCP Application Telnet FTP HTTP Transport Network Link Physical bits on wire TCP LAN IP UDP Packet radio Do you remember the various mechanisms we have

More information

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-1 PROCESS-TO-PROCESS DELIVERY The transport

More information

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols Guide to Networking Essentials, 6 th Edition Chapter 5: Network Protocols Objectives Describe the purpose of a network protocol, the layers in the TCP/IP architecture, and the protocols in each TCP/IP

More information

infrared Disadvantage: 1. cannot use for long-range communication or outside a building due to sun s rays.

infrared Disadvantage: 1. cannot use for long-range communication or outside a building due to sun s rays. Chapter2: analog and digital signals can take one of two forms: 1. periodic 2. nonperiodic Periodic analog signals can be classified as: 1. simple 2. composite A sine wave is represented by three parameters:

More information

CMSC 332 Computer Networking Web and FTP

CMSC 332 Computer Networking Web and FTP CMSC 332 Computer Networking Web and FTP Professor Szajda CMSC 332: Computer Networks Project The first project has been posted on the website. Check the web page for the link! Due 2/2! Enter strings into

More information